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The formalism of the Rokhsar-Kivelson (RK) model has been frequently used to study topological phase
transitions in 2D in terms of the deformed wave functions, which are RK-type wave functions. A key draw-
back of the deformed wave functions is that the obtained quantum critical points are RK-type, in the sense
that the equal-time correlation functions are described by 2D conformal field theories (CFTs). The generic
Lorentz invariant quantum critical points described by (2 + 1)D CFTs can not be obtained from the deformed
wave functions. To address this issue, we generalize the deformed wave-function approach to the deformed
thermofield double (TFD) state methodology. Through this extension, we can effectively reconstruct the absent
temporal dimension at the RK-type quantum critical point. We construct deformed TFD states for a (1 + 1)D
quantum phase transition from a symmetry-protected topological phase to a symmetry-breaking phase and for
generic (2 + 1)D topological phase transitions from a Z2 topologically ordered phase to a trivial paramagnetic
phase.
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I. INTRODUCTION

In recent years, topological phases of matter and their
quantum phase transitions have attracted enormous research
interest. Particularly, there has been a very active development
of tensor network states (TNS) [1–3] to study topological
phases of matter [4–6], because ground state entanglement
entropy of gapped quantum systems usually satisfies the area
law [7,8], which is the fundamental reason that TNS can ef-
ficiently approximate (nonchiral) topological state of gapped
systems.

Despite the great success in classifying gapped systems,
in general, TNS can not efficiently approximate the ground
state of a quantum critical point or gapless phase. However,
counter-intuitively, there exists a class of critical models in
(2 + 1)D called the Rokhsar-Kivelson (RK) type model [9],
whose ground states dubbed RK-type wave function can be
exactly expressed in terms of 2D TNS [10], which is also
called projected entangled pair states (PEPS). The effective
field theories describing the RK-type models are not Lorentz
invariant because their low-energy excitations have a disper-
sion ω ∼ kz with a dynamical critical exponent z > 1 [11–13].
The equal-time correlation functions of RK-type wave func-
tions are usually described by 2D conformal field theories
(CFTs) [11–13].

RK-type wave functions frequently appear when study-
ing topological phase transitions via an approach called
deformed wave functions. Traditionally, to study topological
phase transitions, one constructs a one-parameter family of
Hamiltonians by interpolating fixed point Hamiltonians of the

topological phase and the trivial phase and then solves the
ground states, which is usually very difficult for (2 + 1)D
and higher dimensional quantum systems. Another simple
yet systematic approach is the deformed wave-function ap-
proach. Instead of interpolating fixed point Hamiltonians, one
can construct a one-parameter family of wave functions by
deforming a fixed point wave function of the topological
phase towards the fixed point product state of the trivial
phase, such that a topological phase transition is included
in the one-parameter family of deformed wacefunctions. In-
terestingly, the norm of a d-dimensional deformed wave
function can usually be interpreted as a partition function
of a known d-dimensional classical model. The order pa-
rameters of the classical model can be used to characterize
the topological phase transitions [14]. The deformed wave-
function approach has been used to study various topological
phase transitions, including the phase transitions between
symmetry-protected topological (SPT) states [7,15,16], topo-
logical phase transitions of Abelian topological states [14,17–
22] and non-Abelian topological states [23–26], topologi-
cal phase transitions between symmetry enriched topological
states [27], as well as phase transitions of fracton topological
states [28].

However, the deformed wave-function approach has a key
drawback. Only RK-type quantum critical points, which is
usually called conformal quantum critical point in literatures
[11,13,29], can be obtained from the deformed wave function,
and generic quantum critical points with the Lorentz invari-
ance are missing. At a generic quantum critical point with
Lorentz invariance, one has to increase the bond dimensions
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of the PEPS and perform finite-entanglement scaling [30–34].
However, the deformed wave functions are usually TNS with
a fixed bond dimension, and the entanglement entropy sat-
isfies the area law exactly, which leaves no room for finite
entanglement scaling. At the RK-type quantum critical point,
the correlations are strongly suppressed in the temporal direc-
tion compared to the spatial one, so dimensionality reduction
happens [29]. To obtain generic quantum critical points with
emergent Lorentz invariance, one needs to modify the de-
formed wave-function approach by taking strong temporal
fluctuations or correlations into account to reconstruct the
missing temporal dimension.

In this paper, we generalize the deformed wave-function
approach using the so-called thermofield double (TFD) states
[35], which are defined in an enlarged Hilbert space HP ⊗
HF consisting of the physical space HP and a fictitious space
HF . The fictitious space accounts for the missing temporal
fluctuations or correlations in the conventional deformed wave
function. The TFD state can be viewed as a purification of a
density operator in thermal equilibrium [36], and the thermal
fluctuations are encoded in the form of quantum entanglement
between the physical and fictitious parts. We construct a gen-
eral framework of the deformed TFD states, from which we
can obtain generic topological phase transitions with emer-
gent Lorentz invariance. Importantly, when the physical and
fictitious degrees of freedom are disentangled, the deformed
TFD approach naturally reduces the conventional deformed
wave-function approach, so we can understand how an RK-
type quantum critical point and a generic Lorentz invariant
quantum critical point are connected through the deformed
TFD state approach.

The rest of the paper is organized as follows. In Sec. II, we
introduce the deformed TFD state framework, generalizing
the deformed wave functions. In Sec. III, we show a one-
parameter family of (1 + 1)D deformed TFD states describing
a generic topological phase transition with Lorentz invariance
between an SPT phase and a symmetry-breaking phase. In
Sec. IV, we construct a two-parameter family of (2 + 1)D
deformed TFD states for Lorentz invariant topological phase
transitions between a Z2 topologically ordered phase and a
trivial paramagnetic phase [37–39]. Finally, we give a sum-
mary and outlook in Sec. V.

II. GENERAL FRAMEWORK FOR THE DEFORMED TFD
STATES

In this section, we introduce the deformed TFD states
for generic topological phase transitions. First, we can easily
construct the TFD states for fixed points of a topological phase
and a trivial phase. Then, we introduce a one-parameter family
of deformed TFD states by interpolating between different
fixed-point TFD states. A reduced TFD density operator can
be obtained by tracing the fictitious degrees of freedom of
a deformed TFD state. It can be interpreted as the transfer
matrix of a (isotropic) classical model whose dimensional-
ity is one plus the spatial dimensionality of the deformed
TFD state. Therefore generic continuous topological phase
transitions with emergent Lorentz invariance can be obtained
from the deformed TFD states. More interestingly, the order

parameter of the classical model can signal this topological
phase transition.

Before introducing the deformed TFD states, we first re-
view the deformed wave-function approach and its connection
to classical models. While here we focus on (2 + 1)D, it’s
worth noting that the framework is versatile and applicable
across various dimensions. Given a 2D local classical Hamil-
tonian E (σ1, · · · , σn) with spin variables {σi}, a RK wave
function with a parameter β can be defined as

|ψ̃ (β )〉 =
∑

σ

exp

[−βE (σ )

2

]
|σ〉, (1)

where |σ〉 = |σ1, · · · , σn〉 and {|σ〉} is a set of complete and
orthonormal basis. It is easy to express the RK wave function
in terms of an exact PEPS with a finite bond dimension as
long as the classical Hamiltonian E (σ1 · · · σn) only involves
local interactions, and a parent Hamiltonian of the RK wave
function, called RK Hamiltonian, can be constructed [10].
The wave-function norm is precisely a partition function of
a classical model with β as the inverse temperature:

Z (β ) = 〈ψ̃ (β )|ψ̃ (β )〉 =
∑

σ

exp[−βE (σ )]. (2)

With such a quantum-classical mapping, all equal-time cor-
relation functions of the RK wave function become the
correlation functions of the classical partition function. So, the
static properties of the RK Hamiltonian near and at the quan-
tum critical point are controlled by the 2D CFT describing the
critical point of the 2D classical model.

The deformed wave functions are very similar to the RK
wave functions. Consider a fixed point Hamiltonian Ĥ0 of a
topological phase and a fixed point Hamiltonian Ĥ1 of a trivial
phase, we can deform a fixed point topological state towards
a fixed point of a trivial state:

|ψ (α1)〉 = exp

(
− α1H1

2

)
|ψ0〉 , (3)

where |ψ0〉 [|ψ1〉 = |ψ (+∞)〉] is a ground state of H0 [H1]
and α1 is a tuning parameter. Since |ψ0〉 as a fixed point wave
function of a topological phase can be exactly expressed as
a PEPS [40,41], and H1 as a fixed point Hamiltonian only
consists of local commuting terms, |ψ (α1)〉 can be exactly
expressed as a one-parameter family of PEPS. Notice that
the deformed wave function |ψ (α1)〉 in Eq. (3) and the RK
wave function in Eq. (1) are very similar, both of them can
be expressed a constant bond dimension PEPS and mapped to
2D classical models, so the deformed wave function |ψ (α1)〉
in Eq. (3) is called RK-type wave function. One essential
difference between the RK wave function in Eq. (1) and the
deformed wave function in Eq. (3) is that the corresponding
classical partition function of later could have negative Blotz-
mann weights [22,24].

To describe a generic Lorentz invariant (2 + 1)D quantum
critical point, we propose the deformed TFD states approach.
Given a 2D quantum Hamiltonian H defined in the Hilbert
space spanned by the orthonormal basis {|σ〉}, a TFD state
describing the quantum system at a finite temperature 1/β is

|�̃(β )〉 =
∑

σ

[
exp

(
−βH

2

)
|σ〉P

]
⊗ |σ〉F , (4)
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where the enlarged Hilbert space HP ⊗ HF consists of a
physical space HP and a fictitious one HF , and exp(−βH/2)
acts only on HP. It is always sufficient to choose HF to
be identical to HP, “doubling” original physical degrees of
freedom. Unlike the RK-type wave functions, usually, one can
not exactly express a TFD state as a PEPS [42]. Tracing out
the degrees of freedom in the fictitious space yields a reduced
density matrix of the TFD state:

ρ = trF |�̃(β )〉〈�̃(β )| = exp(−βĤ ), (5)

which is the Gibbs density matrix. The information of thermal
fluctuations is encoded in the form of the quantum entangle-
ment between the physical and fictitious spaces. The norm of
the TFD state corresponds to the partition function of the 2D
quantum Hamiltonian:

Z(β ) = 〈�̃(β )|�̃(β )〉 = Tr exp (−βH ). (6)

Moreover, in the limit of β → +∞, if the system is gapped
and the ground state is nondegenerate, |�̃(+∞)〉 = |ψ〉P ⊗
|ψ∗〉F , where |ψ〉 is a ground state of H . However, it is
essential for certain gapless systems, i.e., a Lorentz invariant
critical point whose partition function is not only determined
by the ground state, to consider the entanglement between the
physical and fictitious spaces of a TFD state.

Inspired by a variational ansatz in Ref. [43], we propose
the following deformed TFD state:

|�(α0, α1)〉 =
∑

σ

[
exp

(
−α0H0

2

)
exp

(
−α1H1

2

)
|σ〉P

]

⊗ |σ〉F , (7)

where (α0, α1) are two turning parameters, H0 and H1 are
fixed point Hamiltonian of a topological phase and a triv-
ial phase. Unlike the original TFD state shown in Eq. (4),
the deformed TFD state in Eq. (7) can be exactly ex-
pressed as a PEPS as long as H0 and H1 consists of local
commuting terms, separately. Notice that |�(+∞, 0)〉 =
|ψ0〉P ⊗ |ψ∗

0 〉F , |�(0,+∞)〉 = |ψ1〉P ⊗ |ψ∗
1 〉F are chosen

as fixed-point TFD states representing different phases, so the
one-parameter family of deformed TFD states in Eq. (7) inter-
polate between the fixed points TFD states of the topological
phases and the trivial phases. Furthermore, because

|�(+∞, α1)〉 ∝ |ψ0〉P ⊗ |ψ∗(α1)〉F , (8)

the deformed wave function in Eq. (3) is included in the
deformed TFD state in Eq. (7).

After tracing the fictitious degrees of freedom of deformed
TFD state in Eq. (7), we obtain a reduced TFD density matrix:

ρ = trF |�〉〈�| = exp

(
−α0H0

2

)

× exp (−α1H1) exp

(
−α0H0

2

)
,

where an entanglement temperature TE = 1 implicitly in-
cluded ρ [44,45]. To approach quantum phases and phase
transitions at TE = 0, we consider ρN with N ∈ Z+ to reduce
the entanglement temperature TE from 1 to 1/N . Notice that
the purification of ρN is another TFD state whose bond di-
mension is larger than that of |�〉, so the bond dimension is

effectively increasing by reducing the entanglement tempera-
ture TE . Then, a partition functionZN = trρN can be obtained
in the Euclidian space-time. Because the deformed TFD state
in Eq. (7) can be exactly expressed as a 2D PEPS, the partition
functionZN can be exactly expressed as a 3D tensor network
when N → ∞. In practice, we can prepare a deformed TFD
state with a finite system size L × L, which can be efficiently
simulated using Monte Carlo methods. To approach (2+1)D
quantum criticality, it suffices to consider a finite N ∝ L, as
long as the system enters the scaling regime. In contrast, if N
is fixed and L � N , we can obtain the (2+0)D criticality from
the deformed TFD state.

So, via generalizing the deformed wave functions to the
deformed TFD states, we can construct the missing temporal
dimension at the RK point. There are two essential steps from
RK-type quantum phase transitions to the generic quantum
phase transitions. First, from Eq. (8), the deformed wave
functions are the deformed TFD states whose physical and fic-
titious spaces are disentangled, so the entanglement between
them is essential to go beyond the RK-type deformed wave
functions. Second, via gradually reducing the entanglement
temperature TE = 1/N , one could get a crossover from an
RK-type quantum critical point with dimensionality reduc-
tion to a generic quantum critical point with an expected
dimensionality.

III. WARM UP: 1 + 1D DEFORMED TFD STATES

Before diving into the more complicated (2 + 1)D theo-
ries, we first illustrate how the deformed TFD state approach
works in (1 + 1)D. We construct a family of (1 + 1)D de-
formed TFD states and study the topological phase transition
in the cluster model. We focus on a special path in the phase
diagram of the one-dimensional Ising cluster model that con-
nects the fixed point SPT state and a ferromagnetic state [7].
We show that the deformed TFD state approach can describe
the generic (1 + 1)D Lorentz invariant quantum critical point,
while the deformed wave function is limited to the (1 + 0)D
Ising model.

The (1 + 1)D cluster model is defined by

H0 =
∑

i

σ z
i−1σ

x
i σ z

i+1, (9)

where σ x and σ z are Pauli matrices. It is a fixed point Hamil-
tonian of a nontrivial SPT state protected by a ZT

2 symmetry:∏
i σ

x
i K , where K is the complex conjugate. The ground state

can be expressed as

|ψ0〉 =
∏

i

(
1 − σ z

i−1σ
x
i σ z

i+1

)∑
σ

|σ〉 , (10)

where |σ〉 = |σ1, · · · , σN 〉.
To study the quantum phase transition between the cluster

state and other states, we consider a deformed cluster ground
state with a tuning parameter J ∈ [0, 1] [46]:

|ψ (J )〉 =
∏

i

(
1 + Jσ z

i σ z
i+1

) |ψ0〉 . (11)

When J = 0, |ψ (0)〉 = |ψ0〉 is the ground state of the clus-
ter model H0; when J = 1, the deformation

∏
i(1 + Jσ z

i σ z
i+1)
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SPT
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FM

1D RK-type:

1D TFD:
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(b)

FIG. 1. (a) The phase diagram of the 1D RK-type deformed
SPT state |ψ (J )〉 shown in Eq. (11). |ψ (J < 1)〉 is a SPT state,
and |ψ (J = 1)〉 a ferromagnetic state. (b) The phase diagram of the
1D deformed TFD state |�(J, α(J ))〉 shown in Eq. (17) with the
entanglement temperature TE = 1/N = 0, where α(J ) is determined
by 2α

1+α2 = (1−J )2

(1+J )2 . The phase transition point at Jc ≈ 0.217 belongs
to the (1 + 1)D Ising universality class.

becomes a projector to the 1D ferromagnetic states. Interest-
ingly, the deformed wave function can be exactly expressed as
a matrix product state:

|ψ (J )〉 =
∑

σ

Tr(A[σ1]A[σ2] · · · A[σN ] ) |σ1, · · · , σN 〉 , (12)

where

A[0] =
(

0 0
1 1

)
, A[1] =

(
1 −(1 − J )2/(1 + J )2

0 0

)
.

(13)

As shown in Appendix, the norm of |ψ (J )〉 is a partition
function of a classical 1D Ising model,

〈ψ (J )|ψ (J )〉 ∝
∑

σ

exp

[
arctanh

(
2J

1 + J2

) ∑
i

σiσi+1

]
.

(14)

The phase diagram of the deformed SPT state |ψ (J )〉 is
shown in Fig. 1(a). For J ∈ [0, 1), the deformed SPT state
|ψ (J )〉 belongs to the paramagnetic phase. When J = 1, the
deformed SPT state |ψ (J )〉 becomes a ferromagnetic state.
So, a (1 + 0)D quantum phase transition happens at J = 1.
Actually, if one considers the parent Hamiltonian of the de-
formed SPT state |ψ (J )〉, the phase transition point at J = 1
is a tricritical point of the Ising cluster model with a dynamical
critical exponent z = 2 [16,46–48].

The SPT phase and phase transition can be detected by a
string order parameter [49,50]:

O = √
lim

|i−k|→∞
[〈ψ (J )| Sik |ψ (J )〉/〈ψ (J )|ψ (J )〉], (15)

where

Sik = σ z
i σ

y
i+1

⎛
⎝ k−2∏

j=i+2

σ x
j

⎞
⎠σ

y
k−1σ

z
k (16)

is the SPT string operator. Using MPS representation in
Eq. (12), the string order parameter O and the correlation
length ξ of the deformed SPT state can be exactly calculated
[27,48]:

O = 1 − J2

1 + J2
∼ (1−J ), ξ = −1/ ln

(
1 + J2

2J

)
∼ (1 − J )−2,

from which we find the critical exponents β1 = 1 and
ν1 = 2 according to O ∼ (1 − J )β1 and ξ ∼ (1 − J )−ν1 m
respectively.

To be able to describe a generic (1 + 1)D quantum critical
point, we consider a two-parameter family of deformed TFD
states:

|�(J, α)〉 =
∑

σ

[∏
i

(
1 + Jσ z

i σ z
i+1

)(
1 − ασ z

i−1σ
x
i σ z

i+1

) |σ〉P

]

⊗ |σ〉F . (17)

When α = 1, the physical and the fictitious degrees of free-
dom of the TFD state are disentangled:

|�(J, 1)〉 ∝ |ψ (J )〉P ⊗ |ψ (0)〉F , (18)

where |ψ (J )〉 is the deformed wave function defined in
Eq. (11), and the norm of the TFD state 〈�(J, 1)|�(J, 1)〉 ∝
〈ψ (J )|ψ (J )〉 is still a partition function of a 1D classical Ising
model. However, if α < 1, the physical and auxiliary degrees
of freedom are entangled with each other, which is crucial for
obtaining the (1 + 1)D quantum critical point. Moreover, the
deformed TFD state in Eq. (17) can be exactly expressed as
an MPS, because the deformation

∏
i(1 + Jσ z

i σ z
i+1) and the

projector
∏

i(1 − ασ z
i−1σ

x
i σ z

i+1) are constant depth nonunitary
circuits, which are equivalent to matrix product operators and
can be reshaped as MPS.

According to the general framework, we consider a re-
duced density matrix of the TFD state by tracing the fictitious
degrees of freedom:

ρ = TrF |�(J, α)〉 〈�(J, α)| . (19)

A partition function can be obtained from ρN with an entan-
glement temperature TE = 1/N :

ZN = Tr(ρN ) ∝
∑

σ[1]···σ[N]

exp

⎛
⎝∑

i,τ

Kxσ
[τ ]
i σ

[τ ]
i+1 + Kτ σ

[τ ]
i σ

[τ+1]
i

⎞
⎠, (20)

which is nothing but the partition function of a 2D classical
Ising model with anisotropic coupling strength:

Kτ = 1

2
ln

1 + α2

2α
, Kx = 2tanh−1J. (21)

We can impose the relation Kx = Kτ such that α is a function
of J to reduce the number of parameters, and the partition
function becomes an isotropic 2D classical Ising model. So
we know that phase diagram of the TFD state |�(J )〉 at
TE = 1/N = 0 shown in Fig. 1(b). There is a continuous

phase transition at Jc = 1 + √
2 −

√
2(1 + √

2) ≈ 0.217 (de-

termined by Kx = Kτ = ln(1 + √
2)/2 [51,52]) described by

the (1 + 1)D Ising CFT with a dynamical critical exponent
z = 1 [53], in contrast to the dynamical critical exponent
z = 2 obtained from the deformed wave function |ψ (J )〉 in
Eq. (11). Furthermore, we can also evaluate the expectation
value of the string operator Sik in Eq. (16) using the TFD state
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at TE = 0:

O =
√

lim
|i−k|→∞

[Tr(SikρN (J ))/TrρN (J )]. (22)

It turns out that the string order parameter is equivalent to the
disorder parameter evaluated using the partition function of a
2D classical Ising model, see Appendix. So we know when
TE = 1/N = 0, O ∼ (J − Jc)β2 and ξ ∼ (J − Jc)−ν2 with the
critical exponents β2 = 1/8 and ν2 = 1 [53]. Therefore we
obtain a quantum phase transition with emergent Lorentz in-
variance from the deformed (1 + 1)D TFD state (17).

IV. (2 + 1)D DEFORMED TFD STATES: TORIC CODE
MODEL

In this section, we construct a (2 + 1)D deformed TFD
state for topological phase transitions between the toric code
phase and a trivial paramagnetic phase. The topological phase
transitions of the toric code ground state deformed by string
tensions has been studied [14,17], where the deformed toric
code states can be exactly expressed in terms of PEPS with a
constant bond dimension 2. The continuous phase transitions
from the toric code phase to a trivial phases are described
by the (2 + 0)D Ising CFT. However, the generic topological
phase transition from the toric code phase to the trivial phase
should be characterized by a (2 + 1)D Ising CFT. We show
how to obtain this generic topological phase transition from
the deformed TFD state approach.

Consider a toric code model defined on a square lattice
[37]:

HTC = −
∑

v

Av −
∑

p

Bp,

Av = −
∑

v

∏
〈i j〉∈v

σ x
i j, Bp = −

∑
p

∏
〈i j〉∈p

σ z
i j, (23)

where the vertex and plaquette terms Av and Bp involve four
Pauli matrices located on the bonds between sites i and j. A
ground state can be constructed using the projectors:

|ψ0〉 =
∏
v

(1 + Av )
∏

p

(1 + Bp)
∑
σσσ

|σσσ 〉 . (24)

where |σ〉 is a set of complete and orthonormal basis.
In order to study topological quantum phase transitions out

of the topological phase, a deformed toric code state has been
proposed [14,18,54]:

|ψ (gx, gz )〉 =
∏
〈i j〉

(
1 + gxσ

x
i j + gzσ

z
i j

)|ψ0〉, (25)

where gx and gz are tuning parameters satisfying gx, gz > 0
and g2

x + g2
z = g2 � 1. By introducing two sets of auxiliary

degrees of freedom s = {si} and t = {ti} on vertices of the
square lattice, it can be found that the norm of the deformed
toric code state 〈ψ (gx, gz )|ψ (gx, gz )〉 is proportional to the
partition function of the 2D classical Ashkin-Teller (AT)
model [14]:

ZAT =
∑
s,t

∏
〈i j〉

exp[J2(sis j + tit j ) + J4sis jtit j], (26)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4
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0 0.05 0.1 0.15 0.2
0
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0.15

0.2
(b)

FIG. 2. (a) The phase diagram of the deformed toric code state
|ψ (gx, gz )〉 in Eq. (25), TC is the gapped toric code phase with the
Z2 topological order, the confined (Higgs) phase is a trivial gapped
phase. The continuous phase transitions represented by the blue lines
are described by 2D Ising CFT. The red line is a gapless KT phase de-
scribed by a family of 2D CFTs with a central charge c = 1. (b) The
phase diagram of the deformed TFD state |�(hx, a(hz ), hz, b(hx ))〉
in Eq. (28) at the entanglement temperature TE = 1/N = 0, where
a (b) is determined by hz (hx). The continuous phase transition
represented by the blue lines is described by the (2 + 1)D Ising CFT.
The confined phase and Higgs phase are the same phase because
there is a first-order transition line (red dash line) terminating at finite
hx and hz.

where

J2 = 1

4
ln

1 + g2 + 2gz

1 + g2 − 2gz
, J4 = 1

4
ln

1 + g4 + 2g2
x − 2g2

z

2g2
x − 2g2

z + 2g2
.

So the phase diagram of the deformed toric code state
|ψ (gx, gz )〉 can be obtained from that of the AT model, see
Fig. 2(a). There is a gapped toric code phase, and a gapped
Higgs (confined) phase in which the charges condense (are
confined). The continuous phase transitions from the toric
code phase to Higgs or confined phase belong the 2D Ising
universality class. Along the self-dual line hx = hz, there is
a phase transition from the toric code phase to a gapless
Kosterlitz-Thouless (KT) phase through a KT transition, and
the gapless KT phase seperates the Higgs and confined phases.

A string order parameter can be introduced to describe the
topological phase transition along gz axis (gx = 0):

OZ =
∣∣∣∣∣ lim
|L|→∞

〈ψ (0, gz )| ∏〈i j〉∈L σ z
i j |ψ (0, gz )〉

〈ψ (0, gz )|ψ (0, gz )〉

∣∣∣∣∣
1/2

, (27)

where L is a string along the sqaure lattice and |L| is the
distance between two ends of L. Since the AT model in
Eq. (26) reduces to the Ising model when gx = 0, it can be
found that the string order parameter can be transformed to
a local Ising order parameter. So we have OZ ∼ (gz − gc2)β2

and the correlation length ξ ∼ (gz − gc2)−ν2 , where the crit-
ical point is gc2 = 1 + √

2 −
√

2(1 + √
2) [51,52], and the

critical exponents β2 = 1/8 and ν2 = 1 from the 2D Ising
universality class [53]. In Fig. 4(a), we numerically check the
critical exponents use the data collapse based on the finite
entanglement scaling [33], which matches perfectly with the
2D Ising universality class.

However, we know that the phase diagram of the deformed
toric code state |ψ (gx, gz )〉 phase is qualitatively different
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...
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(a)

(b)

FIG. 3. (a) The distribution of degrees of freedom of TxATzB, the
blue and red dots are the physical and auxiliary degrees of freedom.
(b) Distribution of degrees of freedom in one temporal layer of the
partition function ZN , which are obtained by relabeling the degrees
of freedom in TxATzB.

from the phase diagram of the toric code Hamiltonian in a
parallel magnetic field [38,39,55], where the continuous phase
transitions from the toric code phase to the Higgs (confined)
phase belongs to the (2 + 1)D Ising universality class, and the
Higgs phase and confined phase can be smoothly connected
are the same phase.

FIG. 4. Data collapse for the string order parameter OZ , where ξ

is the correlation length. (a) Results for the 2D RK-type deformed
toric code state shown in Eq. (25) with gx = 0, where gc2 = 1 +√

2 +
√

2(1 + √
2), ν2 = 1, β2 = 1/8, χ is the bond dimension of

the boundary infinite matrix product states (iMPS) for contracting
the 2D partition function in Eq. (26). (b) Results for the deformed
2D TFD state in Eq. (28) with hx = 0, where hc3 ≈ 0.110376, ν3 ≈
0.629971, β3 ≈ 0.326419, D is the bond dimension of the boundary
infinite PEPS for contracting the 3D partition function in Eq. (38),
the bond dimensions χ of the iMPS for contracting infinite PEPS
ranges from 10 to 100.

In order to obtain the generic topological phase transitions
of the toric code model, we consider the following deformed
TFD state:

|�(hx, a, hz, b)〉 =
∑

σ

[TxA(hx, a)TzB(hz, b) |σ〉P] ⊗ |σ〉F ,

(28)

where the parameters hx, hz, a, b ∈ [0, 1] and

TxA(hx, a) =
∏
〈i j〉

(1 + hxσ
x
i j )

∏
v

(1 + aAv ),

TzB(hz, b) =
∏
〈i j〉

(1 + hzσ
z
i j )

∏
p

(1 + bBp). (29)

A reduced density matrix can be obtained by tracing out the
fictitious degrees of freedom:

ρ = trF |�(hx, a, hz, b)〉〈�(hx, a, hz, b)| = TT †, (30)

where T = TxATzB.
By introducing auxillary degress of freedom s = {si}, TxA

and TzB can be expressed as

TxA ∝
∑
sσσ̄

∏
i

e− ln(a)si/2
∏
〈i j〉

e− ln(hx )sis jσi j σ̄i j/2|σ〉〈σ̄|,

TzB ∝
∑

σ

∏
〈i j〉

etanh−1(hz )σi j
∏

p

etanh−1(b)
∏

〈i j〉∈p σi j |σ〉〈σ|, (31)

where the distribution of the degrees of freedom is shown in
Fig. 3(a). When a = b = 1, we obtained a partition function
of the deformed TFD state at TE = 1:

Z1 = Trρ ∝
∑
σs

∏
p

⎛
⎝1 +

∏
〈i j〉∈p

σi j

⎞
⎠e

∑
〈i j〉 (J̃xsis j+J̃zσi j )

∝
∑

su

exp

⎡
⎣∑

〈i j〉

(
J̃xsis j + J̃zu ju j

)⎤⎦, (32)

where

J̃x = 1

2
ln

1 + h2
x

2hx
, J̃z = 2 tanh−1 hz, (33)

and a new Z2 spin ui on a site i of the lattice is defined via
σi j = uiu j . Compared to the norm of the deformed toric code
state |ψ (gx, gz )〉 in Eq. (26), which is the partition function
of the AT model, we know the deformed toric code state in
Eq. (25) is not included in the deformed TFD state because
the partition function Z1 in Eq. (32) is a two-decoupled
Ising model not the AT model. This is reasonable because
the 3D AT model is not the partition function for the generic
topological phase transition of the toric code model [56].
The deformed TFD state |�〉 is a more natural starting point
than the deformed toric code state |ψ〉 to reach the generic
topological phase transitions of the toric code model. Only
if hx = gx = 0 or hz = gz = 0, the deformed TC state |ψ〉 is
included in the deformed TFD state |�〉

|�(hx, 1, 0, 1)〉 ∝ |ψ (gx, 0)〉P ⊗ |ψ (0, 0)〉F ,

|�(0, 1, hz, 1)〉 ∝ |ψ (0, 0)〉P ⊗ |ψ (0, gz )〉F . (34)
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Interestingly, when hx = 0, hz = 1, b = 0, the deformed TFD
state becomes

|�(0, a, 1, 0)〉 ∝
[∏

v

(1 + aAv ) |00 · · · 0〉P

]
⊗ |00 · · · 0〉F ,

(35)

which can be prepared on a quantum computer in terms of a
quantum circuit [57].

In order to reduce the entanglement temperature TE , we
consider ρN and the partition functionZN = TrρN with TE =
1/N . Using Eq. (31), we can construct the explicit form of the
partition function (ignoring the unimportant coefficients):

ZN =
∑

σ[1],σ[ 1
2 ]

,··· ,
σ[N+ 1

2 ]
,σ[N]

N∏
τ=1

exp

⎡
⎣J̃A

∑
i

σ
[τ+ 1

2 ]
i + J̃z

∑
〈i j〉

σ
[τ ]
i j

+ J̃x

∑
〈i j〉

σ
[τ+ 1

2 ]
i σ

[τ+ 1
2 ]

j σ
[τ ]
i j σ

[τ+1]
i j + J̃B

∑
p

∏
〈i j〉∈p

σ
[τ ]
i j

⎤
⎦,

where we have substituted the labels σ
[τ ]
i j , σ

[τ+1]
i j , σ

[τ+ 1
2 ]

i for
the labels σi j, σ̄i j, si, as shown in Fig. 3(b), and

J̃A = 1

2
ln

1 + a2

2a
, J̃B = 2 tanh−1 b, (36)

J̃x and J̃z are defined in Eq. (33). When the isotropic interlayer
and intralayer interactions are required, we can impose the
following relations to the parameters: J̃A = J̃z, J̃x = J̃B, and
the number of the deformed parameters are reduced to 2 and
the partition function can be simplified as

ZN =
∑

σ

exp

⎡
⎣J̃z

∑
〈i j〉

σi j + J̃x

∑
p

∏
〈i j〉∈p

σi j

⎤
⎦, (37)

where i = (i, τ ) denotes the cubic lattice sites, p is a plaquette
of the cubic lattice, and σ stands for the configurations of all
spins σi j on the bonds of the cubic lattice. Actually this parti-
tion function is nothing but the 3D classical Z2 gauge Higgs
model [58,59] which can also be derived from the quantum-
classical mapping of a 2D toric code Hamiltonian in a parallel
magnetic field via a Trotter decomposition of an imaginary
time evolution [60–62]. From the known phase diagram of
the 3D classical Z2 gauge Higgs model [61,63–65], we can
plot the phase diagram of the TFD state at the entanglement
temperature TE = 0, as shown in Fig. 2(b), which contains the
generic topological phase transitions of the toric code model.
Along the hz axis (hx = 0), Jx → ∞, the partition function
shown in Eq. (37) reduces to

ZN =
∑

σ

∏
p

⎛
⎝1 +

∏
〈i j〉∈p

σi j

⎞
⎠ exp

⎡
⎣Jz

∑
〈i j〉

σi j

⎤
⎦. (38)

By introducing new spin variables ui at the cubic lattice sites
i, σi j on a bond between the sites i and j can be represented
by the new variables [17]: σi j = uiu j , and above the partition
function is transformed to that of 3D classical Ising model
on a cubic lattice ZN = ∑

μ exp[Jz
∑

〈i j〉 uiu j]. So we know
that when hx = 0 there is a continuous phase transition at the

critical point is hz = hc3 ≈ 0.110376 [66] from the toric code
phase to the trivial phase. We can also evaluate the string order
parameter using the TFD state at TE = 1/N ,

OZ =
∣∣∣∣∣∣ lim
|L|→∞

⎡
⎣Tr

⎛
⎝ρN

∏
〈i j〉∈L

σ z
i j

⎞
⎠/

Tr(ρN )

⎤
⎦

∣∣∣∣∣∣
1/2

. (39)

When TE = 0, the string order parameter can be transformed
to a local order parameter of the 3D classical Ising model.
So we have OZ ∼ (hz − hc3)β3 and the correlation length ξ ∼
(hz − hc3)−ν3 , where the critical exponents β3 ≈ 0.326419
and ν3 ≈ 0.629971 are from 3D Ising CFT [67]. The lo-
cal order parameter of the 3D classical Ising model can be
obtained using a tensor network method [68]. In Fig. 4(b),
we numerically check the critical exponents using the finite-
entanglement scaling [31,32,34], which matches perfectly
with the 3D Ising universality class.

V. CONCLUSION AND OUTLOOK

We propose a framework of deformed TFD states which
bridges the RK-type and generic quantum phase transitions.
From the quantum-classical mapping of the deformed TFD
states, we can construct the missing temporal direction in the
quantum-classical mapping of the RK-type deformed wave
functions. These ideas are illustrated by a family of 1D de-
formed TFD states for a topological phase transition between
a SPT phase and a ferromagnetic phase, and a family of 2D de-
formed TFD states for topological phase transitions between a
toric code phase and a paramagnetic phase. From our results,
we can understand the missing ingredients in the RK-type
deformed wave functions: (i) entanglement between the de-
grees of freedom in HP and HF ; (ii) approaching generic
quantum critical points by reducing the entanglement tem-
perature, which effectively increasing the bond dimensions
such that we get rid of the constant bond dimension PEPS
manifold.

When the physical and fictitious degrees of freedom are
disentangled, the deformed TFD states naturally reduce to
the RK-type deformed wave functions, as shown in Eqs. (8),
(18), and (34), so the deformed TFD states can have the
SPT order or the topological order. However, the SPT order
and topological order are lost in the deformed TFD states
when physical and fictitious degrees of freedom are entan-
gled because 1D SPT or 2D topological order do not exit
at any finite temperature [69,70]. However, the SPT order
or topological order can be recovered when N → ∞ and
TE = 0. It would be interesting to study TFD states satis-
fying: (i) the physical and fictitious degrees of freedom are
entangled; (ii) and having SPT order or topological order; (iii)
can be exactly expressed as finite constant bond dimension
TNS.

There are some possible applications of the deformed
TFD states. First, the deformed TFD state with a finite N
can be used as a variational ansatz for quantum systems
at a finite temperature. Second, although variational 2D in-
finite PEPS have been used to numerically calculate the
static critical exponents at the Lorentz invariant quantum
critical points [31,32,71], the dynamical critical exponent
z is not easy to be extracted; this might be improved by
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taking the TFD states into consideration. Third, since the
deformed TFD states can be expressed exactly as TNS,
which can be transformed into quantum circuits exactly in
1D and possibly in 2D [72], it is possible to realize Lorentz
invariant (topological) quantum phase transitions using de-
formed TFD states on a quantum computer instead of the RK
type [48,73–75].

Data, data analysis, and simulation codes are available
upon reasonable request on zenodo [76].
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APPENDIX : QUANTUM-CLASSICAL MAPPING
FOR THE (1 + 1)D CASE

In this Appendix, we map the deformed 1D SPT state and
the deformed 1D TFD state to the 1D and 2D classical Ising
models, separately. It is known that the cluster model H0 in
Eq. (9) is related to the fixed point Hamiltonian H1 = −∑

i σ
x
i

of a paramagnetic phase by a unitary transformation [77]:
H0 = UH1U †, where

U =
∏

i

CZi,i+1

∏
i

σ z
i , (A1)

and CZi,i+1 = (1 + σ z
i + σ z

i+1 − σ z
i σ z

i+1)/2 is the control-Z
gate. So the ground state of the cluster model H0 can also be
expressed as

|ψ0〉 = U |+ + · · · +〉 ∝
∏

i

CZi,i+1

∏
i

σ z
i

∑
σ

|σ〉 , (A2)

where |+〉 is an eigenstate of σ x with an eigenvalue 1. From
Eq. (A2), we can derive that the norm of the deformed SPT

state is a partition function of a 1D classical Ising model:

〈ψ (J )| ψ (J )〉 =
∑
σ ′,σ

〈σ ′|U †
(
1 + J2 + 2Jσ z

i σ z
i+1

)
U |σ〉

=
∑
σ ′,σ

〈σ ′| (1 + J2 + 2Jσ z
i σ z

i+1

) |σ〉

∝
∑

σ

exp

[
arctanh

(
2J

1 + J2

)∑
i

σiσi+1

]
.

(A3)

Next, let us derive the partition function from the deformed
TFD state. We can obtain the reduced TFD density matrix by
tracing fictitious degrees of freedom:

ρ = TrF |�(J, α)〉 〈�(J, α)| =
∏

i

(
1 + Jσ z

i σ z
i+1

)
×

∏
i

(
1 + α2 − 2ασ z

i−1σ
x
i σ z

i+1

) ∏
i

(
1 + Jσ z

i σ z
i+1

)
,

(A4)

which can be simplified using the unitary transformation U :

ρ ′ =UρU † =
∏

i

(
1 + Jσ z

i σ z
i+1

)(
1 + α2 + 2ασ x

i

)
× (

1 + Jσ z
i σ z

i+1

)
,

such that we haveZN = Tr(ρN ) = Tr[(ρ ′)N ]. Because

〈σ [τ ]| (1 + α2 + 2ασ x ) |σ [τ+1]〉 ∝ exp(Kτ σ
[τ ]σ [τ+1]),〈

σ
[τ ]
i σ

[τ ]
i+1

∣∣ (1 + J2 + 2Jσ z
i σ z

i+1

) ∣∣σ [τ ]
i σ

[τ ]
i+1

〉 ∝ eKxσ
[τ ]
i σ

[τ ]
i+1 ,

we can insert the operators
∑

σ |σ[τ ]〉 〈σ[τ ]| with τ =
1, 2, . . . , N into (ρ ′)N and derive the partition function in
Eq. (20). Moreover, using the unitary transformation U , the
SPT string operator in Eq. (16) is simplified to the disorder
operator of the Ising model [78],

USikU
† =

k−1∏
j=i+1

σ x
j . (A5)

Under the Kramers-Wainner duality of the 2D classical or
(1 + 1)D quantum Ising model, the disorder parameter is dual
to the local order parameter, which has a critical exponent
β = 1/8 [53]. Therefore we know the critical exponent of the
SPT string order parameter evaluated using the TFD state is
1/8.
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