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Chiral spin liquid phase in an optical lattice at mean-field level
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We study an optical Raman square lattice with U(1) synthetic gauge flux to show a chiral spin liquid (CSL)
phase for cold atoms based on slave-rotor and spinon mean-field theories, respectively. An effective U(1) gauge
flux generated by Raman potentials plays a major role in realizing the CSL phase. By using slave-rotor techniques
we find the CSL phase at a strong on-site Fermi Hubbard interacting regime. For large value of Hubbard interac-
tion, we derive an effective spin model including up to the four spin interactions. By spinon mean-field analysis
it is shown that the CSL phase is stabilized in the case of strong magnetic frustration. Two mean-field approxi-
mation methods give consistent phase diagrams and provide qualitative numerical evidence of the CSL phase.
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I. INTRODUCTION

More than thirty years ago, Kalmeyer and Laughlin pointed
out that the ground state wave function of the antiferromag-
netic Heisenberg Hamiltonian in two-dimensional triangular
lattice is equivalent to a fractional quantum Hall state for
bosons [1]. The elementary excitations of the ground state
are neutral spin-1/2 particles. They obey fractional (braiding)
statistics and are called anyons. Such fractional statistics is
obtained in the system where the parity and time-reversal
symmetry are broken. Motivated by this argument, a chiral
spin liquid (CSL) state was predicted at the end of 1980s. In
particular, for a Heisenberg spin Hamiltonian with both near-
est neighbor and next nearest neighbor (diagonal) hoppings
in a two-dimensional square lattice, the CSL state is obtained
and associated with the emergence of spin chirality interaction
term Si · (S j × Sk ), with which the parity and time-reversal
symmetries are violated [2]. Actually, the hopping through a
minimum triangular loop composed of the three lattice sites
(i, j, k) leads to a θ flux phase, which ensures the appearance
of the above spin chirality interaction term. Then the spin
degrees of freedom will experience an effective gauge field
and the quantum Hall effect occurs. In this sense, the CSL
state is regarded as quantum Hall effect of spin degrees of
freedom, whose boundary excitation energy bands are chiral
gapless [3]. The topological structures of CSL are embodied
in quantized Hall conductivity, a typical topological invari-
ant. Furthermore, the CSL state can also be induced by the
Dzyaloshinskii-Moriya (DM) interaction arising from spin-
orbit coupling [4]. Due to the nontrivial topology of the CSL,
much attention has been paid to theoretical explorations of the
exotic topological phase in strong correlated systems [4–33].

Among various attempts to detect novel topological phases
in experiment, the platforms of ultracold atoms trapped in
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optical lattice are very attractive since the optical lattice can
simulate real crystalline structure with tunable lattice con-
stant, potential barrier height, and onsite interaction that can
be controlled by changing the optical lattice depths or mag-
netic Feshbach resonance. The strong correlated systems in
condensed matter physics can be studied via quantum simula-
tion of strong correlated states with ultracold atoms [34–44].

In recent years, the optical Raman lattice schemes [45,46]
have been proposed in theory and widely studied in experi-
ment to generate synthetic gauge fields for cold atoms such
that some novel topological phases can be detected. One
approach is to adopt Raman couplings to create spin-orbit
(SO) interactions [47–59] of various types for ultracold atoms.
Another is to use optical Raman lattice without spin-flip hop-
ping between nearest and next nearest neighbor sites. When
hopping along a closed path in the lattice, the accumulated
nontrivial phase is equivalent to an effective Aharonov-Bohm
phase [21,60–65]. In comparison with the spin-flipped optical
Raman lattices, the latter scheme can be achieved with far-
off-resonant light, without suffering the spontaneous emission
due to near resonant lights. The CSL phase was shown in
the experimental setup with U(1) synthetic gauge flux [18].
A double-well square lattice and periodic Raman couplings
can be generated by two incident plane-wave laser beams. The
nearest neighbor spin-conserved hopping creates a nonzero
phase. In the single-particle regime, this model realizes a
quantum anomalous Hall (QAH) insulator (Chern insulator)
[66] with a large gap-bandwidth ratio in the bulk and chiral
gapless states in the edge [67]. While for large Fermi Hubbard
interactions it achieves an effective spin model containing
spin chirality interaction term Si · (S j × Sk ). In the mean-field
approximation, the CSL phase appears by tuning parameters.

Slave-rotor formalism is a consistent framework to study
correlated Fermi systems at strong interactions. The essence
of this formalism is to interpret the physical variable associ-
ated with Mott transition as a quantum slave-rotor field dual
to the local charge. The Mott insulator phase transition has
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been studied by applying the slave-rotor approach in corre-
lated electron systems [9,15,68–79]. In particular, the CSL
phase was found at strong Hubbard interactions in a honey-
comb lattice [9,20] via the slave-rotor approach. Moreover,
this approach has been used to determine the CSL phase in
the platform of fermionic alkaline-earth-metal atoms trapped
in an optical square lattice with SU(N ) Hubbard interactions
[16].

In this paper, we systematically study the CSL phase in
an improved optical Raman square lattice with U(1) synthetic
gauge flux based on a scheme introduced in Ref. [51]. Com-
pared with original optical Raman lattice setup [18] which
has a triangular loop to ensure generation of standing waves
for the in-plane and out-of-plane polarization components, the
improved setup has greater advantages on controllability and
stability, and can be well suitable for red- and blue-detuned
optical lattices, so it is of high feasibility in experiment.
Firstly, we apply slave-rotor mean-field approach for the
Fermi Hubbard model and determine the existence of the
CSL. Charge and spin degrees of freedom are separated in this
coupling regime, where charge degrees of freedom are in the
Mott insulator state, but spin degrees of freedom form QAH
state without long-range spin order, implying a CSL phase
obtained.

On the other hand, for large Hubbard interactions, in
addition to the third order correction term (spin chirality in-
teraction term) in the effective spin model, we investigate the
effect of fourth-order couplings (four spin interaction terms).
Among all the four spin interaction terms, an important term
with four spins located at the four lattice sites of a minimum
square plaquette are expected to have qualitative effect on
the CSL phase. Because of the π flux phase through hop-
ping around the minimum square plaquette, the interesting
results are obtained. We show that more consistent CSL phase
diagram is obtained when relevant four-spin interactions are
taken into account in the effective spin model.

The paper is organized as follows. In Sec. II, we review
some basic properties of improved optical Raman lattice and
introduce the Fermi Hubbard interaction. It can be shown
that there is a topological phase transition between a normal
insulator and a QAH insulator by adjusting parameters in
single-particle spectra. In Sec. III, the basic idea of slave-rotor
theory [69,80–82] is presented. Then in Secs. IV and V we
apply the slave-rotor approach to solve the self-consistent
equations at the boundary of CSL phase. Then the global
phase diagram of CSL is shown in Sec. VI. At the same time,
we study the CSL phase in effective spin model by spinon
mean-field calculations in Sec. VII. Section VIII is devoted
to the conclusion and discussion. Throughout the paper, we
consider a half-filled case at zero temperature (T = 0).

II. TIGHT-BINDING MODEL
AND GENERAL CONSIDERATIONS

We begin with the anisotropic two-dimensional (2D) op-
tical square lattice in Fig. 1 which is realized by the
experimental setup depicted in Ref. [51]. Here an incident
plane-wave laser beam Ex from the x direction with frequency
ωx has nonzero ŷ and ẑ linearly polarized components, while
an incident plane-wave laser beam Ey from y direction with

FIG. 1. (a) An incident plane-wave laser beam propagating along
x direction with frequency ωx has nonzero ŷ and ẑ linear polarization
components, and an incident plane-wave laser beam propagating
along y direction with frequency ωy has nonzero x̂ and ẑ linear
polarization components. With the two 1/4-wave plates and reflec-
tions by two mirrors M1,2, two Raman potentials can be generated.
(b) The optical Raman square lattice has an energy offset between
A and B sublattices, and the nearest neighbor hopping caused by
Raman potentials VRx and VRy . The Raman transitions also generate a
staggered flux pattern for the nearest-neighbour hopping.

frequency ωy has nonzero x̂ and ẑ linearly polarized com-
ponents. Two 1/4-wave plates are placed in the path from
mirror M1 to the lattice center and the path from mirror M2

to the lattice center, respectively, in Fig. 1(a), which leads to
additional π/2-phase shift for the ẑ polarized component. Ex

and Ey generate the standing waves as

Ex = ŷExyeiφxy cos(k0x) + iẑExze
iφxz sin(k0x), (1)

Ey = x̂Eyxeiφyx cos(k0y) + iẑEyze
iφyz sin(k0y), (2)

where φxy/φxz is the initial phase of Exy/Exz polarization
component, φyx/φyz is the initial phase of Eyx/Eyz polar-
ization component, k0 = ωx

c ≈ ωy

c , Eμν (μ, ν = x, y, z) is the
amplitude of standing wave from μ direction with ν polar-
ized components. The optical square lattice potential can be
formed:

Vsq(x, y) = V0x cos2(k0x) + V0y cos2(k0y), (3)

where the amplitudes V0x ∝ E2
xy−E2

xz

�
and V0y ∝ E2

yx−E2
yz

�
with red

or blue detuning �.
Two Raman couplings are also induced by Ex and Ey, and

the Raman potentials take the forms [51]

VRx = VR10 cos(k0x)e−iφxy sin(k0y)eiφyz , (4)

VRy = VR20 sin(k0x)e−iφxz cos(k0y)eiφyx , (5)

with the amplitudes

VR10 ∝ ExyEyz,VR20 ∝ EyxExz. (6)

Thus the anisotropic 2D optical Raman square lattice can be
realized with a staggered energy offset between the A and B
sublattices in Fig. 1(b). Since Exy and Exz come from the same
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FIG. 2. 2D optical Raman lattice divided into two sublattices A
and B. The four nearest neighbor vectors δi(i = 1, 2, 3, 4) are con-
necting the two sublattices (solid arrows), and the four next nearest
neighbor vectors δ′

i(i = 1, 2, 3, 4) are also shown (dashed arrows).

incident laser beam, we can set that φxy = φxz ≡ φy. Similarly,
φyx = φyz ≡ φx. As can be seen below that a finite magnitude
of φx − φy controllable in experiment, results in a nonzero
staggered flux pattern for the square lattice in Fig. 1(b).

Here we consider only the s-orbital wave functions ψ
(�j)
μ,s(r)

at sublattices A (μ = a) and B (μ = b), which are of even
parity. From Raman potentials VRx,Ry in Eqs. (4) and (5), the
Raman potentials are parity odd relative to each lattice-site
centers. Due to these symmetry properties, the s-orbital bands
have the following properties.

(i) The Raman potentials VRx,Ry can induce the hopping
between the nearest neighbor A and B sublattices but can not
induce next nearest neighbor (AA/BB) hoppings.

(ii) The Raman potential VRx (VRy) leads to the hopping
along the x (y) direction, which is accompanied by a phase
φy/x (−φy/x), when the hopping is toward (away from) B sites.
In experiment, we can readily set φx − φy = 2φ0, which is
equivalent to φx = −φy = φ0, so the hopping along a closed
paths described by arrows in Fig. 1(b) acquires a phase 4φ0,
which is equivalent to an effective Aharonov-Bohm phase.
This leads to a uniform U(1) gauge field with magnetic flux
through each plaquette being 4φ0 but with alternating sign
along x and y axis, thus a staggered flux configuration with
the flux |	| = 4φ0 in each square plaquette [60].

(iii) Owing to the odd parity of the Raman potentials VRx,Ry,
the hopping from one site to its leftward (upward) neighboring
site has an additional minus sign relative to the hopping to its
rightward (downward) neighboring site.

With the above properties, we can obtain the s-band tight-
binding Hamiltonian

H = −
∑
〈i j〉

(ti je
iφi j ĉ†

b,i ĉa, j + H.c.)

−
∑
〈〈i j〉〉

∑
μ=a,b

t ′
μ,i j ĉ

†
μ,iĉμ, j + mz

∑
i

(ĉ†
a,iĉa,i − ĉ†

b,i ĉb,i ).

(7)

Here ĉμ,i is the fermionic annihilation operator on sublat-
tice A (for μ = a) and B (for μ = b). The nearest neighbor
vectors δ1(−δ3) = (a, 0), δ2(−δ4) = (0, a) and the next near-
est neighbor vectors δ′

1(−δ′
3) = (a, a), δ′

2(−δ′
4) = (−a, a) are

shown in Fig. 2, with a the lattice constant. 〈i j〉 and 〈〈i j〉〉
denote nearest neighbor and next nearest neighbor sites,
respectively. The nearest neighbor and diagonal hopping

coefficients (excluding the hopping phases), ti j and t ′
μ,i j can

been calculated like in Refs. [18,47,51]:

ti,i±1x = VR10

∫
d2rψ (ix,iy )

b,s (r) · cos(k0x) sin(k0y)ψ (ix±1,iy )
a,s (r),

(8)

ti,i±1y = VR20

∫
d2rψ (ix,iy )

b,s (r) · cos(k0y) sin(k0x)ψ (ix,iy±1)
a,s (r),

(9)

t ′
μ,i j =

∫
d2rψ (ix,iy )

μ,s (r)

[
p2

2m
+ Vsq(r)

]
ψ

(ix±1,iy±1)
μ,s (r), (10)

where p is momentum of atom and m is atom mass. It can be
verified that

ti,i±1x = ±(−1)ix t0, ti,i±1y = ∓(−1)ix t0, t ′
μ,i j = t ′

μ, (11)

with t0 = VR10

∫
d2rψ (0,0)

b,s (r) cos(k0x) sin(k0y)ψ (1,0)
a,s (r) and

t ′
μ = ∫

d2rψ (0,0)
μ,s (r)[ p2

2m + Vsq(r)]ψ (1,1)
μ,s (r) (μ = a, b). The

staggered sign (−1)ix can be absorbed by transforming
sublattice B annihilation operator ĉb, j into eiπ

x j
a ĉb, j . In terms

of the new operator, the diagonal hopping coefficient t ′
b

acquires an additional minus sign −t ′
b. The hopping phase

φi j = νi jφ0 with νi j = 1 (−1) for hopping along (opposite to)
the marked direction in Fig. 1(b), and mz is the Zeeman term.
Since ψa,s and ψb,s have the same spatial distribution, we may
set t ′

a ≈ t ′
b.

In order to diagonalize the Hamiltonian (7), we transform
it into momentum space via

ĉa,b(ri ) = 1√
N

∑
k

eik·ri ĉa,b(k), (12)

here N is the number of unit cells, the sum over k is on the
first Brillouin zone (FBZ). We get Hamiltonian in matrix form
H = ∑

k Ĉ†(k)H(k)Ĉ(k) with Ĉ(k) = (ĉa(k), ĉb(k))T and

H(k) = dx(k)σx + dy(k)σy + dz(k)σz, (13)

with the coefficients

dx = −2t0 sin φ0(sin kxa + sin kya), (14)

dy = −2t0 cos φ0(sin kxa − sin kya), (15)

dz = mz − 2(t ′
a + t ′

b) cos(kxa) cos(kya), (16)

where σx,y,z are three Pauli matrices for sublattices. It is clear
that as long as φ0 �= nπ with n ∈ Z, the time-reversal symme-
try of system is broken, thus it can give rise to QAH effect.

Based on the band structure one can manifest QAH ef-
fect. The Hamiltonian has two energy bands given by ∓ε =
∓

√
d2

x + d2
y + d2

z . Their corresponding eigenstates are (up to
an arbitrary phase):

|u−〉 =
(

α−
β−

)
=
(

sin θ
2 e−iϕ

− cos θ
2

)
, (17)

|u+〉 =
(

α+
β+

)
=
(

cos θ
2 e−iϕ

sin θ
2

)
, (18)
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where the mixing angles are defined by tan θ =
√

d2
x +d2

y

dz
,

tan ϕ = dy

dx
. Now the Hamiltonian (7) can be diagonalized:

H =
∑

k

(ĉ†
a(k), ĉ†

b(k))H(k)

(
ĉa(k)
ĉb(k)

)

=
∑

k

(l̂†
k, û†

k )

(−ε 0
0 ε

)(
l̂k
ûk

)
, (19)

here the new set of operators l̂k and ûk associated with lower
and upper bands are introduced.

To evaluate the gap, we find if mz is tuned from mz >

2(t ′
a + t ′

b) to mz = 2(t ′
a + t ′

b), the band gap is closed at Dirac
point k = (0, 0), and further tuning it from mz = 2(t ′

a + t ′
b) to

mz < 2(t ′
a + t ′

b), the gap is reopened. Similarly, adjusting mz

from mz < −2(t ′
a + t ′

b) to mz > −2(t ′
a + t ′

b), the gap is closed
and then reopened at Dirac point k = (0, π

a ).
If the Fermi energy (chemical potential) lies in the gap,

only the lower band is occupied, we may use the eigenstate
|u−〉 to calculate the anomalous Hall conductivity (AHC),
which reads:

σ H
xy = 1

h

∫
FBZ

dkxdky
n · (∂kx n × ∂ky n

)
4π

= C1

h
, (20)

where n = (dx, dy, dz )/(d2
x + d2

y + d2
z )1/2. C1 is the first

Chern number, a quantized topological invariant [83,84] de-
fined on the FBZ. We can derive the following:

C1 = +1, for 0 < φ0 <
π

2
, |mz| < 2(t ′

a + t ′
b),

C1 = −1, for
π

2
< φ0 < π, |mz| < 2(t ′

a + t ′
b),

C1 = 0, for φ0 = nπ

2
(n ∈ Z) or |mz| > 2(t ′

a + t ′
b). (21)

It indicates that topological phase (QAH insulator) exists
only when |mz| < 2(t ′

a + t ′
b) and φ0 �= nπ

2 (n ∈ Z). which has
gapped bulk states [18] but supports gapless edge states on the
boundaries of the system [67].

Next we will take into account a spin-1/2 two-copy version
of the QAH model. The two copies can be obtained from two
subspaces �1 and �2 of a system. �1 subspace is described by
a Hamiltonian corresponding to spin-up state:

H�1 =
∑

k

(ĉ†
a↑(k), ĉ†

b↑(k))H(k)

(
ĉa↑(k)
ĉb↑(k)

)
, (22)

and �2 subspace is described by a Hamiltonian corresponding
to spin-down state:

H�2 =
∑

k

(ĉ†
a↓(k), ĉ†

b↓(k))H(k)

(
ĉa↓(k)
ĉb↓(k)

)
, (23)

here in Eqs. (22) and (23), H(k) is given by Eq. (13). When
Fermi energy is inside the gap and both �1 and �2 subsystems
are half-filled, each subspace forms a QAH insulator with the
same Chern number. Since �1 and �2 subspaces decouple,
we have the total Hamiltonian: H = ∑

k Ĉ†(k)H(k)Ĉ(k) with
Ĉ(k) = (ĉa↑(k), ĉb↑(k), ĉa↓(k), ĉb↓(k))T and

H(k) =
∑

α=x,y,z

dα (k)I ⊗ σα. (24)

The main task of this paper is to investigate the effect of
a repulsive Fermi Hubbard interaction on the above spin-1/2
two-copy version of QAH model. The Hubbard term can be
written as

HI = U
∑

i

ni↑ni↓, (25)

where U is the strength of Hubbard interaction. In the case of
half-filling, we may rewrite the Hubbard interaction as

HI = U

2

∑
i

(∑
σ

niσ − 1

)2

. (26)

This formulation often appears in the slave-rotor theory. In
what follows, we set lattice constant a = 1, next nearest
neighbor hopping coefficients t ′

a = t ′
b = t1 and the Zeeman

term mz = ωx − ωy = 0 for resonant Raman process.

III. SLAVE-ROTOR MEAN-FIELD FORMALISM

Now we give the general idea of slave-rotor approach. Ac-
cording to Refs. [69,80–82], the original fermion operator ĉiσ

will be rewritten by a product of a spin-1/2 spinon (auxiliary
fermion) operator f̂iσ and a charged rotor eiθi ,

ĉiσ = eiθi f̂iσ . (27)

Based on this representation, the phase variable θi is conju-
gate to the total charge. In terms of the new variable, the
quartic Hubbard interaction term (26) between the fermions
is expressed by a simple kinetic term L̂2

i , where the angular
momentum operator L̂i ∝ i∂θi is a conjugate momentum of a
quantum O(2) rotor field θi. State vectors in the new Hilbert
space take the form |�〉 = |� f 〉|�θ 〉. The new rotor-spinon
Hilbert space is enlarged compared to the original one since
there exist unphysical states. To eliminate these unphysical
states, we have to impose a constraint about operators,∑

σ

f̂ †
iσ f̂iσ + L̂i = 1. (28)

The hopping terms of Hamiltonian are rewritten as

H = −
∑
〈i j〉σ

ti je
iφi j f̂ †

iσ f̂ jσ e−iθi j −
∑
〈〈i j〉〉

∑
σ

t1 f̂ †
iσ f̂ jσ e−iθi j , (29)

where θi j ≡ θi − θ j . Moreover, we replace the phase field eiθi

representing the O(2) degree of freedom by a complex bosonic
field Xi(τ ) which is constrained by

|Xi(τ )|2 = 1, (30)

here the imaginary time τ = it .
The above mean-field formalism can be used to treat strong

correlated fermionic systems, where the bosonic field Xi(τ ) is
related to Mott transition.

IV. TRANSITION FROM QAH STATE TO CSL

In this section, we use the slave-rotor mean-field formalism
to determine the phase boundary between QAH state and
CSL. In QAH state, the rotor is condensed and the original
fermion operator ĉiσ is proportional to the spinon operator f̂iσ .
In other words, the degrees of freedom of rotor and spinon are
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not separated. The whole system is a QAH insulator. While
in the CSL state, the charge degrees of freedom form a Mott
insulator state, but the spinon is described by a Hamiltonian
which is very similar to the Hamiltonian (24) of the spin-1/2
two-copy version of QAH model. In this respect, the rotor
undergoes a phase transition from superfluid to Mott insulator.
Furthermore, no symmetry breaking orders (such as magnetic
orders) appear in the CSL state.

The Hubbard interaction term (26) is rewritten in terms of
the new variables eiθi and f̂iσ as

HI = U

2

∑
i

(∑
σ

niσ − 1

)2

= U

2

∑
i

L̂2
i , (31)

where we use the constraint (28) and niσ = f̂ †
iσ f̂iσ .

The slave-rotor Hamiltonian reads

H = −
∑
〈i j〉σ

ti je
iφi j f̂ †

iσ f̂ jσ e−iθi j −
∑
〈〈i j〉〉

∑
σ

t1 f̂ †
iσ f̂ jσ e−iθi j

− μ
∑
i,σ

f̂ †
iσ f̂iσ + U

2

∑
i

L̂2
i , (32)

where μ is chemical potential. Then the mean-field decom-
posed action is

S0 =
∫ β

0
dτ

[∑
iσ

f̂ †
iσ (∂τ − μ + hi ) f̂iσ +

∑
i

ρi|Xi|2

+ 1

2U

∑
i

[(i∂τ + ihi )X
∗
i ][(−i∂τ + ihi )Xi]

+
∑

i

(
−hi + h2

i

2U

)
+ HX + H ′

X + Hf + H ′
f

]
,

(33)

here β = 1
kBT = τ

h̄ . We have to fulfill the constraints (28) and
(30) with the Lagrange multipliers hi and ρi, respectively. In
calculation, (28) and (30) are treated on average [69,81,82],∑

σ 〈 f̂ †
iσ f̂iσ 〉 + 〈L̂i〉 = 1, 〈|Xi(τ )|2〉 = 1, so the Lagrange mul-

tipliers hi ≡ h and ρi ≡ ρ are not local site-dependent.
Since it contains A and B sublattices, the effective Hamil-

tonians for rotor and spinon parts are

HX = −QX

∑
〈i j〉

X b∗
i X a

j + c.c., (34)

Hf = −Q f

∑
〈i j〉σ

ti je
iφi j f̂ †

iσ f̂ jσ + H.c., (35)

H ′
X = −Q′

X

∑
〈〈i j〉〉

X ∗
i Xj, (36)

H ′
f = −Q′

f

∑
〈〈i j〉〉

∑
σ

t1 f̂ †
iσ f̂ jσ . (37)

The mean-field parameters associated with the decomposition
are given by

QX =
〈∑

σ

ti je
iφi j f̂ b†

iσ f̂ a
jσ

〉
, (38)

Q f = 〈X ∗
i Xj〉, (39)

for the nearest neighbor hopping and

Q′
X =

〈∑
σ

t1 f̂ †
iσ f̂ jσ

〉
, (40)

Q′
f = 〈X ∗

i Xj〉 (41)

for the next nearest neighbor hopping. Note that we consider
only the half-filled case which allowed us to set μ = h = 0.

For the spinon Hamiltonian,

Hf + H ′
f =

∑
k

	
†
kI ⊗ (Q f dxσx + Q f dyσy + Q′

f dzσz )	k

=
∑
kσ

(− �k f l†
kσ f l

kσ + �k f u†
kσ f u

kσ

)
, (42)

here 	
†
k = ( f a†

k↑, f b†
k↑, f a†

k↓, f b†
k↓). Thus we obtain the renormal-

ized spinon band structure

�k =
√

Q2
f

(
d2

x + d2
y

)+ (
Q′

f dz
)2

, (43)

which is very similar to that of spin-1/2 two-copy version of
QAH model.

For the rotor Hamiltonian,

HX = QX

∑
k

[−|g1|X l∗
k X l

k + |g1|X u∗
k X u

k

]
, (44)

H ′
X = −Q′

X

∑
k

g2(k)
(
X l∗

k X l
k + X u∗

k X u
k

)
, (45)

the Green function for the X fields is written as

GX = 1
ν2

n
2U + ρ + ξk

, (46)

here we ignore the upper band of rotor and consider only the
lower band

ξk = −QX |g1(k)| − Q′
X g2(k), (47)

with g1(k) = ∑4
i=1 e−ik·δi , g2(k) = ∑4

i=1 e−ik·δ′
i , and bosonic

Matsubara frequency νn.
To treat the constraint (30) on average, we find a self-

consistent equation:

1 = 1

N

∑
k

1

β

∑
n

GX (k, νn)

=
√

2U

N

∑
k

1√
�2

X + 4U [ξk − min(ξk )]
(48)

by introducing the insulating gap of rotor

�X = 2
√

U [ρ + min (ξk )]. (49)

If the phase transition from the Mott insulator to the superfluid
of the rotor takes place, the rotor gap �X must close. It
indicates that

Uc1 (t1) = 1

2

[
1

2N

∑
k′

1√
ξk − min(ξk )

]−2

, (50)

which defines the critical interaction strength of Mott in-
sulator, i.e when U � Uc1 ,�X = 0; U > Uc1 ,�X > 0. The
sum over k′ means that the lowest bound corresponds to
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FIG. 3. Numerical solutions of the mean-field parameters (38),
(39), (40), and (41) (t0 = 1) along the phase boundary Uc1 : (a) QX (t1),
(b) Q′

X (t1), (c) Qc
f (t1), and (d) Q′c

f (t1).

k → kmin + η, η � 1 [69], and kmin is wave vector of
min(ξk ). Hence, divergence in the sum can be avoided.

After some detailed calculation (see Appendix A), we may
solve the mean-field equations corresponding to (38), (39),
(40), (41), and (50) self-consistently along the phase boundary
Uc1 . The mean-field parameters (QX , Q′

X , Qc
f , Q′c

f ) as functions
of next nearest neighbor hopping coefficient t1 are plotted in
Fig. 3. Here the hopping phase φ0 = π/4 such that the flux
|	| = π in each square plaquette in Fig. 1(b).

It is shown that along the phase transition from QAH
state to CSL, with t1 increasing from 0.05 to 1, Q′

X increases
from nearly zero to about 0.3, but QX , Qc

f , and Q′c
f decrease.

Moreover, both Qc
f and Q′c

f decrease very slowly.

V. TRANSITION FROM CSL STATE
TO MAGNETICALLY-ORDERED PHASE

Since the system may contain symmetry breaking orders
at some parameter region, we may introduce magnetic order
parameters m1 and m2 to describe Neel order and stripe order,
respectively, which are two typical symmetry breaking orders.
In the Neel order, the staggered spin order exists in the x and y
directions [Fig. 4(a)]. While in the stripe order, the staggered
spin order exists only in the x or y direction [Fig. 4(b)].

If we consider Neel state and stripe state at the same
time, the square lattice can be divided into four sublattices
(A, B,C, D), the area of unit cell is enlarged to be twice as
large as the area of original unit cell without magnetic order.

FIG. 4. (a) The Neel order m1. (b) The stripe order m2.

Hence, the area of the corresponding FBZ is reduced to be half
of area of the original FBZ. The new FBZ is called reduced
Brillouin zone (RBZ). The sum over k on the RBZ is denoted
as
∑

k∈ RBZ, and the number of unit cells is N0. The magnetic
order parameters are generally written as

〈ni↑ − ni↓〉 = 1
2 [(−1)ix+iy m1 + (−1)ix m2], (51)

with ix = xi
a , iy = yi

a .
As mentioned in Sec. III, in the slave-rotor representation,

the original fermion operator can be rewritten by using spinon
operator f̂iσ and rotor field eiθi : ĉiσ = eiθi f̂iσ . The mean-field
decomposed action takes the following form:

S0 =
∫ β

0
dτ

[∑
iσ

f̂ †
iσ (∂τ − μ + hi ) f̂iσ +

∑
i

ρi|Xi|2

+ 1

2U

∑
i

[(i∂τ + ihi )X
∗
i ][(−i∂τ + ihi )Xi]

+
∑

i

(
−hi + h2

i

2U

)
+ HX + H ′

X + Hf + H ′
f + H ′′

f

]
(52)

with

HX = −
〈∑

σ

ti je
iφi j f̂ †

iσ f̂ jσ

〉∑
〈i j〉

X ∗
i Xj + c.c.

= −QX1

∑
i

X ∗
i Xi±1x

− QX2

∑
i

X ∗
i Xi±1y + c.c., (53)

Hf = −Q f

∑
〈i j〉σ

ti je
iφi j f̂ †

iσ f̂ jσ + H.c., (54)

H ′
X = −Q′

X

∑
〈〈i j〉〉

X ∗
i Xj, (55)

H ′
f = −Q′

f

∑
〈〈i j〉〉

∑
σ

t1 f̂ †
iσ f̂ jσ , (56)

H ′′
f = −U

4

∑
i

[(−1)ix+iy m1 + (−1)ix m2]

· ( f̂ †
i↑ f̂i↑ − f̂ †

i↓ f̂i↓) + UN0

4

(
m2

1 + m2
2

)+ c, (57)

here the next nearest neighbor hopping coefficients t ′
a = t ′

b =
t ′
c = t ′

d = t1 for A, B,C, D sublattices, U
4

∑
i n2

i = c is a con-
stant, ni = ni↑ + ni↓. We still fulfill the constraints (28) and
(30) with the Lagrange multipliers hi and ρi, respectively. And
hi ≡ h and ρi ≡ ρ are not local site-dependent since (28) and
(30) are treated on average [69,81,82]. The magnetic orders
in Fig. 4 break spin rotation symmetry and only affect spinon
degrees of freedom, so the square lattice can be divided into
four sublattices (A, B,C, D) for spinon (see Fig. 5), the sum
over k is denoted as

∑
k∈ RBZ. However, for the rotor, the

square lattice still has two sublattices (A, B), the sum over k is
still on the original FBZ and denoted as

∑
k.
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FIG. 5. The square lattice containing four sublattices (A, B,C, D)
for spinon because of magnetic orders.

The mean-field parameters associated with the decomposi-
tion are given by

QX1 =
〈∑

σ

ti je
iφi j f̂ b†

iσ f̂ a
jσ

〉
=
〈∑

σ

ti je
iφi j f̂ d†

iσ f̂ c
jσ

〉
, (58)

QX2 =
〈∑

σ

ti je
iφi j f̂ d†

iσ f̂ a
jσ

〉
=
〈∑

σ

ti je
iφi j f̂ b†

iσ f̂ c
jσ

〉
, (59)

Q f = 〈X ∗
i Xj〉, (60)

for the nearest neighbor hopping and

Q′
X =

〈∑
σ

t1 f̂ †
iσ f̂ jσ

〉
, (61)

Q′
f = 〈X ∗

i Xj〉 (62)

for the next nearest neighbor hopping. We still have μ= hi = 0
for half-filled case.

The spinon Hamiltonian in momentum space is written as

Hf + H ′
f + H ′′

f =
∑

k∈ RBZ,σ

	
†
kσHσ	kσ + UN0

4

(
m2

1 + m2
2

)+ c

=
∑

k∈ RBZ,σ

(−�1 f̂ l1†
kσ f̂ l1

kσ − �2 f̂ l2†
kσ f̂ l2

kσ

+ �2 f̂ u1†
kσ f̂ u1

kσ
+ �1 f̂ u2†

kσ f̂ u2
kσ

)
+ UN0

4

(
m2

1 + m2
2

)+ c, (63)

here 	kσ = ( f̂ a
kσ , f̂ b

kσ , f̂ c
kσ , f̂ d

kσ ), H↑, and H↓ are two 4 × 4
matrices presented in Appendix A. We get the renormalized
mean-field free energy at T = 0 for spinon sector

F =
∑

k∈ RBZ

(−2�1 − 2�2) + UN0

4

(
m2

1 + m2
2

)+ c. (64)

The self-consistent equations about magnetic orders m1

and m2 are equivalent to energy extreme conditions ∂F
∂m1

=
∂F
∂m2

= 0. By solving them we may determine critical inter-
action strength Uc2 of magnetic order, i.e., when U > Uc2 ,
m1 > 0, m2 = 0 (Neel state) or m1 = 0, m2 > 0 (stripe state);
when Uc1 < U � Uc2 , m1 = m2 = 0 (CSL), where Uc1 is crit-
ical interaction of Mott insulator determined by Eq. (50).

For the rotor Hamiltonian,

HX =
∑

k

[−|g(k)|X l∗
k X l

k + |g(k)|X u∗
k X u

k

]
, (65)

H ′
X = −Q′

X

∑
k

g2(k)
(
X l∗

k X l
k + X u∗

k X u
k

)
, (66)

FIG. 6. Numerical solutions of the mean-field parameters (58)
[(59)], (60), (61), and (62) (t0 = 1) along the phase boundary Uc2 : (a)
QX (t1), (b) Q′

X (t1), (c) Qc
f (t1), and (d) Q′c

f (t1).

where g(k) = 2[QX1 cos(kxa) + QX2 cos(kya)], g2(k) = ∑4
i=1

e−ik·δ′
i , the Green function for the X fields is written as

GX = 1
ν2

n
2U + ρ + ξk

, (67)

where we consider the lower band of rotor

ξk = −2|QX1 cos(kxa) + QX2 cos(kya)| − Q′
X g2(k), (68)

with bosonic Matsubara frequency νn.
From average of the constraint (30), we have the following

self-consistent equation along the phase boundary Uc2

1 = 1

N

∑
k

1

β

∑
n

GX (k, νn) =
√

2Uc2

2N

∑
k

1√
ρ + ξk

. (69)

We can solve the equation to get Lagrange multiplier ρc. It
can be found ρc > − min (ξk ), so the insulating gap of rotor
�X = 2

√
U [ρ + min (ξk )] is nonzero.

We still set hopping phase φ0 = π/4. Equations ∂F
∂m1

=
∂F
∂m2

= 0, (58)–(62) and (69) can be solved self-consistently
(see Appendix A). After careful numerical calculation we find
(58) is equal to (59) along the phase transition from CSL
to magnetically-ordered phase, so we have QX1 = QX2 ≡ QX .
We plot the mean-field parameters QX , Q′

X , Qc
f and Q′c

f as
functions of next nearest neighbor hopping coefficient t1 in
Fig. 6.

Comparing Fig. 6 with Fig. 3, with t1 increasing from 0.05
to 1, along the phase transition from CSL to magnetically-
ordered phase, the behaviors of QX and Q′

X are very similar to
those of QX and Q′

X along the phase transition from QAH state
to CSL. As for the behaviors of Qc

f and Q′c
f , different from

Figs. 3(c) and 3(d), at the phase boundary of magnetic order,
when t1 < 0.87 both Qc

f and Q′c
f decrease at first, then vary

very smoothly. But when t1 > 0.87, they increase slowly. It
indicates that magnetic order affects the spinon Hamiltonian,
but not the rotor one.
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FIG. 7. The slave-rotor mean-field phase diagram versus t1 and
Hubbard interaction U of the optical Raman lattice. It has been set
t0 = 1.

VI. MEAN-FIELD PHASE DIAGRAM OF CSL
IN FERMI HUBBARD MODEL

The self-consistent solutions of equations (50), ∂F
∂m1

=
∂F
∂m2

= 0 give critical interaction strength of CSL as functions
of next nearest neighbor hopping coefficient t1 in Fig. 7.

It can be seen that when the strength of Hubbard interaction
reaches a critical value Uc1 , the system will experience a phase
transition from QAH state to CSL state. During this transition,
the spin and charge are separated from each other. The charge
degrees of freedom are frozen in the Mott insulator phase,
while spinon degrees of freedom are described by the Hamil-
tonian (42), which is exactly the spin-1/2 two-copy version
of QAH model. This transition line corresponds to the lower
boundary of CSL in Fig. 7.

Since no magnetic order exists in the CSL phase, the CSL-
magnetically-ordered phase transition will take place when
interaction strength further increases and reaches another crit-
ical value Uc2 . This corresponds to the upper boundary of CSL
in Fig. 7. Along this transition line, when 0.05 � t1 < 0.87,
the CSL-Neel transition occurs first; when 0.87 < t1 � 1, the
CSL-stripe transition occurs first. The three phases meet at
a point (t1 = 0.87,U = 3.635). When 0.745 � t1 < 0.87, a
Neel-stripe transition (the red line in Fig. 7) will take place
after CSL-Neel transition if interaction strength increases to
a slightly larger critical value Uc3 > Uc2 , i.e. when Uc2 <

U � Uc3 , m1 �= 0, m2 = 0 (Neel state); when U > Uc3 , m1 =
0, m2 �= 0 (stripe state).

Furthermore, after solving Eq. (50) about critical interac-
tion of Mott insulator, we find that for Hubbard interaction
U = 2, one phase transition from QAH state to CSL state
takes place at t1 = 0.706, i.e., the insulating gap of rotor
(49) �X = 0 when U � 2, but �X > 0 when U > 2. And
the solutions of ∂F

∂m1
= ∂F

∂m2
= 0 with F given by (64) indi-

cate that for U = 2, another phase transition CSL-Neel takes
place at t1 = 0.155, i.e., when 1.3222 < U � 2, m1 = m2 = 0
(CSL); when U > 2, m1 > 0, m2 = 0 (Neel), where Uc1 =

FIG. 8. For Hubbard interaction U = 2, the evolution of mean-
field parameters in region 0.155 � t1 � 0.706, (t0 = 1): (a) QX (t1),
(b) Q′

X (t1), (c) Qf (t1), and (d) Q′
f (t1).

1.3222 is obtained by solving Eq.(50). When 0.155 � t1 <

0.706 for U = 2, the system is in CSL state. These can be
reflected in the mean-field phase diagram Fig. 7 that for
Hubbard interaction U = 2, the system undergoes Neel mag-
netic order phase, CSL phase and QAH phase. We give the
evolution of mean-field parameters QX , Q′

X , Q f and Q′
f in re-

gion 0.155 � t1 � 0.706 for U = 2 by solving self-consistent
equations (38)–(41) [see Eqs. (A7), (A9), (A15), (A16), and
(A17) of Appendix A]. In Fig. 8, between phase transitions
CSL-Neel and QAH-CSL, as next nearest neighbor hopping
coefficient t1 increases, Q′

X , Q f , and Q′
f increase, but QX

decreases.

VII. CHIRAL SPIN LIQUID PHASE
IN EFFECTIVE SPIN MODEL

It is well known that when U is large in the Hubbard inter-
action term (25), each lattice site can not be doubly occupied,
so the system is in a Mott insulator state. We can derive an
effective spin model by considering the Hilbert space with
single occupied sites and treating the hopping terms as per-
turbations. In this section, we will investigate the effective
spin model and give more reasonable CSL phase diagram
at mean-field level. Note that we can only give the phase
boundary Uc between CSL phase and magnetically-ordered
phase by using the effective spin model. As for the transition
from QAH state to CSL, we still use the results obtained from
the slave-rotor formalism, i.e., the lower boundary Uc1 of CSL
in Fig. 7.

As emphasized in Sec. I, the time-reversal symmetry of the
system is broken in the CSL phase, so the effective spin model
should at least include the terms up to third order perturbation
expansions of t0/U and t1/U , which correspond to interac-
tions of three spins located at lattice sites of a closed minimum
triangular loop. As for the fourth-order expansions, they are
exactly the four spin interaction terms. Relevant four spin
interaction terms have also important effect on CSL phase,
thus these terms should also be considered. The derivation of
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effective spin model up to fourth-order correction is presented
in Appendix B. Considering all spin configurations we can

get the following effective Hamiltonian for the spin degrees
of freedom with t0, t1 being small compared with U [85]

Heff =
∑
〈i j〉

4t2
0

U
Si · S j +

∑
〈〈i j〉〉

4t2
1

U
Si · S j +

∑
i jk∈�

24t2
0 t1

U 2
sin(φi jk )Si · (S j × Sk )

+ t4
0

U 3

∑
i jkl∈�

cos(φi jkl ){80[(Si · S j )(Sk · Sl ) + (Si · Sl )(S j · Sk ) − (Si · Sk )(S j · Sl )]

− 4(Si · S j + Sk · Sl + S j · Sk + Si · Sl + Si · Sk + S j · Sl )}

+ t4
1

U 3

∑
i jkl∈�

{80[(Si · S j )(Sk · Sl ) + (Si · Sl )(S j · Sk ) − (Si · Sk )(S j · Sl )]

− 4(Si · S j + Sk · Sl + S j · Sk + Si · Sl + Si · Sk + S j · Sl )}

− 16t4
0

U 3

∑
〈i j〉

Si · S j − 16t4
1

U 3

∑
〈〈i j〉〉

Si · S j + 16t2
0 t2

1

U 3

∑
〈i j〉

Si · S j + 8t4
0

U 3

∑
〈〈i j〉〉

Si · S j, (70)

where the spin operators at ith site are defined as: Sx
i =

1
2 (ĉ†

i↓ĉi↑ + ĉ†
i↑ĉi↓), Sy

i = i
2 (ĉ†

i↓ĉi↑ − ĉ†
i↑ĉi↓), Sz

i = 1
2 (ĉ†

i↑ĉi↑ −
ĉ†

i↓ĉi↓). This effective Hamiltonian is related to the parent
Hamiltonians for CSL state constructed in terms of spin op-
erators [11,13].

As can be seen from (70), the spin degree of freedom at
each site is interacted with each other. The first two terms
reflect two spin interaction. The third term emerges only when
the time-reversal symmetry of system is broken. The summa-
tion in the third term means that each set of (i, j, k) consists
of a minimum triangular. φi jk is the Aharonov-Bohm phase
acquired by hopping through the closed minimum triangular
loop in anticlockwise direction i → j → k → i. It can be
verified that φi jk = π

2 when φ0 = π/4.
The fourth and fifth terms in (70) are about four spin

interaction with four spins located at the four lattice sites
(i, j, k, l ) of a plaquette, see Fig. 9. When spinons hop along
the nearest neighbor bond in anticlockwise direction depicted
in Fig. 9(a), a phase φ0 will be acquired, then it will give
rise to a flux φi jkl = 4φ0 across each square plaquette. It is
obvious that φi jkl = π if φ0 = π/4. So the spinons experience

FIG. 9. Schematic illustration of four spin interactions, each spin
is interacted only once, (a) only nearest neighbor hopping, φi jkl = π ;
(b) only next nearest neighbor hopping, φi jkl = 0.

a uniform U(1) gauge field with the magnetic flux through
each plaquette being π [2]. In addition to hopping in an-
ticlockwise direction, we should consider nearest neighbor
hopping in clockwise direction to get the fourth term in (70).
However, the hopping events of spinons illustrated in Fig. 9(b)
do not carry phase because the hopping is along next nearest
neighbor bond. Such hopping events lead to the fifth term
in (70).

The four terms in the last line of (70) are also for four
spin interactions. Different from those described above, they
happen at two or three lattice sites. The first two terms cor-
respond to four spin interactions at two neighbor sites, in
which each site is interacted twice, see Fig. 10. While the last
two terms correspond to four spin interactions at three sites
of a minimum triangular. Among the three sites, one site is
interacted twice, the other two sites are interacted only once,
see Fig. 11.

We still use trial mean-field parameters introduced in
Ref. [18] to study different quantum phases. The any-
onic spinons f̂i = ( f̂i↑, f̂i↓)T and three Pauli matrices σ =
(σx, σy, σz ) can be used to represent the spin operator at
ith site as Si = f̂ †

i
σ
2 f̂i under the particle number constraint

f̂ †
i f̂i = 1.

FIG. 10. Schematic illustration of four spin interactions, each
spin is interacted twice. (a) Nearest neighbor hopping along x direc-
tion. (b) Nearest neighbor hopping along y direction. (c) Next nearest
neighbor hopping.
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FIG. 11. Schematic illustration of four spin interactions: (a) spin
at site i is interacted twice, (b) spin at site j is interacted twice, and
(c) spin at site l is interacted twice.

At first, the system is assumed to have CSL phase, so the
mean-field parameters about hopping can be uesd to decouple
the spin interactions:

χ1 = +〈χ̂ii+1x 〉∗|ix=odd,iy=odd

= −〈χ̂ii+1x 〉|ix=even,iy=odd

= +〈χ̂ii+1x 〉|ix=odd,iy=even

= −〈χ̂ii+1x 〉∗|ix=even,iy=even

= +〈χ̂ii+1y〉|ix=odd,iy=odd (71)

= −〈χ̂ii+1y〉∗|ix=odd,iy=even

= +〈χ̂ii+1y〉∗|ix=even,iy=odd

= −〈χ̂ii+1y〉|ix=even,iy=even,

χ2 = +〈χ̂ii+1x+1y〉 = χ∗
2

with spinon hopping operator χ̂i j = χ̂
†
ji = f̂ †

i f̂ j , ix = xi
a , and

iy = yi

a . Here χ2 is assumed to be real and the hopping phase
is only carried by χ1 for the CSL.

Furthermore, since the system may contain symmetry
breaking orders at some parameter region, we need to use
the following magnetic order parameters to describe the Neel
order and stripe order, respectively,

Mn = (−1)ix+iy
〈
Sz

i

〉
, Ms = (−1)ix

〈
Sz

i

〉
. (72)

Now we can decouple the spin interactions by these trial
mean-field parameters. The calculation is explicitly given in
Appendix B.

After decoupling the effective spin Hamiltonian (70) in
terms of mean-field parameters χ1, χ2, Mn and Ms, we obtain
the matrix form of the Hamiltonian in real (coordinate) space.
If the lattice system under investigation has N = Lx × Ly

lattice sites, the Hamiltonian is a 2N × 2N matrix. In cal-
culations we use N = 162. To minimize the free energy at
T = 0 with respect to the mean-field parameters χ1, χ2, Mn,
and Ms, we may determine the phase boundary Uc between
the magnetic order and CSL state.

In the mean-field decoupling of the fourth term in (70)

− {80[(Si · S j )(Sk · Sl ) + (Si · Sl )(S j · Sk )

− (Si · Sk )(S j · Sl )] − 4(Si · S j + Sk · Sl + S j · Sk

+ Si · Sl + Si · Sk + S j · Sl )}

FIG. 12. Spinon mean-field phase diagram (t0 = 1) based on the
effective spin model, in which the relevant four spin interactions are
considered.

= 5

[
4|χ1|4e−iπ

〈χ̂li〉 χ̂li + cyclic(i jkl ) − 12|χ1|4e−iπ + H.c.

]
− 80

[
(−1)ix+iy

(
M3

n Sz
i − M3

n Sz
j + M3

n Sz
k − M3

n Sz
l

)− 3M4
n

]
− 4(−1)ix+iy

(
MnSz

i − MnSz
j + MnSz

k − MnSz
l

)
+ 8M2

n , (73)

here j = i + 1x, k = i + 1x + 1y, l = i + 1y, even if there is a
π flux in the hopping part, this term will reduce the value of
phase boundary Uc obtained in Ref. [18]) due to the −80 and
−4 coefficients in the Neel order term. Therefore, in addition
to (73), the other four spin interaction terms in (70) are also
very important for getting reasonable phase boundary.

In Fig. 12, the CSL phase does appear at some parameter
region: when U > Uc, χ1 = 0, χ2 = 0, but Mn �= 0, Ms = 0
(Neel state) or Mn = 0, Ms �= 0 (stripe state); when Uc1 <

U � Uc, χ1 �= 0, χ2 �= 0, but Mn = Ms = 0 (CSL). With t1
increasing in the region 0.05 � t1 � 0.711, the critical Hub-
bard interaction strength to reach the Neel order increases.
However, the critical Hubbard interaction strength to reach the
stripe order decreases with t1 increasing from 0.711 to 1. At
t1 = 0.711 the system becomes most frustrated (green point
in Fig. 12).

As emphasized before, the spin chirality interaction Si ·
(S j × Sk ) in effective Hamiltonian (70) breaks time-reversal
symmetry of system. From expression (B9) of Si · (S j × Sk )
in terms of spinon hopping operator χ̂i j = χ̂

†
ji = f̂ †

i f̂ j and
the mean-field decomposition (B13), Si · (S j × Sk ) is propor-
tional to χ2

1 χ2 − χ∗2
1 χ2, where χ1 and χ2 given by (71) are

mean-field parameters about nearest neighbor hopping and
next nearest neighbor hopping, respectively. Since the nearest
neighbor hopping phase φ0 = π/4, χ1 = |χ1|ei π

4 . In Table I,
we list χ1 and χ2 along the phase boundary Uc for different
next nearest neighbor hopping coefficient t1. This indicates
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TABLE I. For different t1, mean-field parameters χ1 and χ2 along
upper phase boundary of CSL in Fig. 12.

t1 χ1 χ2 t1 χ1 χ2

0.05 0.3917ei π
4 2.7796 0.7 0.4534ei π

4 0.1958
0.1 0.3933ei π

4 1.3887 0.711 0.4562ei π
4 0.1866

0.2 0.3986ei π
4 0.6913 0.75 0.4465ei π

4 0.2154
0.3 0.4071ei π

4 0.4546 0.8 0.4384ei π
4 0.2345

0.4 0.42ei π
4 0.3266 0.85 0.4321ei π

4 0.2473
0.5 0.4416ei π

4 0.2306 0.9 0.4266ei π
4 0.2574

0.6 0.4503ei π
4 0.2052 0.95 0.4215ei π

4 0.2661
0.65 0.4493ei π

4 0.2078 1 0.4163ei π
4 0.274

that spin chirality interaction Si · (S j × Sk ) is nonzero, thus
CSL phase can be detected.

Even if the four spin interaction terms in (70) do not break
time-reversal symmetry of the system, they do have qualitative
effect on the CSL phase diagram of effective Hamiltonian
including only two and three spin interactions in Ref. [18].
As in Fig. 12, we can see that the CSL phase is obtained in
a broader region with 0.05 � t1 � 1. The result is consistent
with the phase diagram obtained in slave-rotor theory. We note
that more accurate phase diagram can be obtained if all four
spin interaction terms are taken into account, but it has only
quantitative modification over the current phase diagram.

VIII. CONCLUSION AND DISCUSSION

In this work, we have used two different mean-field ap-
proaches to investigate the CSL phase in an optical Raman
lattice with U(1) synthetic gauge flux. At first, we determine
the phase boundary of CSL based on slave-rotor theory, which
is applicable in strong Hubbard interacting regime. When the
Mott transition of charge takes place, the CSL phase appears.
The spinon is separated from the charge, and the band struc-
ture of spinon is very similar to that of spin-1/2 two-copy
version of QAH model with gapped bulk state and chiral gap-
less edge state. As a disordered phase without long-range spin
order, the CSL preserves spin-rotational symmetry. Therefore
no magnetic orders exist in the CSL, and the Mott insulator is
a nonmagnetic insulator.

When Hubbard interaction strength U is large, we manage
to show CSL by spinon mean-field calculation based on an
effective spin model derived from the Hubbard model and
including not only two and three spin interaction terms, but
also relevant four spin interaction terms. Our numerical results
show that the CSL phase can be stabilized at strong magnetic
frustrated system.

Our work is an improved study on the previous work [18],
and the critical Hubbard interaction strength of CSL depends
on the mean-field approximation methods, but the phase dia-
grams obtained from the two different methods are consistent
with each other, showing clear numerical evidence of the CSL
phase obtained for cold atoms loaded to the improved optical
Raman lattice setup [51] which is of high experimental feasi-
bility. The mean-field approaches can be used to study other
exotic topological phases for cold atoms of higher orbital
bands and three-dimensional lattice systems.
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APPENDIX A: SLAVE-ROTOR MEAN-FIELD FORMALISM

In this Appendix we show some detailed calculation about
the slave-rotor mean-field approximation. At first we discuss
the transition from QAH to CSL. For the spinon Hamiltonian
(42), we may get a unitary transformation between the sublat-
tice bases ( f̂ a

kσ , f̂ b
kσ ) and band bases ( f̂ l

kσ , f̂ u
kσ )(

f̂ a
kσ

f̂ b
kσ

)
=
(

α− α+
β− β+

)(
f̂ l
kσ

f̂ u
kσ

)
. (A1)

By using the Fourier transformations:

Xi(τ ) = 1√
N

∑
k

eik·ri Xk(τ ), (A2)

Xk(τ ) = 1√
β

∑
n

e−iνnτ Xk(νn), (A3)

we find the self-consistent equation from the constraint (30)

1 = 1

N

∑
k

1

β

∑
n

GX (k, νn)

=
√

2U

N

∑
k

1√
�2

X + 4U [ξk − min(ξk )]
. (A4)

In Eq. (A4), we perform the Matsubara sum on Green func-
tion (46) at zero temperature (see Appendix D of [69]) and
introduce the insulating gap of rotor

�X = 2
√

U [ρ + min (ξk )]. (A5)

The explicit form of insulating gap �X should be deter-
mined by ξk and hence by QX and Q′

X . The two mean-field
parameters QX and Q′

X are the second and third self-consistent
equations, respectively. They can be determined by using uni-
tary transformation (A1).

We start with QX :

4∑
i=1

〈∑
σ

ti je
iφi j f̂ b†

iσ f̂ a
jσ

〉

= − 1

N

∑
kσ

(dx + idy)
〈
f̂ b†
kσ f̂ a

kσ

〉
= − 1

N

∑
k

2(dx + idy)β∗
−α−

〈
f̂ l†
kσ f̂ l

kσ

〉
= − 1

N

∑
k

2(dx + idy)β∗
−α−, (A6)

where we assume 〈 f̂ l†
kσ f̂ l

kσ 〉 = 1, 〈 f̂ u†
kσ f̂ u

kσ 〉 = 0 for σ =↑,↓
since the lower band of spinon is completely filled while the
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upper band is empty. Due to the lattice symmetry, the sum
over the four nearest neighbor sites,

∑4
i=1, just appears as a

factor 4 in the final expression. Thus we find the mean-field
parameter

QX =
〈∑

σ

ti je
iφi j f̂ b†

iσ f̂ a
jσ

〉

= − 1

4N

∑
k

2(dx + idy)β∗
−α−. (A7)

Similarly,

4∑
i=1

〈∑
σ

t1 f̂ †
iσ f̂ jσ

〉

= − 1

N

∑
kσ

dz
〈
f̂ a†
kσ f̂ a

kσ

〉 = − 1

N

∑
kσ

(− dz
〈
f̂ b†
kσ f̂ b

kσ

〉)
= − 1

N

∑
k

2dz|α−|2 = − 1

N

∑
k

(−2dz )|β−|2. (A8)

Again the lattice symmetry is responsible for the fact that the
sum over the four next nearest neighbor sites,

∑4
i=1, can be

replaced by a factor 4

Q′
X =

〈∑
σ

t1 f̂ a†
iσ f̂ a

jσ

〉
=
〈∑

σ

t1 f̂ b†
iσ f̂ b

jσ

〉

= − 1

4N

∑
k

2dz|α−|2 = − 1

4N

∑
k

(−2dz )|β−|2. (A9)

The rotor spectrum ξk of Eq. (47) is well defined and we
can solve Eq. (A4). If the phase transition from the Mott
insulator to the superfluid of the rotor takes place, the rotor
gap �X must close. It indicates that

Uc1 (t1) = 1

2

[
1

2N

∑
k′

1√
ξk − min(ξk )

]−2

, (A10)

which defines the critical interaction strength of Mott insula-
tor, i.e., when U � Uc1 ,�X = 0; U > Uc1 ,�X > 0. The sum
over k′ means that formally the lowest bound corresponds to
k → kmin + η, η � 1 [69], and kmin is wave vector associated
with the minimum of ξk. Hence, divergence in the sum can be
avoided. This sum rule applies to (A12) and (A14).

We have to study Q f and Q′
f and their behaviors along

the phase boundary Uc1 (t1). By using Fourier transformations
(A2) and (A3),

Q f = 〈X ∗
i Xj〉|nn. = 1

N

∑
k

e−ik·δμ
〈
X b∗

k X a
k

〉
= 1

N

∑
k

|g1|
4

1

β

∑
n

GX (k, νn)

= 1

N

∑
k

|g1|
4

√
2U

2
√

U (ρ + ξk )
, (A11)

here δμ denotes one of the four nearest neighbor vectors in
Fig. 2, g1(k) = ∑4

i=1 e−ik·δi . Along the transition line, we

have �X = 0 and obtain

Qc
f (t1) =

√
2Uc1 (t1)

8N

∑
k′

|g1|√
ξk − min (ξk )

. (A12)

The last self-consistent equation determines Q′
f :

Q′
f = 〈X ∗

i Xj〉|nnn.

= 1

N

∑
k

e−ik·δ′
μ

〈
X (a/b)∗

k X (a/b)
k

〉
= 1

N

∑
k

|g2|
4

1

β

∑
n

GX (k, νn)

= 1

N

∑
k

|g2|
4

√
2U

2
√

U (ρ + ξk )
, (A13)

with δ′
μ being one of the four next nearest neighbor vectors in

Fig. 2, g2(k) = ∑4
i=1 e−ik·δ′

i . Thus we find Q′
f along the Mott

transition,

Q′c
f (t1) =

√
2Uc1 (t1)

8N

∑
k′

|g2|√
ξk − min (ξk )

. (A14)

If U > Uc1 ,�X > 0, the system is in CSL state, the self-
consistent equation from the constraint (30) is written as

1 =
√

2U

2N

∑
k

1√
ρ + ξk

. (A15)

For U > Uc1 , we may solve the Lagrange multiplier ρ, and
the mean-field parameters Q f and Q′

f can be calculated by ρ,
g1(k) and g2(k) given above

Q f =
√

2U

8N

∑
k

|g1|√
ξk + ρ

, (A16)

Q′
f =

√
2U

8N

∑
k

|g2|√
ξk + ρ

. (A17)

Secondly, we focus on the transition from CSL to mag-
netically ordered phase. For the spinon Hamiltonian (63), the
unitary transformation between the sublattice bases 	kσ =
( f̂ a

kσ , f̂ b
kσ , f̂ c

kσ , f̂ d
kσ ) and band bases ( f̂ l1

kσ
, f̂ l2

kσ
, f̂ u1

kσ
, f̂ u2

kσ
)

⎛⎜⎜⎜⎜⎜⎝
f̂ a
kσ

f̂ b
kσ

f̂ c
kσ

f̂ d
kσ

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
α1

σ− α2
σ− α1

σ+ α2
σ+

β1
σ− β2

σ− β1
σ+ β2

σ+
γ 1

σ− γ 2
σ− γ 1

σ+ γ 2
σ+

δ1
σ− δ2

σ− δ1
σ+ δ2

σ+

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝

f̂ l1
kσ

f̂ l2
kσ

f̂ u1
kσ

f̂ u2
kσ

⎞⎟⎟⎟⎟⎟⎠ (A18)
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can diagonalize the two 4 × 4 matrices H↑ for σ =↑ and H↓ for σ =↓,

H↑ =

⎛⎜⎜⎜⎝
−U

4 (m1 + m2) 2it0ei π
4 sin(kxa)Q f −4t1 cos(kxa) cos(kya)Q′

f −2it0e−i π
4 sin(kya)Q f

−2it0e−i π
4 sin(kxa)Q f

U
4 (m1 + m2) 2it0ei π

4 sin(kya)Q f 4t1 cos(kxa) cos(kya)Q′
f

−4t1 cos(kxa) cos(kya)Q′
f −2it0e−i π

4 sin(kya)Q f −U
4 (m1 − m2) 2it0ei π

4 sin(kxa)Q f

2it0ei π
4 sin(kya)Q f 4t1 cos(kxa) cos(kya)Q′

f −2it0e−i π
4 sin(kxa)Q f

U
4 (m1 − m2)

⎞⎟⎟⎟⎠ ,

(A19)

H↓ =

⎛⎜⎜⎜⎝
U
4 (m1 + m2) 2it0ei π

4 sin(kxa)Q f −4t1 cos(kxa) cos(kya)Q′
f −2it0e−i π

4 sin(kya)Q f

−2it0e−i π
4 sin(kxa)Q f −U

4 (m1 + m2) 2it0ei π
4 sin(kya)Q f 4t1 cos(kxa) cos(kya)Q′

f

−4t1 cos(kxa) cos(kya)Q′
f −2it0e−i π

4 sin(kya)Q f
U
4 (m1 − m2) 2it0ei π

4 sin(kxa)Q f

2it0ei π
4 sin(kya)Q f 4t1 cos(kxa) cos(kya)Q′

f −2it0e−i π
4 sin(kxa)Q f −U

4 (m1 − m2)

⎞⎟⎟⎟⎠ ,

(A20)

here hopping phase φ0 = π/4. For the renormalized mean-field free energy at T = 0 of spinon sector obtained by above
diagonalization,

F =
∑

k∈ RBZ

(−2�1 − 2�2) + UN0

4

(
m2

1 + m2
2

)+ c, (A21)

the energy extreme conditions ∂F
∂m1

= ∂F
∂m2

= 0 give the critical interaction strength Uc2 of magnetic order. The mean-field para-
meters QX1 (58), QX2 (59), and Q′

X (61) along the phase boundary Uc2 can be calculated by using the unitary transformation (A18).
We start with QX1 and QX2 :

2∑
i=1

〈∑
σ

ti je
iφi j f̂ b†

iσ f̂ a
jσ

〉
= − 1

N0

∑
k∈RBZ,σ

[−2it0e−i π
4 sin(kxa)]

〈
f̂ b†
kσ f̂ a

kσ

〉
= − 1

N0

∑
k∈RBZ,σ

[−2it0e−i π
4 sin(kxa)] · (β1∗

σ−α1
σ− + β2∗

σ−α2
σ−
)
, (A22)

2∑
i=1

〈∑
σ

ti je
iφi j f̂ d†

iσ f̂ c
jσ

〉
= − 1

N0

∑
k∈RBZ,σ

[−2it0e−i π
4 sin(kxa)]

〈
f̂ d†
kσ f̂ c

kσ

〉
= − 1

N0

∑
k∈RBZ,σ

[−2it0e−i π
4 sin(kxa)] · (δ1∗

σ−γ 1
σ− + δ2∗

σ−γ 2
σ−
)
, (A23)

2∑
i=1

〈∑
σ

ti je
iφi j f̂ d†

iσ f̂ a
jσ

〉
= − 1

N0

∑
k∈RBZ,σ

2it0ei π
4 sin(kya)

〈
f̂ d†
kσ f̂ a

kσ

〉
= − 1

N0

∑
k∈RBZ,σ

2it0ei π
4 sin(kya) · (δ1∗

σ−α1
σ− + δ2∗

σ−α2
σ−
)
, (A24)

2∑
i=1

〈∑
σ

ti je
iφi j f̂ b†

iσ f̂ c
jσ

〉
= − 1

N0

∑
k∈RBZ,σ

2it0ei π
4 sin(kya)

〈
f̂ b†
kσ f̂ c

kσ

〉
= − 1

N0

∑
k∈RBZ,σ

2it0ei π
4 sin(kya) · (β1∗

σ−γ 1
σ− + β2∗

σ−γ 2
σ−
)
. (A25)

Thus the mean-field parameters

QX1 =
〈∑

σ

ti je
iφi j f̂ b†

iσ f̂ a
jσ

〉
=
〈∑

σ

ti je
iφi j f̂ d†

iσ f̂ c
jσ

〉

= − 1

2N0

∑
k∈RBZ,σ

[−2it0e−i π
4 sin(kxa)] · (β1∗

σ−α1
σ− + β2∗

σ−α2
σ−
)

= − 1

2N0

∑
k∈RBZ,σ

[−2it0e−i π
4 sin(kxa)] · (δ1∗

σ−γ 1
σ− + δ2∗

σ−γ 2
σ−
)

(A26)
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and

QX2 =
〈∑

σ

ti je
iφi j f̂ d†

iσ f̂ a
jσ

〉
=
〈∑

σ

ti je
iφi j f̂ b†

iσ f̂ c
jσ

〉

= − 1

2N0

∑
k∈RBZ,σ

2it0ei π
4 sin(kya)

· (δ1∗
σ−α1

σ− + δ2∗
σ−α2

σ−
)

= − 1

2N0

∑
k∈RBZ,σ

2it0ei π
4 sin(kya)

· (β1∗
σ−γ 1

σ− + β2∗
σ−γ 2

σ−
)
, (A27)

here for the lattice symmetry, the factor 2 in the denominator
denotes two nearest neighbor sites.

Similarly,

4∑
i=1

〈∑
σ

t1 f̂ a†
iσ f̂ c

jσ

〉

= − 1

N0

∑
k∈RBZ,σ

[−4t1 cos(kxa) cos(kya)]
〈
f̂ a†
kσ f̂ c

kσ

〉
= − 1

N0

∑
k∈RBZ,σ

[−4t1 cos(kxa) cos(kya)]

· (α1∗
σ−γ 1

σ− + α2∗
σ−γ 2

σ−
)
, (A28)

4∑
i=1

〈∑
σ

t1 f̂ b†
iσ f̂ d

jσ

〉

= − 1

N0

∑
k∈RBZ,σ

4t1 cos(kxa) cos(kya)
〈
f̂ b†
kσ f̂ d

kσ

〉
= − 1

N0

∑
k∈RBZ,σ

4t1 cos(kxa) cos(kya)

· (β1∗
σ−δ1

σ− + β2∗
σ−δ2

σ−
)
, (A29)

then the mean-field parameter

Q′
X =

〈∑
σ

t1 f̂ a†
iσ f̂ c

jσ

〉
=
〈∑

σ

t1 f̂ b†
iσ f̂ d

jσ

〉

= − 1

4N0

∑
k∈RBZ,σ

[−4t1 cos(kxa) cos(kya)]

· (α1∗
σ−γ 1

σ− + α2∗
σ−γ 2

σ−
)

= − 1

4N0

∑
k∈RBZ,σ

4t1 cos(kxa) cos(kya)

· (β1∗
σ−δ1

σ− + β2∗
σ−δ2

σ−
)
, (A30)

here for the lattice symmetry, the factor 4 in the denominator
denotes four next nearest neighbor sites. And 〈 f̂ l1†

kσ f̂ l1
kσ

〉 =
〈 f̂ l2†

kσ f̂ l2
kσ

〉 = 1, 〈 f̂ u1†
kσ f̂ u1

kσ
〉 = 〈 f̂ u2†

kσ f̂ u2
kσ

〉 = 0 for σ =↑,↓ since
the lower band is completely filled while the upper band is
empty. The rotor spectrum ξk of Eq. (68) is well defined.

The self-consistent equation along the phase boundary Uc2

corresponding to the constraint (30)

1 =
√

2Uc2

2N

∑
k

1√
ρ + ξk

. (A31)

determines Lagrange multiplier ρc along the phase boundary
Uc2 . Now we find the mean-field parameters Q f and Q′

f along
the transition line Uc2 ,

Qc
f =

√
2Uc2

8N

∑
k

|g1|√
ξk + ρc

, (A32)

Q′c
f =

√
2Uc2

8N

∑
k

|g2|√
ξk + ρc

, (A33)

here g1(k) = ∑4
i=1 e−ik·δi with δi being one of four nearest

neighbor vectors in Fig. 2, g2(k) = ∑4
i=1 e−ik·δ′

i with δ′
i being

one of four next nearest neighbor vectors in Fig. 2.

APPENDIX B: EFFECTIVE SPIN MODEL

In this Appendix, we will briefly present the derivation of
effective spin Hamiltonian and how to decouple the spin in-
teraction terms by trial mean-field parameters. We follow the
procedure in [85] and only give the corrections up to the fourth
order. As for the fourth-order terms, only the terms which have
important physical meaning are considered. In other words,
these fourth-order terms can give qualitative modification on
the mean-field phase diagram obtained from the effective spin
Hamiltonian which has only expansions up to the third order
[18].

Let’s start from the total Hamiltonian

H = H0 + Hint

= −
∑
〈i j〉σ

ti je
iφi j ĉ†

iσ ĉ jσ −
∑
〈〈i j〉〉

∑
σ

t1ĉ†
iσ ĉ jσ + U

∑
i

ni↑ni↓.

(B1)

An effective spin model can be derived by considering the
perturbation expansions about t0

U , t1
U , with t0, t1 being small

compared with U at half-filled case.
By multiplying hopping term H0 from the left by 1 =

niσ̄ + hiσ̄ and from the right by 1 = n jσ̄ + h jσ̄ , we may rewrite
Hamiltonian (B1) in the following form:

H = T0 + Hint + T+ + T−,

T0 = −
∑
〈i j〉σ

ti je
iφi j (hiσ̄ ĉ†

iσ ĉ jσ h jσ̄ + niσ̄ ĉ†
iσ ĉ jσ n jσ̄ )

−
∑
〈〈i j〉〉

∑
σ

t1(hiσ̄ ĉ†
iσ ĉ jσ h jσ̄ + niσ̄ ĉ†

iσ ĉ jσ n jσ̄ ), (B2)

T+ = −
∑
〈i j〉σ

ti je
iφi j niσ̄ ĉ†

iσ ĉ jσ h jσ̄ −
∑
〈〈i j〉〉

∑
σ

t1niσ̄ ĉ†
iσ ĉ jσ h jσ̄ ,

(B3)

T− = −
∑
〈i j〉σ

ti je
iφi j hiσ̄ ĉ†

iσ ĉ jσ n jσ̄ −
∑
〈〈i j〉〉

∑
σ

t1hiσ̄ ĉ†
iσ ĉ jσ n jσ̄ ,

(B4)
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where the spin indices σ =↑,↓, σ̄ is up for σ down and
down for σ up, niσ = ĉ†

iσ ĉiσ and hiσ = 1 − niσ . T+ de-
scribes the process of increasing one doubly occupied site,
T− describes the process of decreasing one doubly occu-

pied site, and T0 leaves the number of doubly-occupied sites
unchanged.

The effective Hamiltonian can be obtained by a canonical
transformation [85]:

Heff = eSHe−S

= H + [S, H] + 1

2
[S, [S, H]] + 1

3!
[S, [S, [S, H]]] + 1

4!
[S, [S, [S, [S, H]]]] + · · · . (B5)

In the effective Hamiltonian, the hopping events which increase or decrease doubly occupied sites must be prohibited since the
ground state of the system has no doubly occupied sites. By using commutation relations [T±, Hint] = ∓UT±, [T0, Hint] = 0, we
can get the effective Hamiltonian up to the fourth-order corrections [85]:

Heff = − 1

U
T−T+ + 1

U 2
T−T0T+ − 1

U 3
T−T0T0T+ + 1

U 3
T−T+T−T+ − 1

2U 3
T−T−T+T+. (B6)

If all spin configurations at half-filled case are taken into account, we can reach the following effective Hamiltonian for the
spin degree of freedom:

Heff =
∑
〈i j〉

4t2
0

U
Si · S j +

∑
〈〈i j〉〉

4t2
1

U
Si · S j +

∑
i jk∈�

24t2
0 t1

U 2
sin(φi jk )Si · (S j × Sk ) + t4

0

U 3

∑
i jkl∈�

cos(φi jkl ){80[(Si · S j )(Sk · Sl )

+ (Si · Sl )(S j · Sk ) − (Si · Sk )(S j · Sl )] − 4(Si · S j + Sk · Sl + S j · Sk + Si · Sl + Si · Sk + S j · Sl )}

+ t4
1

U 3

∑
i jkl∈�

{80[(Si · S j )(Sk · Sl ) + (Si · Sl )(S j · Sk ) − (Si · Sk )(S j · Sl )]

− 4(Si · S j + Sk · Sl + S j · Sk + Si · Sl + Si · Sk + S j · Sl )}

− 16t4
0

U 3

∑
〈i j〉

Si · S j − 16t4
1

U 3

∑
〈〈i j〉〉

Si · S j + 16t2
0 t2

1

U 3

∑
〈i j〉

Si · S j + 8t4
0

U 3

∑
〈〈i j〉〉

Si · S j, (B7)

where the spin operators at ith site are defined as: Sx
i =

1
2 (ĉ†

i↓ĉi↑ + ĉ†
i↑ĉi↓), Sy

i = i
2 (ĉ†

i↓ĉi↑ − ĉ†
i↑ĉi↓), Sz

i = 1
2 (ĉ†

i↑ĉi↑ −
ĉ†

i↓ĉi↓).
Obviously, the time-reversal symmetry of system is broken

due to the appearance of the third term. The summation in the
third term means that each set of (i, j, k) consists of a min-
imum triangular. φi jk is the Aharonov-Bohm phase acquired
by hopping through the closed minimum triangular loop in
anticlockwise direction i → j → k → i. It can be verified
that φi jk = π/2 when φ0 = π/4.

To study different phases we should introduce mean-
field parameters. At first we use the anyonic spinons f̂i =
( f̂i↑, f̂i↓)T to represent the spin operator as Si = f̂ †

i
σ
2 f̂i as

long as the particle number f̂ †
i f̂i = 1 at each site, where

σ = (σx, σy, σz ). The two and three spin interaction terms can
be rewritten as the following by using the spinon hopping
operator χ̂i j = χ̂

†
ji = f̂ †

i f̂ j ,

Si · S j = −1

2
χ̂i jχ̂ ji, (B8)

Si · (S j × Sk ) = 1

24i
{[χ̂i jχ̂ jkχ̂ki + χ̂ jkχ̂i jχ̂ki

+ cyclic(i jk)] − H.c.}. (B9)

In general the spinon hopping term is complex, and the spin
chirality term can give rise to a phase eiφ� , with the flux φ� =
Arg(〈χ̂ik〉〈χ̂k j〉〈χ̂ ji〉) experienced by spinons after hopping
through a closed minimum triangular loop in anticlockwise

direction i → j → k → i. When φ� = π
2 the spinons expe-

rience a uniform U(1) gauge field, with the magnetic flux
through each triangular being π/2 and through each plaquette
being π [2].

The mean-field parameters about hopping can be intro-
duced to decouple the spin interactions [see Eqs. (71)]:

χ1 = +〈χ̂ii+1x 〉∗|ix=odd,iy=odd

= −〈χ̂ii+1x 〉|ix=even,iy=odd

= +〈χ̂ii+1x 〉|ix=odd,iy=even

= −〈χ̂ii+1x 〉∗|ix=even,iy=even

= +〈χ̂ii+1y〉|ix=odd,iy=odd

= −〈χ̂ii+1y〉∗|ix=odd,iy=even

= +〈χ̂ii+1y〉∗|ix=even,iy=odd

= −〈χ̂ii+1y〉|ix=even,iy=even,

χ2 = +〈χ̂ii+1x+1y〉 = χ∗
2

with ix = xi
a , iy = yi

a . Here χ2 is assumed to be real and the
hopping phase is only carried by χ1 for the CSL phase.

Furthermore, since the system may contain symmetry
breaking orders at some parameter region, we also need to
introduce the following magnetic order parameters to describe
the Neel order and stripe order, respectively

Mn = (−1)ix+iy
〈
Sz

i

〉
, Ms = (−1)ix

〈
Sz

i

〉
. (B10)
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Now we can decouple the spin interactions by these trial mean-field parameters. The first term in (B7) is interaction of two
spins on nearest neighbor sites

Si · S j = − 1
2 〈χ̂ ji〉χ̂i j + H.c. + 1

2 |χ1|2 + (−1)ix+iy
(
MnSz

j − MnSz
i

)+ M2
n , (B11)

here j = i + 1x or j = i + 1y. And the second term in (B7) is interaction of two spins on next nearest neighbor sites

Si · S j = − 1
2 〈χ̂ ji〉χ̂i j + H.c. + 1

2 |χ2|2 + (−1)ix+iy
(
MnSz

j + MnSz
i

)− M2
n + (−1)ix (MsS

z
j − MsS

z
i ) + M2

s , (B12)

here j = i + 1x + 1y.
Both the Neel order Mn and the stripe order Ms are collinear, so they don’t appear in decoupling the spin chirality interaction

term Si · (S j × Sk )

Si · (S j × Sk ) = 1

12i
[3〈χ̂i j χ̂ jk〉χ̂ki + cyclic(i jk) − H.c.] − 1

12i
(6〈χ̂i j〉〈χ̂ jk〉〈χ̂ki〉 − H.c.)

= 1

12i

[
3

∣∣χ2
1 χ2

∣∣e−iφ�

〈χ̂ki〉 χ̂ki + cyclic(i jk) − H.c.

]
− 1

12i

(
6
∣∣χ2

1 χ2

∣∣e−iφ� − H.c.
)

(B13)

with χ1 = |χ1|ei π
4 . When we determine the matrix elements of the above three spin interaction term, we should keep in mind

that every square plaquette contains four minimum triangular loops and every nearest neighbor bond is shared by four minimum
triangular loops, but every next nearest neighbor bond is shared by only two minimum triangular loops.

When the spinons hop through a square plaquette in the direction and opposite direction of Fig. 9(a) of the main text, it will
lead to the fourth part in (B7). It contains only nearest neighbor hopping. φi jkl is the phase acquired by hopping through a closed
square plaquette in anticlockwise direction i → j → k → l → i. It can be verified that φi jkl = π when φ0 = π/4. The four spin
interaction terms can be rewritten by the spinon hopping operator:

− {80[(Si · S j )(Sk · Sl ) + (Si · Sl )(S j · Sk ) − (Si · Sk )(S j · Sl )] − 4(Si · S j + Sk · Sl + S j · Sk + Si · Sl + Si · Sk + S j · Sl )}
= χ̂i j χ̂ jkχ̂kl χ̂li + χ̂ jkχ̂kl χ̂i j χ̂li + χ̂ jkχ̂i jχ̂kl χ̂li + χ̂kl χ̂ jkχ̂i jχ̂li + 1

2 (χ̂i jχ̂kl χ̂ jkχ̂li + χ̂kl χ̂i j χ̂ jkχ̂li ) + cyclic(i jkl ) + H.c.,
(B14)

here j = i + 1x, k = i + 1x + 1y, l = i + 1y. The four spin interaction terms can be decoupled by trial mean-field parameters as

− {80[(Si · S j )(Sk · Sl ) + (Si · Sl )(S j · Sk ) − (Si · Sk )(S j · Sl )] − 4(Si · S j + Sk · Sl + S j · Sk + Si · Sl + Si · Sk + S j · Sl )}
= 5[4〈χ̂i j〉〈χ̂ jk〉〈χ̂kl〉χ̂li + cyclic(i jkl ) − 12〈χ̂i j〉〈χ̂ jk〉〈χ̂kl〉〈χ̂li〉 + H.c.] − {80[(Si · S j )(Sk · Sl ) − (Si × S j ) · (Sk × Sl )]

− 4(Si · S j + Sk · Sl + S j · Sk + Si · Sl + Si · Sk + S j · Sl )}

= 5

[
4|χ1|4e−iπ

〈χ̂li〉 χ̂li + cyclic(i jkl ) − 12|χ1|4e−iπ + H.c.

]
− 80

[
(−1)ix+iy

(
M3

n Sz
i − M3

n Sz
j + M3

n Sz
k − M3

n Sz
l

)− 3M4
n

]
− 4(−1)ix+iy

(
MnSz

i − MnSz
j + MnSz

k − MnSz
l

)+ 8M2
n . (B15)

When the spinons hop through a square plaquette in the direction and opposite direction of Fig. 9(b) of the main text, it will lead
to the fifth part in (B7). It contains only next nearest neighbor hopping. The four spin interaction terms can also be rewritten by
the spinon hopping operator:

80[(Si · S j )(Sk · Sl ) + (Si · Sl )(S j · Sk ) − (Si · Sk )(S j · Sl )] − 4(Si · S j + Sk · Sl + S j · Sk + Si · Sl + Si · Sk + S j · Sl )

= −χ̂i j χ̂ jkχ̂kl χ̂li − χ̂ jkχ̂kl χ̂i j χ̂li − χ̂ jkχ̂i j χ̂kl χ̂li − χ̂kl χ̂ jkχ̂i jχ̂li − 1
2 (χ̂i jχ̂kl χ̂ jkχ̂li + χ̂kl χ̂i j χ̂ jkχ̂li ) + cyclic(i jkl ) + H.c.,

(B16)

here j = i + 1x + 1y, k = i + 2y, l = i − 1x + 1y. The four spin interaction terms can be decoupled by trial mean-field param-
eters as

80[(Si · S j )(Sk · Sl ) + (Si · Sl )(S j · Sk ) − (Si · Sk )(S j · Sl )] − 4(Si · S j + Sk · Sl + S j · Sk + Si · Sl + Si · Sk + S j · Sl )

= −5[4〈χ̂i j〉〈χ̂ jk〉〈χ̂kl〉χ̂li + cyclic(i jkl ) − 12〈χ̂i j〉〈χ̂ jk〉〈χ̂kl〉〈χ̂li〉 + H.c.]

+ 80[(Si · S j )(Sk · Sl ) − (Si × S j ) · (Sk × Sl )] − 4(Si · S j + Sk · Sl + S j · Sk + Si · Sl + Si · Sk + S j · Sl )

= −5
[
4χ3

2 χ̂li + cyclic(i jkl ) − 12χ4
2 + H.c.

]+ 80
[
(−1)ix+iy

(
M3

n Sz
i + M3

n Sz
j + M3

n Sz
k + M3

n Sz
l

)− 3M4
n

]
− 12(−1)ix+iy

(
MnSz

i + MnSz
j + MnSz

k + MnSz
l

)+ 24M2
n + 80

[
(−1)ix

(
M3

s Sz
i − M3

s Sz
j + M3

s Sz
k − M3

s Sz
l

)− 3M4
s

]
+ 4(−1)ix

(
MsS

z
i − MsS

z
j + MsS

z
k − MsS

z
l

)− 8M2
s . (B17)

Note that both the Neel order Mn and the stripe order Ms do not appear in decoupling the four spin interaction term (Si × S j ) ·
(Sk × Sl ) because they are collinear.
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The terms about hopping events i ↔ j, k ↔ l appear in the last two parts of (B6): T−T+T−T+ − 1
2 T−T−T+T+, but they are

canceled by each other.
The first two terms in the last line of (B7) are about interaction of two spins located at two neighbor sites in Fig. 10 of the

main text. Each spin is interacted twice.
Using spinon hopping operators to rewrite the spin-interaction term:

−16Si · S j = 2
∑

σ

(χ̂i j f̂ †
jσ f̂iσ f̂ †

iσ f̂ jσ χ̂ ji + χ̂ ji f̂ †
iσ̄ f̂ jσ̄ f̂ †

iσ f̂ jσ χ̂ ji ). (B18)

Under mean-field approximation,∑
σ

χ̂i j f̂ †
jσ f̂iσ f̂ †

iσ f̂ jσ χ̂ ji =
∑

σ

[〈χ̂i j〉〈 f̂ †
jσ f̂iσ 〉〈 f̂ †

iσ f̂ jσ 〉χ̂ ji + 〈χ̂i j〉〈 f̂ †
jσ f̂iσ 〉 f̂ †

iσ f̂ jσ 〈χ̂ ji〉

+ 〈χ̂i j〉 f̂ †
jσ f̂iσ 〈 f̂ †

iσ f̂ jσ 〉〈χ̂ ji〉 + χ̂i j〈 f̂ †
jσ f̂iσ 〉〈 f̂ †

iσ f̂ jσ 〉〈χ̂ ji〉 − 3〈χ̂i j〉〈 f̂ †
jσ f̂iσ 〉〈 f̂ †

iσ f̂ jσ 〉〈χ̂ ji〉]

= |〈χ̂i j〉|2(〈χ̂i j〉χ̂ ji + 〈χ̂ ji〉χ̂i j ) − 3

2
|〈χ̂i j〉|4,∑

σ

χ̂ ji f̂ †
iσ̄ f̂ jσ̄ f̂ †

iσ f̂ jσ χ̂ ji = |〈χ̂i j〉|2(〈χ̂i j〉χ̂ ji + 〈χ̂ ji〉χ̂i j ) − 3

2
|〈χ̂i j〉|4, (B19)

where we use 〈 f̂ †
i↑ f̂ j↑〉 = 〈 f̂ †

i↓ f̂ j↓〉 = 1
2 〈χ̂i j〉.

We can decouple the two terms by trial mean-field parameters

−16Si · S j = 4|χ1|2(〈χ̂i j〉χ̂ ji + 〈χ̂ ji〉χ̂i j ) − 6|χ1|4 − 16
[
(−1)ix+iy

(
MnSz

j − MnSz
i

)+ M2
n

]
, (B20)

here j = i + 1x or j = i + 1y,

−16Si · S j = 4χ2
2 (〈χ̂i j〉χ̂ ji + 〈χ̂ ji〉χ̂i j ) − 6χ4

2 − 16
[
(−1)ix+iy

(
MnSz

j + MnSz
i

)− M2
n

]− 16
[
(−1)ix

(
MsS

z
j − MsS

z
i

)+ M2
s

]
, (B21)

here j = i + 1x + 1y.
The three spins located at the three sites of minimum triangular loop also give rise to four spin interactions, in which one

spin is interacted twice while the other two spins are interacted only once. They are illustrated in Fig. 11 of the main text and
correspond to the last two terms in the last line of (B7). The two terms can be obtained by using spinon hopping operators to
rewrite the spin interaction term:

4S j · Sl + cyclic(i jl ) =
{∑

σ

(χ̂il f̂ †
lσ f̂iσ f̂ †

iσ f̂ jσ χ̂ ji + χ̂i j f̂ †
jσ f̂iσ f̂ †

lσ̄ f̂iσ̄ χ̂il + χ̂li f̂ †
iσ̄ f̂lσ̄ f̂ †

iσ f̂ jσ χ̂ ji + χ̂ ji f̂ †
iσ f̂ jσ f̂ †

lσ f̂iσ χ̂il + j ↔ l )

−
[(∑

σ

χ̂li f̂ †
iσ f̂ jσ f̂ †

iσ̄ f̂lσ̄ χ̂ ji + j ↔ l

)
+ H.c.

]
−
∑

σ

(χ̂i j f̂ †
lσ f̂iσ f̂ †

iσ f̂lσ χ̂ ji + χ̂ ji f̂ †
iσ f̂lσ f̂ †

lσ f̂iσ χ̂i j

+ j ↔ l )

}
+ cyclic(i jl ), (B22)

where the term 4S j · Sl corresponds to spin interaction illustrated in Fig. 11(a), which contains only nearest neighbor hopping,
while the terms 4Si · Sl and 4Si · S j in cyclic(i jl ) correspond to spin interactions illustrated in Figs. 11(b) and 11(c), which
contain not only nearest neighbor hopping, but next nearest neighbor hopping. Also note that every nearest neighbor bond is
shared by four minimum triangular loops, but every next nearest neighbor bond is shared by only two minimum triangular loops,
we can thus obtain the last two terms of (B7). When using trial mean-field parameters to decouple the spin interaction term
(B22), we find∑

σ

(χ̂il f̂ †
lσ f̂iσ f̂ †

iσ f̂ jσ χ̂ ji + χ̂i j f̂ †
jσ f̂iσ f̂ †

lσ̄ f̂iσ̄ χ̂il + χ̂li f̂ †
iσ̄ f̂lσ̄ f̂ †

iσ f̂ jσ χ̂ ji + χ̂ ji f̂ †
iσ f̂ jσ f̂ †

lσ f̂iσ χ̂il + j ↔ l )

−
[(∑

σ

χ̂li f̂ †
iσ f̂ jσ f̂ †

iσ̄ f̂lσ̄ χ̂ ji + j ↔ l

)
+ H.c.

]
−
∑

σ

(χ̂i j f̂ †
lσ f̂iσ f̂ †

iσ f̂lσ χ̂ ji + χ̂ ji f̂ †
iσ f̂lσ f̂ †

lσ f̂iσ χ̂i j + j ↔ l )

= [4|〈χ̂i j〉|2(〈χ̂il〉χ̂li + 〈χ̂li〉χ̂il ) + j ↔ l − 12|〈χ̂i j〉|2|〈χ̂il〉|2] − [4|〈χ̂i j〉|2(〈χ̂il〉χ̂li + 〈χ̂li〉χ̂il ) + j ↔ l

− 12|〈χ̂i j〉|2|〈χ̂il〉|2]

= 0. (B23)
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Therefore the mean-field approximation of hopping terms is equal to zero. We can only use magnetic order parameters to
decouple the last two terms of (B7):

16Si · S j = 16
[
(−1)ix+iy

(
MnSz

j − MnSz
i

)+ M2
n

]
, (B24)

here j = i + 1x or j = i + 1y,

8Si · S j = 8
[
(−1)ix+iy

(
MnSz

j + MnSz
i

)− M2
n

]
, (B25)

here j = i + 1x + 1y.
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