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Superconducting transition temperatures of pure vanadium and vanadium-titanium
alloys in the presence of dynamical electronic correlations
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Ordinary superconductors are widely assumed insensitive to small concentrations of random nonmagnetic im-
purities, whereas strong disorder suppresses superconductivity, ultimately leading to a superconductor-insulator
transition. In between these limiting cases, a most fascinating regime may emerge where disorder enhances
superconductivity. This effect is discussed here for the β phase of vanadium-titanium alloys. Disorder is modeled
using the coherent potential approximation while local electronic interactions are treated using dynamical
mean-field theory. The McMillan formula is employed to estimate the superconducting transition temperature,
showing a maximum at a Ti concentration of around 0.33 for a local Coulomb interaction U in the range of
2 eV to 3 eV. Our calculations quantitatively agree with the experimentally observed concentration-dependent
increase of Tc, and its maximal value of about 20%.
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I. INTRODUCTION

The superconducting critical temperature Tc is a key quan-
tity connecting materials’ chemistry with the crystal and
electronic structure of superconducting materials. At the same
time Tc emerges from the underlying mechanism of supercon-
ductivity. It is generally understood that superconductivity of
many elemental metals at ambient pressures can be described
by the Bardeen-Cooper-Schrieffer (BCS) theory [1,2] based
on the model of an effective instantaneous attractive interac-
tion between electrons mediated by phonons (weak-coupling
limit). The BCS model was extended by considering the re-
tarded nature of the electron-phonon interaction: in particular,
the (strong) Coulomb repulsion between the paired electrons
is reduced because of the large difference in electron and
phonon velocities [3]. The proper retardation effects, beyond
BCS, lead to a complex and frequency-dependent order pa-
rameter, and is captured within the Eliashberg theory [4].

The estimation of the critical temperature within
Eliashberg theory involves moments of the Eliashberg
function α2F (ν), which describes the phononic modes
through which electrons effectively interact, and their
coupling to electrons. The Eliashberg theory also accounts for
the renormalization of the direct Coulomb interaction between
two electrons (μ∗) which is known as the pseudopotential
effect [3]. The McMillan formula allows the estimation of
the critical temperatures from basic experimental data [5],
including the electron mass enhancement factor due to the
electron-phonon interaction, m∗/m ≈ 1 + λ.

The alloys of transition metals constitute a wide class
of superconducting materials. The theory of disordered

superconductors was formulated within the seminal work of
Abrikosov and Gorkov [6]. At the same time, Anderson [7]
has shown that superconductivity with s-wave pairing symme-
try is insensitive to weak nonmagnetic disorder. Subsequent
experimental studies, however, demonstrated that supercon-
ductivity is suppressed in strongly disordered samples. Very
strong disorder can lead to a metal-insulator transition in
the normal state, to the appearance of a pseudogap in the
spectrum, to larger spatial fluctuations of superconductive
pairing, and to an increased ratio of zero-temperature gap
versus critical temperature �/Tc [8–14] in agreement with the
experimental results.

Thus, introducing random impurities and defects in or-
dered materials can be regarded as a tool for controlling
the superconducting characteristics of materials. The main
problem, however, is to identify the nature of the impurity
distribution, or more exactly the shape of the probability
distribution function for the disorder realizations. In many
materials simulations, the coherent potential approximation
(CPA) [15–17] is used. As the CPA is a local theory, it captures
only the average presence of different atomic species, and
therefore cannot account for more subtle aspects like possible
short-range order. These effects can be partly addressed using
the dynamical cluster approximation [18], a cluster extension
of dynamical mean-field theory (DMFT) [19–21] including
electronic interactions, and the typical medium theory (TMT)
[22,23]. Some of these advances have been used for models
[24,25] or in conjunction with material-specific computa-
tions [26,27] in the framework of density functional theory
(DFT). In this context, we have recently compared different
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modeling approaches to disorder and estimated the possible
superconducting temperature of the high-entropy HfNbTaTiZr
alloy [28].

In the present paper we calculate the superconducting
transition temperatures of pure vanadium (V) and vanadium-
titanium (V-Ti) alloys, respectively, using the McMillan
formula [5]. We start by probing its capability in the case of
the pure element V for which the description of dynamic elec-
tronic correlations is necessary to describe the Fermi surface
in its normal state [29]. Further we continue in addressing
the problem of the enhancement of the critical temperature
in some of the V-Ti alloys. In Sec. II we provide a brief
description of the computational methods: the LDA + DMFT
framework using a muffin-tin based approach, followed by a
brief presentation of the essentials of the McMillan formula to
estimate the critical temperatures. Then, Sec. III, an analysis
of the electronic structure of vanadium and the vanadium-
titanium alloys in the normal state subject to dynamical
electronic correlations and the corresponding estimates for the
critical temperatures is presented. We summarize our results
in Sec. IV.

II. METHODS

Density functional theory methods incorporating dy-
namical electronic correlations have proven essential in
modeling physical properties of materials containing narrow-
band electronic states [20,21,30]. An additional difficulty
is brought about by the existence of structural disorder.
Green’s function–based DFT methods are able to address
the combined dynamic electronic correlation and disorder ef-
fects efficiently, since they compute directly the one-particle
Green’s function that can be averaged according to the various
disorder realizations [26,27,31,32].

We start with a short description of the LDA + DMFT
method used in the present computations, and then describe
the methodology for computing the Hopfield parameters [33]
as formulated by Gaspary-Gyorffy in the language of the
multiple-scattering formalism [34]. This parameter contains
the electron-phonon coupling matrix elements which are es-
sential for the estimation of the superconducting critical
temperatures employing the McMillan formula [5], and can
be directly used in combination with the interacting LDA +
DMFT Green’s function as implemented in standard packages
of electronic structure calculation.

A. The combined disorder and dynamical
electronic correlations

To discuss dynamic correlation effects within the frame-
work of LDA + DMFT [21,30] the standard methodology is
to consider the following multiorbital on-site interaction term:

HU = 1

2

∑
im,σ

Umm′m′′m′′′c†
imσ c†

im′σ ′cim′′′σ ′cim′′σ . (1)

Here cimσ (c†
imσ ) destroys (creates) an electron with spin σ on

orbital m at the site i. The Coulomb matrix elements Umm′m′′m′′′

are parametrized in terms of the average local Coulomb U
and exchange parameter J [30]. In principle, the dynamical
electron-electron interaction matrix elements can be com-

puted [35]; however, substantial variations exists depending
on the used local orbitals [36]. We consider U in the range
from 0 eV to 5 eV and J = 0.6 eV. We have checked that the
results essentially do not change when increasing J to, say,
0.9 eV.

The LDA + DMFT implementation used here is a charge
and self-energy self-consistent scheme extending the exact
muffin-tin orbitals method [37–39] using the local-density
approximation (LDA). The full d manifold of states is con-
sidered in the many-body computations, while the charge
self-consistency—through hybridization—ensures that dy-
namic correlation effects are felt by all orbitals. The impurity
solver produces the many-body self-energy �σ (E ) by the
method of spin-polarized T -matrix fluctuation exchange
[40–42], and corrects the starting LDA Green’s function as
discussed in previous publications [31,32,43]. To eliminate
double counting of the interactions already included in the
LDA exchange-correlation functional, the self-energy �σ (E )
is replaced by �σ (E ) − �σ (0) in all equations of the LDA +
DMFT scheme. Throughout this paper finite temperatures
are only considered for the electronic subsystem, where the
temperature enters in the Matsubara frequencies ωn = (2n +
1)πT . We perform total energy calculations within the charge
self-consistent LDA + DMFT framework which follows the
prescription in the literature [30]. The total energy is obtained
from the LDA + DMFT functional [30] using the converged
charge density and local Green’s function. In addition to the
standard LDA total energy, the Kohn-Sham band energy cor-
rection due to the DMFT is added together with the trace of
the matrix product between the DMFT self-energy and the
local Green’s function (�G), the so-called Galitskii-Migdal
contribution. For every pair of (U, J) values, the LDA +
DMFT total energy was minimized as a function of the lattice
parameter, and the superconducting critical temperature was
computed.

Disorder was modeled through the CPA [15,16] which al-
lows computation for any fractional concentration of disorder
realizations in multicomponent alloys. Charge and self-energy
self-consistency is achieved through the scattering path op-
erator. This is the central quantity in the multiple-scattering
formulations of the electronic structure and allows the si-
multaneous computation of the real space charge densities
through charge self-consistency and a proper normalization
the Green’s function (DMFT self-consistency). Technically
the CPA implements an algebraic average of the scattering
path operator. Details of the implementation and a comparison
between CPA/TMT+DMFT methods have been published
previously [27,44].

B. McMillan critical temperatures from electronic
structure computations

An estimate of the critical temperature in conventional
superconductors can be obtained once the strength of
the electron-phonon couplings is known. There are sig-
nificant advances in the first-principle calculations of Tc

using BCS-Eliashberg types of theories [45–47]. However,
since electron-phonon calculations in disordered alloys from
first principles remain computationally expensive, simplified
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approaches like the Gaspari-Gyorffy theory [34] are used to
provide the input for these estimates.

Within the theory of strongly coupled superconductors [5]
the electron-phonon coupling constant λ can be expressed as

λ = N (EF )〈I2〉/M〈ω2〉, (2)

where N (EF ) is the density of states (DOS) at the Fermi
level, 〈I2〉 is the squared electron-phonon matrix element,
averaged over the Fermi surface, M is the atomic mass, and
〈ω2〉 is the average squared phonon frequency. The numerator,
η = N (EF )〈I2〉, is known as the Hopfield parameter. The ob-
servation that the electron-ion interaction in transition metals
has a d resonance located in the vicinity of the Fermi surface
allowed the formulation of a simple prescription to compute
electron-phonon matrix elements, and finally λ, within the
multiple-scattering formalism [34]. Early studies attempted to
estimate λ for elemental metals from the knowledge of the
experimentally measured Tc and the phonon spectra obtained
from neutron scattering experiments [5]. It was observed that
although the individual values of the DOS at the Fermi level
and the averaged electron-phonon matrix elements change
across the 3d series, the product of these two quantities
remains approximately constant for all bcc transition met-
als [33,34]. In a so-called local-phonon representation, the
electron-phonon interactions mainly consist of scatterings that
change the electronic angular momentum l [33].

Using these ingredients, Gaspari and Gyorffy [34] pro-
posed an approximate way to compute 〈I2〉 using the
multiple-scattering Green’s function formalism and adopting
the rigid muffin-tin approximation. In these approximations,
the Hopfield parameter is computed from a combination of
electronic scattering phase shifts and the electronic densi-
ties of states. The average squared phonon frequency 〈ω2〉
can be approximated by using the Debye temperature θD

via 〈ω2〉 ≈ 1
2θ2

D. The same formalism was extended for dis-
ordered systems by including the proper disorder averaging
of the physical quantities. Thus, the electron-phonon cou-
pling constant for disordered alloys can be computed as
λ = 〈η〉d/

1
2 〈M〉d〈θD〉2

d , where 〈. . . 〉d represents the disorder-
averaged quantities. As these parameters are accessible from a
multiple-scattering based electronic structure calculation [48],
the McMillan [5] formula

Tc = θD

1.45
exp

[
− 1.04(1 + λ)

λ − μ∗(1 + 0.62λ)

]
(3)

can then be directly applied. The factor (1 + λ) plays the role
of an electron mass enhancement and the parameter μ∗ is an
effective Coulomb repulsion reflecting the retardation effect
of electron-phonon coupling with respect to the instantaneous
Coulomb repulsion [5]. In our computations μ∗ will be further
considered as a variable parameter. All other ingredients of the
formula besides μ∗ are λ, computed using the exact muffin-tin
orbitals method [38,39], and the Debye temperature collected
from experimental data.

III. VANADIUM AND VANADIUM-TITANIUM ALLOYS

The physical properties of V have been intensively
studied [49]. In fact, V is a type-II superconductor with
a transition temperature of Tc = 5.38. Its normal state

thermodynamic properties were explained invoking phonons
contribution [50].

Electronic structure computations were also performed
by various methods including standard LDA and extensions
such as LDA + U [51], LDA + DMFT [29,52], or includ-
ing GW-like corrections [53]. An alternative LDA+FLEX
computation for V [54] showed a sizable, remarkably local
(k-independent) self-energy, which demonstrates the impor-
tance of local dynamic correlation effects in computing the
ground state properties. The LDA + DMFT treatment re-
vealed significant quantum fluctuations, provided a better
agreement with the experimental Fermi surface [29], and
allowed the formulation of a microscopic theory for the tran-
sition from the Pauli paramagnetism to Curie-Weiss behavior
[52]. Computed estimates for the critical temperature of V
[55] under pressure, using the McMillan formula, were also
reported to be in agreement with experiment.

For the TixV1−x alloys, resistivity studies showed a rela-
tively wide transition from the normal to the superconducting
state which cannot be simply explained by the existence of
a secondary superconductive phase [56]. The broad transi-
tion was observed for a relatively large concentration range.
Thus, proposals were formulated for an additional scattering
mechanism to the regular electron-phonon coupling based
on spin-fluctuation theories [57,58]. In addition, experiments
showed that Ti doping in bcc V leads to an enhanced Tc which
exceeds the individual Tc values of the alloy components.
As dynamical electronic correlations seem to provide an im-
proved picture of physical properties of pure V [29,52,53] it
is natural to expect that these effects play also an important
role for the disordered alloy. The aim, thus, is to explain
the increase in the critical temperature, Tc, as a consequence
of the combined effect of disorder and dynamical electronic
correlations in the dilute concentration limit.

A. Dynamic electronic correlation
in the normal state of vanadium

In the following, we present the results of the electronic
structure of pure vanadium computed within LDA + DMFT.
Vanadium possesses a body-centered-cubic (bcc) structure
within the so-called β phase. The space group corresponding
to the β phase is Im3m with V occupying the Wyckoff 2a posi-
tion, and the experimental lattice parameter is aexp = 3.02 Å.
To determine the equilibrium lattice parameter aeq for the
pure vanadium crystal, we computed the LDA + DMFT total
energy of the system for different values of the interaction
strength U and a range of lattice parameters a around the
expected energy minimum using the formalism presented in
Ref. [31]. The convergence was checked on various k-mesh
sizes up to 57 × 57 × 57 k points in the irreducible part of the
first Brillouin zone, although the saturation of the results [no
significant change in N (EF ), or in the Hopfield parameters]
was noticed for smaller numbers of k points.

The electronic structure calculations provide information
about the electronic bands and the density of states. The
computed results can be compared to experimental measure-
ments with different spectroscopic techniques such as the
x-ray photoemission spectra (XPS) [59] for the valence band,
and bremsstrahlung isochromat spectra (BIS) [60] for the
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FIG. 1. Vanadium spectral functions. (a) Experimental XPS [59]
and BIS [60] spectra in arbitrary units. (b) Valence band (VB) and
conduction band (CB) DOS computed as convolution of the total
density of states with distributions corresponding to the experimental
resolution. (c) DOS of the d-orbital of vanadium obtained using LDA
and LDA + DMFT with U = 2 eV and J = 0.6 eV at 300 K.

conduction band DOS or the one-particle spectral function.
The XPS spectra of the valence band are seen on the left side
in panel (a) of Fig. 1, while panel (b) show results of the
empty electronic states up to 8 eV above EF using BIS [60].
Within the valence band (VB) the two main features are the
broad peaks at energies at about −2.4 eV and −0.7 eV. In the
conduction band (CB) a hump at about 0.7 eV and a larger
peak at 2.3 eV can be seen. The computed total DOS obtained
using LDA + DMFT can be seen in Fig. 1(b). In order to com-
pare the experimental and theoretical results for the VB the
computed DOS is multiplied by the Fermi-Dirac distribution
fFD(E , T ) and for the CB the multiplication is performed with
the factor [1 − fFD(E , T )]. In addition, the spectra of VB and
CB are convoluted with a constant Lorentzian broadening of
0.1 eV followed by a Gaussian broadening of 0.55 eV (0.7 eV)
corresponding to the experimental resolution [53]. After the
application of broadening and convolution functions to the
full DOS the theoretical spectra are significantly smoothed
out. Nevertheless, they capture the formation of the pseudogap
above the Fermi energy EF and the position of the main peaks
in the spectral function. Note also the presence of tails in
the LDA + DMFT DOS at high binding energies (E − EF ∈
[−8,−4] eV) which cannot be captured in plain LDA as these
are characteristic features of quantum fluctuations seen in
many transition metal elements. A particular example is the
formation of the so-called −6 eV satellite in Ni [61–63].

Figure 1(c) shows a direct comparison of LDA and LDA +
DMFT densities of states. The gray area corresponds to the
LDA + DMFT total d-orbital DOS while the blue and orange
lines are the LDA V-d t2g/eg-orbital DOS. Note that within
LDA the d-electron bandwidths of the t2g and eg orbitals have
similar energy extension. At the Fermi level a dominant d-t2g

FIG. 2. Imaginary part of the self-energies as a function of Mat-
subara frequencies of the vanadium t2g and eg orbitals obtained from
LDA + DMFT with U = 2 eV and J = 0.6 eV at 400 K. The inset
shows the parabolic behavior of the imaginary part of the retarded
self-energy around EF , indicating Fermi liquid behavior.

contribution can be seen. The negative slope of the real part
of the self-energy in the LDA + DMFT computation leads
to the slight compression of spectra toward the Fermi level,
which is a characteristic Fermi liquid behavior. This effect
is easily visible as the position of the d-eg-orbital peak in
the vicinity of −2.5 eV in the valence band is shifted closer
to about −2 eV in the LDA + DMFT results, and at the
same time a more substantial DOS is obtained at the Fermi
level. The unoccupied part dominated by the eg-DOS peak at
about 2.7 eV is slightly shifted in this case away from the
Fermi level, which indicates that a mean-field Hartree-Fock-
like contribution dominates dynamic local correlations in this
energy range. Further discrepancies between the measurement
and computed results in both occupied and unoccupied parts
of the spectra have been previously addressed [53]. It was
concluded that alternative computations such as LDA + U fail
to describe the weight of computed spectra situated between
the main peaks. It was also emphasized that electron-electron
interactions described by variants of GW and LDA + DMFT
bring the computed spectra in fairly good agreement with the
experiment [53].

In the following, we discuss the effects of dynamical
correlations based on the results of the electronic self-
energies. In Fig. 2 we show the imaginary part of the
orbitally resolved self-energies. The inset shows the analyti-
cally continued retarded self-energies on the real axis which
follows a quadratic energy dependence in the vicinity of the
Fermi level: Im�R(E ) ∝ −(E − EF )2. Both the t2g/eg or-
bitals show a Fermi liquid behavior. However, as expected
the effective masses are different. The analytically contin-
ued self-energies are obtained by using Padé-approximate
methods [64,65]. To avoid the possible inaccuracies of the
analytical continuation, we interpret the computational re-
sults using the self-energy on the Matsubara axis. The Fermi
liquid state is characterized by a linear dependence of the
imaginary part of the self-energy on imaginary frequencies
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FIG. 3. Interaction strength dependence of the effective mass
renormalization of the t2g and eg orbitals of vanadium for different
temperatures.

ωn: Im�(ωn) = −(ωn) − (Z−1 − 1)ωn, where Z is the
quasiparticle spectral (inverse of the effective mass ratio
m/m∗) weight and (ωn) the quasiparticle damping. In the re-
gion of low Matsubara frequencies Im�t2g/eg (ωn) approaches
zero linearly (dashed lines Fig. 2) for both orbitals. Thus,
the t2g/eg electrons are long-lived quasiparticles; i.e., their
scattering rate vanishes as the Fermi surface is approached. In
the entire temperature range 100 K � T � 600 K the linearity
of the imaginary part of the self-energy is preserved; thus the
results provide a clear indication of the Fermi liquid character
of the electronic system.

Within DMFT the quasiparticle mass enhancement m�/m,
relative to the band mass m, becomes local and can be ap-
proximately computed from the Matsubara frequencies in the
zero-temperature limit as m�/m = 1 − Im�(ωn)/ωn|ωn→0. It
is often computed numerically in quantum Monte Carlo
(QMC) calculations as the slope of the imaginary part of
the self-energy for a few low Matsubara frequencies [19]. In
Fig. 2 dashed lines show the slopes for the t2g and eg. The
results are presented in Fig. 3 for various Hubbard parameters
up to U = 5 eV. In computations with U above 2 eV we used
a constant J = 0.6 eV, while for U < 2 eV we kept a constant
U/J = 2/0.6 ≈ 3.33 ratio to ensure the positiveness of the
effective Coulomb repulsion U − 3J . Increasing the value of
the Hund’s coupling up to J = 0.9 eV no significant change in
the spectral function occurs. For all temperatures the effective
mass of both orbitals is increasing with increasing U values.
At higher temperatures we estimate a somewhat smaller value.
As seen from Fig. 3 the effective mass enhancements m∗/m
are in the range 1 . . . 2, with an increasing tendency for larger
U values. Enhancements in this range are characteristic for
medium-correlated electronic systems, in contrast to heavy-
fermion or strongly correlated systems for which m∗/m can
be of the order of hundreds or thousands [66,67]. Thus our re-
sults indicate the presence of moderate dynamical correlation
effects for both orbitals, but for the eg electrons the effect is
less substantial.

Deviations from the Fermi liquid behavior and appear-
ance of nonanalytic frequency dependence of the self-energy
for the t2g states have been recently discussed in Ref. [52].
Unlike our computation, which is based on a perturbative

FIG. 4. (a) Computed equilibrium lattice parameter aeq,
(b) electron-phonon coupling strength λ, and (c) the superconducting
critical temperature Tc with respect to the interaction strength U
of vanadium. The dashed line indicates the experimental Tc. The
experimental lattice parameter is aexp = 3.02 Å; it is not shown as it
falls outside the shown scale.

impurity solver, the strong dynamical correlations are more
precisely captured by the continuous-time QMC solvers [68]
used in Ref. [52]. In our computations we did not address
the high-temperature and high-U limit. Nevertheless, for the
relevant temperatures and U range (between 2 and 3 eV)
which correctly capture Fermi surface features [29] our results
agree well with the QMC results [52], as well as with the
LDA+FLEX calculations [54] reported earlier.

B. McMillan estimates for the superconducting transition
temperature of pure V

Ab initio calculations of superconducting temperatures
have been attempted using the Eliashberg equation and pro-
duced prominent results [45–47]. These computations did not
include the presence of dynamic electronic correlations in dis-
ordered alloys. However, the combined dynamical electronic
correlation and disorder problem may be considered directly
in the McMillan theory, which provides reliable estimates in
such cases.

Figure 4 summarizes the results of the LDA + DMFT com-
putations: the equilibrium lattice parameter is seen in subplot
(a), the mass-enhancement factor λ is shown in panel (b), and
finally panel (c) shows the variation of the superconducting
temperature. Computations were performed for U values up
to 5 eV and for a constant J = 0.6 eV. The values for U =
0 eV correspond to the LDA results. All quantities presented
in Fig. 4 have a slight variation with the strength of the
Coulomb interaction U . The equilibrium lattice constant does
not change significantly up to 3 eV and for larger U values
has a descending trend. For the value U = 5 eV a reduction
of about 2% is obtained. It is interesting to note that the mass
enhancement factor λ reaches a maximum value of 0.622 for
the realistic U values in the range from 2 eV to 3 eV. For
higher U values λ decreases as well.
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With the first-principles estimates N (EF ), λ and the ex-
perimental data of Debye temperatures (θD) the values of
Tc are obtained choosing a suitable value for μ∗. McMillan
suggested taking μ∗ in the vicinity of 0.13 for transition metal
elements [5]; however, one finds different μ∗ values in the
current literature. References [56,69] observed a range of μ∗
between 0.11 to 0.14 computed via various forms of local
field correction functions [69], or have chosen values of μ∗
between 0.12 and 0.175 to match their results to experimental
data [56]. Figure 4(c) shows our estimates for Tc: choosing a
value of μ∗ = 0.13, our results for pristine vanadium slightly
overestimate the transition temperature, whereas for a value
of μ∗ = 0.14 a better match with experiment is found. Al-
though the transition temperature Tc is shifted for different
choices of the effective Coulomb repulsion parameter μ∗, the
interaction strength dependence of Tc shows the same trend:
a mild increase with U , a maximum value in the range of U
in which λ is maximum, and a decreasing trend for higher
U values. Our overall results of LDA + DMFT computations
with the Hubbard parameter values U in the range of 2 eV
to 3 eV and μ∗ = 0.14 provide Tc next to the experimental
value Tc = 5.73 K, the dashed line of Fig. 4(c). Note also that
the same Hubbard U values proved to provide an excellent
description of the Fermi surface of vanadium [29].

C. Binary Ti-V alloys

TixV1−x alloys exist in different metallurgical phases. For
concentrations 0 � x � 0.68 the β phase is observed with a
bcc lattice structure. The α phase is formed for high con-
centrations of Ti, 0.86 � x � 1, in which the system has a
hexagonal close-packed (hcp) structure. For concentrations
in the range of 0.67 < x < 0.86 an additional hexagonal ω

phase (precipitation) can occur apart from the α and β phases
[56]. The ω phase is a primitive hexagonal crystal struc-
ture that has been found to be a common metastable phase
in body-centered-cubic metals and alloys. In general, the ω

phase precipitates and has a coherent interfacial structure with
its bcc matrix phase, with the parameters aω = √

2abcc and
cω = √

3/2abcc. In such a mixed phase an anomalous increase
in electrical resistivity with decreasing temperatures was re-
ported [70]. This behavior was addressed invoking various
models including weak localization [70], Kondo s-d interac-
tions, and localized spin fluctuation [71,72]. In addition, for
concentrations x � 50% [56] an increase in the superconduct-
ing Tc has been observed. As previously noted [56] this effect
cannot be associated with the change in the Debye tempera-
ture as Ti and V atoms are situated beside each other in the
periodic table. It is our aim to investigate whether dynamic
electronic correlation effects contribute to the enhancement of
the Tc.

We consider in the following the bcc β phase in which Ti
atoms occupy randomly the V 2a site with concentrations up
to 65%. We have computed the total energy of the system
for different U and x values and determined the equilibrium
lattice parameter aeq. After calculating multiple aeq, a linear
concentration dependence of the equilibrium lattice parameter
could be observed, which is also known as Vegard’s law [73]:
aeq = x · aTi

eq + (1 − x) · aV
eq, where aV

eq is the equilibrium lat-
tice constant of pure vanadium and aTi

eq is the (extrapolated)

FIG. 5. Total and sublattice DOS of Ti0.35V0.65 obtained using
LDA + DMFT with U = 2 eV and J = 0.6 eV at 400 K. The inset
shows the total DOS for different interaction strengths U around EF .

equilibrium lattice constant of pure titanium in the bcc phase.
The extrapolated value of aeq for a pure titanium crystal in
the bcc β phase is aTi

eq = 3.231 Å.
Figure 5 shows the electronic DOS of the TixV1−x alloy for

x = 0.35 concentration at which the superconducting critical
temperature is the highest among all TixV1−x alloys. Indepen-
dent of the impurity concentration x, the electronic structure
is dominated by broad d-electron bands with a specific pseu-
dogap in the DOS as a consequence of the bcc structure.
As can be seen in Fig. 5 most of the contribution at the
Fermi level is provided by the V-d states. The inset shows
a comparison of LDA + DMFT results for DOS for various
U values. Similarly to the computations for vanadium, we
used a constant J = 0.6 eV for U above 2 eV, while for
U < 2 eV we kept the ratio U/J = 2/0.6 ≈ 3.33 constant. We
applied DMFT to both Ti and V components using the same
Hubbard U value. The computation with U = 0 corresponds
the LDA-CPA calculation. One can see a clear tendency: a tiny
reduction of DOS at the Fermi level and a narrowing of the d
bands in the vicinity of the Fermi level.

In Fig. 6 we present the imaginary part of the self-energies
of V and Ti in the alloy TixV1−x with x = 0.35 in the low-
energy Matsubara region. A linear behavior can be seen,
which demonstrates that the Fermi liquid character of d elec-
trons is preserved also in the presence of site disorder. We
estimated the quasiparticle weights for the different concen-
trations for both alloy components.

A quantitative analysis of the concentration dependence of
the effective masses at temperatures 200, 400, and 600 K is
presented in Fig. 7. The values of the effective mass renor-
malization Z−1 = m∗/m for eg orbitals of both V and Ti show
a very weak concentration dependence and are distributed
around a value Z−1

Ti−eg
≈ 1.07 and Z−1

V−eg
≈ 1.16. By contrast,

the effective mass of the t2g electrons increases slowly upon
doping with Ti. As the temperature is raised a reduction in the
magnitude of the effective masses is also visible. Note that
a reduction of m∗/m is seen also in pristine V; however, the
effect is less significant.
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FIG. 6. Imaginary part of the self-energies as a function of Mat-
subara frequencies of the t2g and eg orbitals of Ti0.35V0.65 for U =
2 eV, J = 0.6 eV at 400 K.

A characteristic phenomenon of disordered and strongly
correlated electron systems is the decoherence of quasipar-
ticles. In the presence of disorder a resistivity change is
observed above some decoherence temperature which is con-
nected with the quasiparticle weight renormalization [74].
Calculations performed within the framework of DMFT sup-
port this model [75,76]. Thus, we interpret our LDA + DMFT
results for TixV1−x alloys using the same picture: in the
presence of a low concentration of Ti impurities at V sites
dynamical correlations, through the real part of the self-energy
(see Fig. 8), renormalize the on-site energies (the random
on-site potentials): εt2g/eg + Re�R

t2g/eg
(E ). For a given energy

E in the vicinity of EF the screening effect is more im-
portant for V-d orbitals in comparison with those of Ti-d
orbitals. In a similar analysis for the orbitally resolved self-
energies one observes that in the occupied part of the spectra

FIG. 7. Concentration dependence of the effective mass renor-
malization of the t2g and eg orbitals for the alloy components Ti and V
of TixV1−x with U = 2 eV and J = 0.6 eV at different temperatures.

FIG. 8. Real part of the retarded self-energies as a function of en-
ergy of the t2g and eg orbitals of Ti0.35V0.65 for U = 2 eV, J = 0.6 eV
at 400 K.

(E � EF ) Re�R
t2g

(E ) > Re�R
eg

(E ), while in the unoccupied
part the spectra the opposite is true: Re�R

t2g
(E ) < Re�R

eg
(E ).

Consequently the screening effect is more/less efficient for
the t2g orbitals below/above the Fermi level. We did not no-
tice significant change in the self-energies. Our computations
show that as temperature is increasing the screening of the
random potential does not change significantly. Thus, with in-
creasing temperature the t2g quasiparticle scattering becomes
less coherent and the effective masses slightly increase in
comparison with the eg electron quasiparticles.

D. Enhanced critical temperatures in the pure β and α phases

To apply the McMillan formula Eq. (3) the parameters such
as the atomic masses and Debye temperatures were taken from
Ref. [77]. For the latter the concentration dependence has been
estimated as the algebraic average of the corresponding Debye
temperatures by the relation θD(x) = x · θTi

D + (1 − x) · θV
D .

The dependence of the lattice parameter with concentration
follows Vegard’s law.

Figure 9 shows the concentration dependence of the critical
temperature for the TixV1−x alloys. The critical tempera-
ture reaches a maximal value (independent of the interaction
strength) at a concentration of x ≈ 0.33. The inset of Fig. 9
shows the critical temperature Tc in dependence on the inter-
action strength U for the concentration around the maximum
of Tc and for two concentrations below and above. Similarly
to the behavior of pristine vanadium in Fig. 4, the critical
temperature rises slightly with increasing U before it drops
for strong interactions of about U > 3 eV.

LDA + DMFT computations were also performed for the
α(hexagonal) phase of TixV1−x. Similarly to vanadium, we
have optimized the lattice parameter a of the closed-packed
hexagonal (hcp) lattice structure, while maintaining a con-
stant ratio of c/a. The McMillan approximation reproduces
the increasing trend of the critical temperature TC for small
concentrations 1 − x of vanadium. Computations within the
mixed β + ω and α + β + ω phase require a modeling of
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FIG. 9. Concentration dependence of Tc in the β (bcc) and α

(hcp) phases of TixV1−x . The maximal value for Tc can be observed
at x ≈ 0.33 and is independent of U . The inset shows the interaction
strength dependence of Tc.

the crystal structure that cannot be addressed in our current
methodology.

The McMillan formula of Tc, Eq. (3), emerges from the
strong-coupling theory with the additional rigid-ion and one-
electron approximations. The key physical quantity accessible
also through the ab initio computation is the mass enhance-
ment factor λ which contains the electron-phonon matrix
element averaged over the Fermi surface (see the discussion
in Sec. II B).

LDA + DMFT computations show that dynamic electronic
correlation in vanadium-titanium alloys leads to narrower
DOS around the Fermi level (Fig. 5) and an increased effective
mass (see Fig. 7). For this reason quasiparticles with energy
close to the d resonance of the electron-ion interaction spend
longer times in the vicinity of the scatterer (the so-called
Wigner delay time). Therefore, it is reasonable to suppose
that the scattering of electrons is dominated by the screened
local potential, namely, the potential change due to the dis-
placement of an ion and the additional real part of the local
self-energy. Thus, the local dynamic correlations lead to a
modified electron-phonon coupling which may finally lead to
an increase in Tc.

Figure 10 shows a surface plot of λ(U, x) at temperature
T = 400 K. For a given U value the λ increases, reaching a
maximum at a concentration about x ≈ 0.33 then following
a descending trend. The behavior of λ provides a coherent
picture since it yields a good estimate for the concentration
dependence of the critical temperature seen in Fig. 9.

IV. SUMMARY

We computed the superconducting critical temperature of
pure V and TixV1−x alloys within the β(bcc) and α phases,
on the basis of BCS-Eliashberg theory. This theory describes
superconductivity caused by an effective electron-electron at-
traction resulting from the electron-phonon interaction that
overcomes the repulsive Coulomb interaction. The magnitude
of the critical temperature is limited by the fact that the

FIG. 10. Surface plot of λ(U, x) for TixV1−x alloys computed
with LDA + DMFT at 400 K.

phonon energy scale is much lower than the electronic energy
scales (which, in fact, validates the theory). In particular,
we estimated the critical temperatures Tc employing McMil-
lan’s formula in which the experimental Debye temperature,
the electron-phonon coupling constant λ (obtained through
ab initio computation), and the pseudopotential parameter μ∗
are used. We did not attempt to use more advanced formulas
for Tc (for example, the Allen-Dynes prescription [78]) in-
volving the phonon band structure and the moments of the
Eliashberg function as our aim was to model the enhance-
ment of Tc in TixV1−x alloys for which ab initio phonon
computations would have involved very expensive supercells.
Instead, we modeled the dynamical electronic correlations in
the studied alloys using the LDA + DMFT method.

As shown previously [29] a correct description of the
Fermi surface properties of V can be achieved on the basis
of LDA + DMFT methods which indicated that vanadium is
a conventional correlated Fermi liquid. Obviously this does
not exclude the possibility that in the regime of very high
T and large Hubbard U departures from the Fermi liquid
behavior may occur [52]. A quantitative comparison with
computations involving nonlocal dynamic correlation effects,
LDA+FLEX [54] or GW, showed an excellent agreement
with LDA + DMFT results; in particular, the mass enhance-
ments practically coincide.

Theoretical investigations of disorder in materials includ-
ing superconductors are usually performed considering the
existence of uncorrelated disorder. In real systems, however,
the disorder is almost never completely random. Inhomo-
geneities may lead to the appearance of short- or long-range
spatial correlations, and the modeling of such effects is far
more complicated and requires approaches beyond the CPA
that are not discussed here. In our work we considered the
regular CPA supplemented by the modeling of dynamical
electronic correlations in the normal state of the super-
conducting TixV1−x alloys. In particular, we computed the
spectral functions (the local DOS) of the alloy component
self-energies and the mass enhancements.

Our critical temperature estimates for the TixV1−x alloys
with concentrations x in the range of single β or α phases are
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in very good agreement with the experimental measurements.
In the rich V region (small x) a maximum in the concentration
dependence is obtained for x ≈ 0.33. Although CPA results
also indicate such a Tc increase, we show that dynamical
electronic correlations modeled with DMFT and a Hubbard
U parameter are expected to improve the accuracy of the
description.

Early experimental studies interpreted the anomalous be-
havior of resistivity measurements of certain V-Ti alloys
invoking weak localization effects [70]. The recently imple-
mented TMT into the DFT framework allows one to search for
the existence of precursors of localization [27] in alloys with
substitutional disorder. Within the DFT-TMT framework the
typical DOS is obtained as a geometrical average of the local
DOS of the alloy components. A vanishing value of the typical
DOS is considered to signal the presence of weak localization
effects [24,27,44]. We have obtained a nonzero typical DOS;
thus, no signature of localization was found for concentrations
in which alloys are formed with single phases (α and β).
Our study does not cover the concentration range 0.65 �
x � 0.9 in which a chemically disordered composition
with mixed crystal structure phases, β + ω and α + β + ω,

exists as discussed in the beginning of Sec. III C. In this
concentration range a direct LDA + DMFT computation is a
major challenge because of limitations in computational time
and simulation size. We expect that more advanced multiscale
techniques and possible artificial intelligence methodologies
such as machine learning may contribute significantly to
data-driven estimations of Tc for disordered superconducting
alloys.
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K. Byczuk, L. Vitos, M. Jarrell, D. Vollhardt, and L. Chioncel,
Ab initio typical medium theory of substitutional disorder,
Phys. Rev. B 101, 014210 (2020).

[28] M. Karabin, W. R. Mondal, A. Östlin, W.-G. D. Ho, V.
Dobrosavljevic, K.-M. Tam, H. Terletska, L. Chioncel, Y. Wang,
and M. Eisenbach, Ab initio approaches to high-entropy alloys:
A comparison of CPA, SQS, and supercell methods, J. Mater.
Sci. 57, 10677 (2022).

[29] J. A. Weber, D. Benea, W. H. Appelt, H. Ceeh, W.
Kreuzpaintner, M. Leitner, D. Vollhardt, C. Hugenschmidt, and
L. Chioncel, Electronic correlations in vanadium revealed by
electron-positron annihilation measurements, Phys. Rev. B 95,
075119 (2017).

[30] G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O.
Parcollet, and C. A. Marianetti, Electronic structure calculations
with dynamical mean-field theory, Rev. Mod. Phys. 78, 865
(2006).

[31] A. Östlin, L. Vitos, and L. Chioncel, Analytic continuation-free
Green’s function approach to correlated electronic structure
calculations, Phys. Rev. B 96, 125156 (2017).

[32] A. Östlin, L. Vitos, and L. Chioncel, Correlated electronic
structure with uncorrelated disorder, Phys. Rev. B 98, 235135
(2018).

[33] J. J. Hopfield, Angular momentum and transition-metal super-
conductivity, Phys. Rev. 186, 443 (1969).

[34] G. D. Gaspari and B. L. Gyorffy, Electron-phonon interactions,
d resonances, and superconductivity in transition metals, Phys.
Rev. Lett. 28, 801 (1972).

[35] F. Aryasetiawan, M. Imada, A. Georges, G. Kotliar, S.
Biermann, and A. I. Lichtenstein, Frequency-dependent lo-
cal interactions and low-energy effective models from elec-
tronic structure calculations, Phys. Rev. B 70, 195104
(2004).

[36] T. Miyake and F. Aryasetiawan, Screened Coulomb interaction
in the maximally localized Wannier basis, Phys. Rev. B 77,
085122 (2008).

[37] O. K. Andersen, O. Jepsen, and G. Krier, Lectures on Methods of
Electronic Structure Calculation (World Scientific, Singapore,
1994), p. 63.

[38] L. Vitos, H. L. Skriver, B. Johansson, and J. Kollár, Applica-
tion of the exact muffin-tin orbitals theory: The spherical cell
approximation, Comput. Mater. Sci. 18, 24 (2000).

[39] L. Vitos, Total-energy method based on the exact muffin-tin
orbitals theory, Phys. Rev. B 64, 014107 (2001).

[40] A. I. Lichtenstein and M. I. Katsnelson, Ab initio calculations
of quasiparticle band structure in correlated systems: LDA++

approach, Phys. Rev. B 57, 6884 (1998).
[41] L. V. Pourovskii, M. I. Katsnelson, and A. I. Lichtenstein,

Correlation effects in electronic structure of PuCoGa5, Phys.
Rev. B 73, 060506(R) (2006).

[42] M. I. Katsnelson, V. Y. Irkhin, L. Chioncel, A. I. Lichtenstein,
and R. A. de Groot, Half-metallic ferromagnets: From band
structure to many-body effects, Rev. Mod. Phys. 80, 315
(2008).

[43] L. Chioncel, L. Vitos, I. A. Abrikosov, J. Kollár, M. I.
Katsnelson, and A. I. Lichtenstein, Ab initio electronic structure

calculations of correlated systems: An EMTO-DMFT approach,
Phys. Rev. B 67, 235106 (2003).

[44] A. Östlin and L. Chioncel, Electronic correlations and Fermi
liquid behavior of intermediate-band states in titanium-doped
silicon, Phys. Rev. B 104, L201201 (2021).

[45] M. A. L. Marques, M. Lüders, N. N. Lathiotakis, G. Profeta, A.
Floris, L. Fast, A. Continenza, E. K. U. Gross, and S. Massidda,
Ab initio theory of superconductivity. II. Application to elemen-
tal metals, Phys. Rev. B 72, 024546 (2005).

[46] X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin,
P. Boulanger, F. Bruneval, D. Caliste, R. Caracas, M. Côté,
T. Deutsch, L. Genovese, P. Ghosez, M. Giantomassi, S.
Goedecker, D. Hamann, P. Hermet, F. Jollet, G. Jomard, S.
Leroux et al., ABINIT: First-principles approach to material
and nanosystem properties, Comput. Phys. Commun. 180, 2582
(2009).

[47] J. Noffsinger, F. Giustino, B. D. Malone, C.-H. Park, S. G.
Louie, and M. L. Cohen, EPW: A program for calculating the
electron-phonon coupling using maximally localized Wannier
functions, Comput. Phys. Commun. 181, 2140 (2010).

[48] I. R. Gomersall and B. L. Gyorffy, A simple theory of the
electron-phonon mass enhancement in transition metal com-
pounds, J. Phys. F 4, 1204 (1974).

[49] S. Vonsovsky, E. Brandt, Y. Izyumov, A. Zavarnitsyn, and E.
Kurmaev, Superconductivity of Transition Metals: Their Al-
loys and Compounds, Springer Series in Solid-State Sciences
(Springer, Berlin, 2011).

[50] D. Westlake and L. Alfred, Determination of the Debye char-
acteristic temperature of vanadium from the Bloch-Grüneisen
relation, J. Phys. Chem. Solids 29, 1931 (1968).

[51] M. Tokii and S. Wakoh, An effective potential of metallic vana-
dium and chromium, J. Phys. Soc. Jpn. 72, 1476 (2003).

[52] A. S. Belozerov, A. A. Katanin, and V. I. Anisimov, Transition
from Pauli paramagnetism to Curie-Weiss behavior in vana-
dium, Phys. Rev. B 107, 035116 (2023).

[53] A. Sihi and S. K. Pandey, A detailed electronic structure study
of vanadium metal by using different beyond-DFT methods,
Eur. Phys. J. B 93, 9 (2020).

[54] S. Y. Savrasov, G. Resta, and X. Wan, Local self-energies for V
and Pd emergent from a nonlocal LDA+FLEX implementation,
Phys. Rev. B 97, 155128 (2018).

[55] C. N. Louis and K. Iyakutti, Electronic phase transition and
superconductivity of vanadium under high pressure, Phys. Rev.
B 67, 094509 (2003).

[56] M. Matin, L. S. Sharath Chandra, S. K. Pandey, M. K.
Chattopadhyay, and S. B. Roy, The influence of electron-
phonon coupling and spin fluctuations on the superconductivity
of the Ti-V alloys, Eur. Phys. J. B 87, 131 (2014).

[57] N. F. Berk and J. R. Schrieffer, Effect of ferromagnetic spin cor-
relations on superconductivity, Phys. Rev. Lett. 17, 433 (1966).

[58] H. Rietschel and H. Winter, Role of spin fluctuations in the
superconductors Nb and V, Phys. Rev. Lett. 43, 1256 (1979).

[59] L. Ley, O. B. Dabbousi, S. P. Kowalczyk, F. R. McFeely, and
D. A. Shirley, X-ray photoemission spectra of the valence bands
of the 3d transition metals, Sc to Fe, Phys. Rev. B 16, 5372
(1977).

[60] W. Speier, J. C. Fuggle, R. Zeller, B. Ackermann, K. Szot,
F. U. Hillebrecht, and M. Campagna, Bremsstrahlung isochro-
mat spectra and density-of-states calculations for the 3d and 4d
transition metals, Phys. Rev. B 30, 6921 (1984).

165107-10

https://doi.org/10.1140/epjst/e2017-70047-5
https://doi.org/10.1103/PhysRevB.101.014210
https://doi.org/10.1007/s10853-022-07186-9
https://doi.org/10.1103/PhysRevB.95.075119
https://doi.org/10.1103/RevModPhys.78.865
https://doi.org/10.1103/PhysRevB.96.125156
https://doi.org/10.1103/PhysRevB.98.235135
https://doi.org/10.1103/PhysRev.186.443
https://doi.org/10.1103/PhysRevLett.28.801
https://doi.org/10.1103/PhysRevB.70.195104
https://doi.org/10.1103/PhysRevB.77.085122
https://doi.org/10.1016/S0927-0256(99)00098-1
https://doi.org/10.1103/PhysRevB.64.014107
https://doi.org/10.1103/PhysRevB.57.6884
https://doi.org/10.1103/PhysRevB.73.060506
https://doi.org/10.1103/RevModPhys.80.315
https://doi.org/10.1103/PhysRevB.67.235106
https://doi.org/10.1103/PhysRevB.104.L201201
https://doi.org/10.1103/PhysRevB.72.024546
https://doi.org/10.1016/j.cpc.2009.07.007
https://doi.org/10.1016/j.cpc.2010.08.027
https://doi.org/10.1088/0305-4608/4/8/015
https://doi.org/10.1016/0022-3697(68)90043-7
https://doi.org/10.1143/JPSJ.72.1476
https://doi.org/10.1103/PhysRevB.107.035116
https://doi.org/10.1140/epjb/e2019-100500-8
https://doi.org/10.1103/PhysRevB.97.155128
https://doi.org/10.1103/PhysRevB.67.094509
https://doi.org/10.1140/epjb/e2014-50036-2
https://doi.org/10.1103/PhysRevLett.17.433
https://doi.org/10.1103/PhysRevLett.43.1256
https://doi.org/10.1103/PhysRevB.16.5372
https://doi.org/10.1103/PhysRevB.30.6921


SUPERCONDUCTING TRANSITION TEMPERATURES OF … PHYSICAL REVIEW B 109, 165107 (2024)

[61] A. I. Lichtenstein, M. I. Katsnelson, and G. Kotliar, Finite-
temperature magnetism of transition metals: An ab initio
dynamical mean-field theory, Phys. Rev. Lett. 87, 067205
(2001).

[62] J. Braun, J. Minár, H. Ebert, M. I. Katsnelson, and A. I.
Lichtenstein, Spectral function of ferromagnetic 3d metals: A
self-consistent LSDA + DMFT approach combined with the
one-step model of photoemission, Phys. Rev. Lett. 97, 227601
(2006).
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