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The extended Hubbard model describes fermions on a lattice coupled through on-site, U , and first-neighbor, V ,
interactions. In the context of high-Tc cuprates, antiferromagnetic fluctuations may lead to an attractive channel,
hence to superconductivity. Despite interest in the two-dimensional version of the model, the current knowledge
about the phase diagram is still far from complete. Here, we report on the results of extensive determinant
quantum Monte Carlo simulations for this model at half filling, in which we have used the average sign of the
product of fermionic determinants as an additional observable to locate critical points. We arrive at a ground
state phase diagram in the U -V plane in which the boundaries involving antiferromagnetic, charge-ordered, s-
and d-wave superconductivity, and phase-separated phases are quantitatively set with good accuracy. We have
also proposed a partial phase diagram, Tc(U,V ), featuring critical temperatures for the charge-density wave and
s-wave superconducting phases.

DOI: 10.1103/PhysRevB.109.165102

I. INTRODUCTION

Soon after the discovery of high-temperature cuprate su-
perconductors [1–3], a widespread consensus was formed
around the idea that the basic physical mechanism leading
to superconductivity was contained in the two-dimensional
(2D) Hubbard model: pairing would emerge from strong
antiferromagnetic (AFM) fluctuations arising from the com-
petition between itinerancy (hopping) and localization, the
latter driven by an on-site repulsion of strength U [4,5].
Despite its simplicity, the repulsive Hubbard model has
eluded an unambiguous characterization of superconductiv-
ity. Subsequently, it was proposed [6] that antiferromagnetic
fluctuations could actually lead to an additional effective
nearest-neighbor attractive interaction, V . This extended Hub-
bard model (EHM), with both on-site and nearest-neighbor
interactions has recently been realized in several contexts,
indicating the importance of the model in its own right.
Indeed, recent spectral analyses [7] of the one-dimensional
cuprate Ba2−xSrxCuO3+δ indicate the presence of a strong
nearest-neighbor attractive term, in addition to the on-site
repulsion. The extended Hubbard model (with longer-ranged
dipolar interactions) has also been realized with ultracold
atoms in optical lattices, generating a wide variety of charge-
ordered patterns [8,9]. Another promising quantum simulator
of the EHM has been realized by few-dopant quantum dot
systems [10].

The ground state phase diagram for the half-filled EHM
in one dimension has been known for some time; see,
e.g., Ref. [11]. For different values and signs of U and
V , one finds phases such as charge-density wave (CDW),
spin-density wave (SDW), and s-wave superconductivity. A
phase separated (PS) state appears for sufficiently large −V ,
e.g., half of the lattice with doubly occupied sites, and the
other half empty, in the strong −V regime. Less conventional
phases such as bond-ordered wave (BOW) [11] and p-wave

superconducting [12] have also been proposed to fit into the
diagram.

In two dimensions, while one expects the ground state
phase diagram at half filling to share similarities with that
for the one-dimensional model, the picture is far from set-
tled. Indeed, different methods agree with the existence of
a CDW-AFM transition near V = U/4 [13–18]. Nonethe-
less, the square lattice topology, in principle, allows for a
wider range of pairing symmetries to be stabilized in the
V < 0 region, which has proved very hard to probe theoret-
ically. Weak-coupling methods [19,20] may not fully capture
the competition between the tendencies of phase separating
and forming pairs of different symmetries, such as s and d ,
also supported by dynamic cluster methods [21,22]. Numer-
ically exact diagonalization of the Hamiltonian is currently
restricted to 4 × 4 systems, so that the prediction of a p-wave
paired state [23] may not stand for larger systems. Quan-
tum Monte Carlo (QMC) simulations [24,25], on the other
hand, suffer from the infamous minus-sign problem [25–29]:
when the effective Boltzmann factor (given by a product
of fermionic determinants) becomes negative, averages are
taken with it in absolute value, at the expense of dividing by
its own average, 〈s〉, thus introducing excessive noise when
〈s〉 � 1. Recent studies of the EHM through finite tempera-
ture [30] and projective QMC simulations [31] were carried
out using complex Hubbard-Stratonovich fields (CHSF; see
Appendices A and B), so that calculations were restricted to
the regime |V | � |U |/4, where 〈s〉 = 1. As a consequence,
since issues such as a precise location of the CDW-AFM phase
boundary, the transition between superconducting phases
with different pairing states, and the complete boundary to
the phase-separated regime all lie outside this range, they
have not yet been thoroughly probed with QMC simulations.
The inescapable conclusion is that so far the overall knowl-
edge of the ground state EHM phase diagram is, at best,
semi-qualitative. One certainly needs to grasp the half-filled
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regime before comparing with the doped case, closer to the
cuprate superconductors.

In addition to ground state properties, there are issues
related to phase transitions at finite temperatures which are
worth examining. Indeed, the addition of a finite nearest-
neighbor interaction to the attractive Hubbard model breaks
the degeneracy of the superconducting (SUC) and CDW
phases at half filling. This bypasses the Mermin-Wagner-
Hohenberg theorem [32,33] which rules out their simultane-
ous ordering at finite temperatures. One may therefore expect
an increase in Tc for both CDW ordering and superconductiv-
ity, respectively, for V > 0 and V < 0; a feature worth probing
is how steep is this increase.

With the purpose of shedding light on these unresolved
issues, here we perform a detailed investigation of the EHM at
half filling through determinant QMC (DQMC) simulations.
From the outset we stress that the abovementioned minus sign
problem is mitigated through two procedures. One is the use
of CHSF in the range |V | � |U |/4 to obtain several response
functions whose behavior would be otherwise unattainable,
while the other resorts to the recent observations [34–36]
that a severely degraded 〈s〉 may actually be used to pin-
point ground state phase transition points and boundaries. The
layout of the paper is as follows. In Sec. II, we present the
Hamiltonian and highlight the DQMC method (additional de-
tails are left to Appendices A, B, and C). Section III presents
the results for the ground-state transitions, while Sec. IV
focuses on finite temperature transitions. Finally, Sec. V sum-
marizes our findings.

II. MODEL AND METHODS

The Hamiltonian for the EHM reads,

H = − t
∑
〈i,j〉

(c†
iσ cjσ + H.c.) − μ

∑
i,σ

ni,σ

+ U
∑

i

ni↑ni↓ + V
∑
〈i,j〉

ninj, (1)

where i and j denote sites of a square lattice, with 〈i, j〉 re-
stricting the sums to nearest-neighbor (NN) sites. In standard
second-quantized notation, the first term describes fermionic
hopping (energy scale t), the second controls the band fill-
ing through the chemical potential, μ, while the third and
fourth terms describe the on-site and NN interactions, with
strengths U and V , respectively. Hereafter, the chemical po-
tential is set to μ = U/2 + 4V to yield a half-filled band (by
virtue of particle-hole symmetry), and energies are expressed
in units of t .

In the DQMC method [25–29], discrete Hubbard-
Stratonovich (HS) transformations [37] are employed to
express the quartic interactions in quadratic forms. This leads
to the introduction of auxiliary fields [13,31,38]; see Appen-
dices A and B. The noncommutation between the one-body
and the two-body terms of the Hamiltonian is taken care
of through a Suzuki-Trotter decomposition, which adds an
imaginary-time dimension, Lτ = β/�τ , with β being the in-
verse temperature, and �τ the discrete time step. The trace
over the fermionic degrees of freedom can then be performed,
leading to the product of determinants alluded to before,

which weigh the configurations of the HS Ising fields by im-
portance sampling, as in usual Monte Carlo methods [25–29].

The type of ordering is characterized by quantities such as
the (staggered) charge structure factor,

Scdw = 1

N

∑
i,j

(−1)|i−j|〈(ni,↑ + ni,↓)(nj,↑ + nj,↓)〉, (2)

the antiferromagnetic structure factor,

Safm = 1

N

∑
i,j

(−1)|i−j|〈Sz
i Sz

j

〉
, (3)

and the pairing structure factor,

Psc(α) = 1

N

∑
i,j

〈�α (i)�†
α (j)〉, (4)

with

�α (i) =
∑

a

fα (a)ci↓ci+a↑. (5)

In the above equations, N = L × L is the number of sites for
a linear size L, (−1)|i−j| is ±1 if i and j are on the same or
opposite sublattices, Sz

i = (ni↑ − ni↓) is the z-component of
the spin operator, and fα (a) is the form factor for a given pair-
wave symmetry, α = s, d, p [39]. In some circumstances, it is
more appropriate to calculate the pair susceptibility

χα
sc(β ) = 1

N

∑
i,j

∫ β

0
dτ 〈�i,α (τ )�†

j,α (0)〉, (6)

with �α (i, τ ) = ∑
a fα (a)ci↓(τ )ci+a↑(τ ), and ciσ (τ ) =

eτHciσ e−τH, which provides a stronger signal of pairing
properties. As mentioned before, 〈s〉, which is automatically
calculated in the simulations, will also play a crucial role in
our analyses.

When V �= 0 one cannot guarantee that 〈s〉 = 1 even at
half filling. As shown in Figs. 1(a) and 1(b), the average sign
decreases as the temperature is lowered, and worsens as L
increases. Nonetheless, for both system sizes, 〈s〉 approaches
zero faster near V = 1. Recalling that the phase boundary for
the AFM-CDW transition is Vc ≈ U/4, the minimum of 〈s〉
at V = 1 can hardly be regarded as fortuitous. A mapping of
〈s〉 in the V -U plane at a fixed low temperature is shown in
Fig. 1(c). Apart from the second quadrant (U < 0, V > 0),
one sees that there are regions with 〈s〉 � 1 surrounded by
less severe ones. In what follows we combine analyses of 〈s〉
with the quantities defined by Eqs. (2)–(4) to first obtain the
ground state phase boundaries.

III. GROUND STATE RESULTS

A. AFM-CDW transition

We start with the transition between the AFM (Mott) phase
and the CDW phase. As indicated in Fig. 2(a), increasing V
with fixed U causes a sharp decrease of Safm and a sharp
increase of Scdw thus signaling a phase transition near V =
0.6. Figure 2(b) shows 〈s〉 calculated with real HS fields to
illustrate that the change in Safm and Scdw is accompanied by
a sharp dip. Given the amount of data gathered so far relating
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(a) (b) (c)

FIG. 1. Contour plots for the average sign of the EHM at half filling on L × L lattices: (a) as a function of T and V , for L = 4 and U = 4t ;
(b) same as (a), but for L = 10; (c) as a function of U and V , for L = 10 and fixed inverse temperature, β = 10.

a degraded 〈s〉 with quantum critical points [34–36,40], we
estimate the critical point for U = 2 as Vc = 0.65 ± 0.05,
where the error reflects the V increments in Fig. 2(b).

In addition, we recall that for U = 2 the sign-free region
for CHSF corresponds to V � 0.5, so that we may obtain
these structure factors at very low temperatures for V = 0.5;
see Figs. 3(a) and 3(c). The stabilized values (i.e., when
β → ∞) of Safm in Fig. 3(a) can then be used in the scaling
ansatz [41], mafm ∼

√
Safm/L2, to extract the ground state

staggered magnetization, mafm, when L → ∞, as in Fig. 3(e).
By contrast, in the low temperature regime Scdw is practically
independent of L, indicating the suppression of CDW correla-
tions. This analysis thus confirms that for V = 0.5 the ground
state is antiferromagnetic.

Let us now discuss the data for V = 0.7, still with U = 2.
Although these parameters lie outside the range of applicabil-
ity of the CHSF, Fig. 2(b) shows that 〈s〉 � 0.3, which allows
us to calculate the correlation functions quite confidently;
see Appendix D. Figures 3(b) and 3(d) show that the roles
of Safm and Scdw, as far as the L-dependence is concerned,
have been inverted in relation to the case V = 0.5: while the
former hardly depends on L, the latter increases steadily with
L. Accordingly, Fig. 3(f) shows that Scdw/L2 extrapolates to

(a)

(b)

FIG. 2. (a) Spin structure factor (filled symbols, left vertical
scale) and scaled charge structure factor (empty symbols, right ver-
tical scale), and (b) average sign as functions of V . All data are for
fixed U = 2 and β = 4, and different linear system sizes, L. The grey
bar highlights the region where 〈s〉 dips.

a finite value as L → ∞, signaling the onset of long-ranged
CDW order. These analyses are in perfect agreement with our
estimates based on Fig. 2. For other values of U , we follow the
same analyses, and it turned out that the behavior is quite sim-
ilar, leading to Vc = 0.3 ± 0.1 for U = 1, and Vc = 1.1 ± 0.1
for U = 4.

Further checks can be carried out by examining the double
occupancy, D = 〈n↑n↓〉 in the region of small U . Since an
AFM state should yield D � 0.25, while a CDW state leads to
D � 0.25, close to an AFM-CDW transition one may expect
D ≈ 0.25, the noninteracting result. As a first-order phase
transition may occur between an AFM and a CDW phase, the
finite temperature behavior of D would exhibit a sharp change
around the transition region. Indeed, this was employed in

FIG. 3. (a) Spin structure factor as a function of inverse temper-
ature for U = 2, different lattice sizes, and V = 0.5. (b) Same as (a),
but for V = 0.7. (c) Charge structure factor as a function of inverse
temperature for U = 2, different lattice sizes, and V = 0.5. (d) Same
as (c) but for V = 0.7. (e) Finite-size analyses for the staggered
magnetization (see text). (f) Same as (e), but for the CDW structure
factor.
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(a) (b)

(c) (d)

FIG. 4. (a) Double occupancy as a function of V , for different values of β. (b) Charge structure factor as a function of β, for different
values of V . (c) BOW structure factor as a function of V for the same values of β as in (a). (d) First quadrant ground state phase diagram for the
EHM: empty symbols indicate points where D ∼ 0.25, for different values of β: filled stars indicate the critical points obtained from analyses
similar to Fig. 2; the dashed line is the strong coupling critical line, V = U/4.

literature to estimate the critical region of other models with
AFM-CDW transition [42–44]. Figure 4(a) shows D as a
function of V , for U = 1, and different inverse temperatures.
The curves for β = 8 and 10 are practically the same, and
cross the D = 0.25 horizontal line at V = 0.35 ± 0.05. For
comparison, in Fig. 4(b) we plot Scdw(β ) for different values
of V , and the charge correlations are only enhanced at low
temperatures if V � 0.3 ± 0.1, consistently with the estimates
from D.

It is also instructive to check whether a BOW phase can
be identified near the AFM-CDW transition region, similarly
to the one-dimensional case [11,45]. To this end, we calculate
the corresponding bond correlation function [46], defined as

Sbow = 1

N

∑
i,j,α=x,y

(−1)|i−j|〈Kσ
i,i+α̂Kσ

j,j+α̂

〉
, (7)

where Kσ
i,j ≡ (c†

iσ cjσ + H.c.). In Fig. 4(c) Sbow is depicted as
a function of V for various values of β. Although the BOW
correlations display a maximum at low temperatures, there
is no unambiguous signature of enhancement, to the point of
characterizing the sought BOW phase, especially because this
maximum occurs deep in the CDW phase.

We conclude our discussion by summarizing the findings
of the AFM-CDW transition in Fig. 4(d). Empty symbols
represent points where D ∼ 0.25 for various values of β.
As the temperature decreases, these curves approach the

transition line passing through the solid symbols, as deter-
mined by correlation functions and 〈s〉. The key observation
from Fig. 4(d) is that the transition curve lies slightly above
the line V = U/4. This is in agreement with recent work using
cluster dynamical mean-field theory [22], but in disagree-
ment with an early mean-field approach [47], which predicts
Vc = U/4. Unfortunately, we are unable to compare with
data from previous QMC simulations [30,31] since their data
are restricted to |V | � |U |/4, thus excluding the AFM-CDW
transition.

B. CDW-SUC transition

Let us now focus on the second (U < 0, V > 0) and third
(U < 0, V < 0) quadrants of the parameter space. Figure 5(a)
shows that the charge structure factor decreases steadily as one
crosses the V = 0 line towards V < 0, at fixed U = −2; by
contrast, the s-wave pairing structure factor increases steadily
with increasing β on the V < 0 side. This behavior is con-
sistent with the fact that exactly at V = 0 one reaches the
attractive Hubbard model, which definitely displays a CDW
state coexisting with an s-wave superconducting state [48,49]:
one deals effectively with a three-component order parame-
ter, one for CDW and two for the superconductivity. Further
decrease in V causes a suppression of s-wave pairing cor-
relations, as one enters the PS region, at V = −0.45 ± 0.05
for U = −2.
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(a) (b)

(c) (d)

FIG. 5. (a) s-wave pairing structure factor (full lines, left vertical
axis) and charge structure factor (dashed line, right vertical axis),
and (c) average sign as functions of V at fixed U , for different
temperatures; (b) charge structure factor [notice the different scale
from (a)] and (d) average sign as functions of V , at fixed inverse
temperature, for different values of the on-site attraction. All data are
for L = 8.

Figure 5(c) shows 〈s〉 calculated with real HS fields for
us to follow its role as a phase transition marker; we recall
that simulations with CHSF yield a constant 〈s〉 = 1 between
V = −0.5 and V = 0.5 (not shown). Interestingly, Fig. 5(c)
shows that as the temperature decreases, the dip in 〈s〉 deepens
and widens throughout the superconducting phase; in the PS
region, 〈s〉 returns to 1. Thus the sharp drops in 〈s〉 indicate
the boundaries of the superconducting phase with the CDW
and PS regions. Figure 5(b) provides an interesting insight
into the behavior of the charge structure factor, by keeping
the temperature fixed at β = 6, and examining how the plots
evolve with U . Two regimes can be distinguished: one in
which charge correlations are enhanced as |U | increases, and
another in which they decrease as |U | increases. The analysis
of Fig. 5(a) hence suggests that this change indicates the
entrance into the PS region. This is again in accordance with
the behavior of 〈s〉 at fixed β and for different values of U ,
depicted in Fig. 5(d): the dip occurs at smaller values of V as
U increases. These findings are summarised in Fig. 10.

The transition to the PS state deserves a complementary
look, by examining the density distribution shown in Fig. 6,
generated by collecting the values of ni over the DQMC runs.
For V = 0, the distributions are represented by singly peaked
histograms (not shown), centered at n = 1. As V decreases,
the distributions first broaden, still with a peak at n = 1, but
a change to doubly-peaked at n = 0 and n = 2 takes place,
interpreted as a signature of a phase separated state. In Fig. 6,
this occurs at V ≈ −0.6, which also marks the dip in 〈s〉 for
U = −0.5; see Fig. 5(d).

C. Superconducting pairing symmetries

Returning to the SUC state, we must settle the issue of
pairing symmetries. To this end, we start with the difference
between the effective pairing susceptibilities with s and d
symmetries, which presumably dominate the third quadrant.
At this point, we investigate the effective pairing (vertex)

ni

0.0
0.5

1.0
1.5

2.0
V-0.4

-0.5
-0.6

-0.7
-0.8

P
(n
i)

0.00

0.05

0.10

0.15

0.20

FIG. 6. Density probability distribution for several values of V
with U = −0.5 and β = 6.0, for L = 8. As the intensity of the
attractive extended interaction increases the shape of the histograms
undergoes from a single peaked to a double peaked distribution.

susceptibility, i.e., χ eff
sc (α) = χsc(α) − χ̄sc(α), with χ̄sc(α)

being the noninteracting susceptibility [39]. A positive (nega-
tive) response of χ eff

sc (α) signals an enhancement (weakening)
of pairing correlations for the corresponding α-wave symme-
try. From Fig. 7 we see that the region above the line V = U/2
is dominated by s-wave pairing, while the region below the
line is dominated by d-wave pairing. Interestingly, 〈s〉 shows
no dip at this transition; we may attribute this to the lack of
change in the number of components of the order parameter
on either side of the transition.

Moving on to the fourth quadrant, V < 0 and U > 0,
Fig. 8(a) follows how the spin structure factor changes as
V is increased. Below V ≈ −0.7, Safm is quite insensitive
to the temperature. For −0.7 � V � −0.25, Safm actually
decreases as the temperature decreases, while the supercon-
ducting structure factors are enhanced in this interval [see
Figs. 8(b) and 8(d)], with Psc(d ) tending to dominate over
Psc(p). The dip in 〈s〉 at V ≈ −0.7 provides additional support
to the interpretation of a PS–d-wave transition at this point

FIG. 7. Contour plot of the difference between s-wave and d-
wave effective pairing susceptibilities for β = 5.0 and L = 8.
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(a) (b)

(c) (d)

FIG. 8. (a) Spin structure factor, (b) d-wave pairing correlation
function, (c) Average sign, and (d) p-wave pairing correlation func-
tion as a function of V for U = 0.8 with L = 6.

in the diagram. Beyond V ≈ −0.25, Safm increases as the
temperature is lowered, which is also accompanied by a dip
in 〈s〉: this signals a d-wave–AFM transition. By repeating
these analyses for other values of U > 0, we obtain the critical
curve in Fig. 10, in which the error stems from the resolution
of the crossings in Fig. 8(a).

In view of the recent suggestion that a p-wave SC state
could be stabilized [23], we examined pairing structure factors
and susceptibilities. Typical data are shown in Fig. 9: while for
L = 4, d-wave and p-wave structure factors are degenerate,
and dominate over s-wave, for larger systems d-wave pairing
become dominant as β → ∞. This tendency is confirmed
by the behavior of the pairing susceptibilities (both bare and
effective), for L = 10; see Fig. 9(d) As discussed in Ref. [19],
d-wave pairing should dominate in the V < 0 region, due to
the nesting of the Fermi surface, while the p-wave would be
favored in the absence of such feature. Interestingly, this is
somehow observed in our results of Fig. 9: the smaller the

(a) (b)

(c) (d)

FIG. 9. (a)–(c) Pairing structure factors and (d) pairing sus-
ceptibilities as functions of the inverse temperature for different
symmetries, for the sizes shown. All data are for U = 0.5, and
V = −0.5.

CDWCDW

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
U

−1.0

−0.5

0.0

0.5

1.0

V AFM

d-wave
s-wave

PS

FIG. 10. Ground state phase diagram for the extended Hubbard
model at half filling, obtained through our DQMC simulations. Filled
symbols are estimates for critical points obtained through the joint
analyses of structure factors and 〈s〉; the latter played no part in
determining the critical points, which are represented by empty sym-
bols. The strong-coupling AFM-CDW critical curve, V = U/4, is
represented by a dashed line. Lines through data points are guides
to the eye.

system size is, the weaker nesting effects are, leading to a
spurious p-wave enhancement.

D. Ground state phase diagram

Our findings for the ground state properties are summa-
rized in the phase diagram of Fig. 10. As discussed before, the
phase boundaries have been determined by examining several
observables, including, in most cases, 〈s〉 (calculated with real
HS fields); one notable exception is the transition between s-
and d-wave, which bears no signature in 〈s〉.

While previous QMC studies [13,30,31] were unable to
provide a reasonably accurate critical line for the AFM-CDW
transition, here we have unequivocally located the transition
line above the strong coupling estimate, V = U/4. As far as
the superconducting regions of the diagram are concerned,
we have set more stringent bounds for the critical points,
including the transition line between s- and d-wave pairings.
In addition, we have found no evidence of p-wave pairing
symmetry being stabilized for any choice of parameters. The
transition curve to the PS state has now been accurately
determined over both U < 0 and U > 0 sectors; previous
QMC estimates [31] were restricted to the sign-free region,
|V | � |U |/4. Still with respect to the PS boundary, it is worth
stressing that an analysis for U = 2, similar to that of Fig. 8,
yields a different behavior. First, unlike Fig. 8(a), we have
found no decrease of Safm with increasing β, characteristic
of AFM being suppressed in favor of superconductivity. Sec-
ondly, there is only one dip in 〈s〉, instead of the two dips
shown in Fig. 8(c); this indicates that the SUC phase separat-
ing AFM from PS is suppressed for U � 2. Therefore, Fig. 10
shows that a superconducting state in the U > 0, V < 0 region
can only survive within a regime of intermediate couplings,
namely U � 2 and V � −0.75.
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FIG. 11. (a) Charge structure factor as a function of β. (b) Col-
lapse of the data in (a) to a finite-size scaling form, Eq. (8). Inset:
minimization of the cost function (see text) to determine βc ≡ 1/Tc

from the data collapse.

IV. CRITICAL TEMPERATURES

The presence of nearest-neighbor interaction breaks the de-
generacy of the SUC and CDW phases for U < 0, so that the
Mermin-Wagner-Hohenberg theorem [32,33] does not apply
even at half filling. Hence, it is of interest to determine how
the critical temperature for these phases changes with V .

In order to determine the critical temperatures, we use
the data for the uniform charge structure factor of Fig. 11(a)
together with the finite-size scaling (FSS) ansatz [50–52],

Scdw = Lγ /ν f [(β − βc)L1/ν], (8)

where, given that the temperature-driven CDW transition be-
longs to the two-dimensional Ising universality class, γ = 7/4
and ν = 1; see, e.g. Ref. [53]. We may determine the critical
temperature for fixed U and V by searching for the best fit
of Scdw/L7/4 to Eq. (8), namely the one minimizing the cost
function C(Tc), defined generically as [54]

C(Tc) =
∑

i

| fi+1 − fi|
max{ fi} − min{ fi} − 1, (9)

where i runs over the set of data, and the fi’s are the
scaled structure factors, Scdw/L7/4, ordered according to the
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FIG. 12. Critical temperatures, Tc, as functions of U and V :
Filled symbols correspond to Tc for CDW, and empty symbols to
superconducting Tc. When not shown, error bars are smaller than data
points. Lines through data points are guides to the eye.

respective (β − βc)L values. When the best collapse is
achieved, the distances between consecutive points are re-
duced, and the value of C is minimized, as shown in the inset
of Fig. 11(b).

The behavior of T CDW
c thus obtained is shown in Fig. 12.

We see that the extended interaction leads to a sharp increase
in Tc with increasing V , in the whole range of (U,V ) corre-
sponding to a CDW ground state. The quadrant U<0,V >0,
displays Tc’s higher than in the first quadrant, since on-site
pairs tend to be formed, and even a small V > 0 favors double
occupation of sites in one of the sublattices. When U > 0,
on the other hand, the tendency to form an AFM state must be
overcome by the nearest-neighbor repulsion. It is also interest-
ing to note that in the EHM one reaches critical temperatures
higher than in other conventional models describing charge
ordering, such as the Holstein model [55]; that is, the extended
interaction works more efficiently, since there is no need to
excite phonon modes.

Let us now discuss the critical temperature for supercon-
ductivity in the third quadrant of Fig. 10. In particular, we
recall that the degraded 〈s〉 (see Fig. 1) can be avoided if
of uses CHSF in the region |V | � |U |/4. Indeed, Fig. 13(a)
shows the inverse temperature dependence of the uniform
s-wave pairing structure factor, and, similarly to Fig. 11, the
steady increase with L signals a phase transition. Estimates of
Tc for two-dimensional superconductivity are more efficiently
determined through the superfluid density [56–58],

ρs = 1
4 [−Kx − �xx(qx = 0, qy → 0, ω = 0)], (10)

where Kx is the kinetic energy for motion along the x direction,
and �xx is the current correlator [57,58]. The superconducting
critical temperature Tc is calculated with the aid of the jump
discontinuity [56],

Tc = π

2
ρ−

s , (11)
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FIG. 13. (a) s-wave pairing structure factor as a function of β.
(b) Superfluid density as a function of temperature for different
lattice sizes, the dashed line stems for the 2T/π curve.

where ρ−
s is the value of the superfluid density just below the

critical temperature.
In Fig. 13(b) we plot ρs as a function of T , for fixed

U , V , and L, and the intercept with the straight line 2T/π

provides an estimate for Tc. We see that the intercepts are
very weakly dependent on L, so that finite-size effects are
mitigated [49,59]. Figure 12 shows the trends of supercon-
ducting Tc for other values of U and V . As V decreases, Tc

initially grows, but tends to saturate, and we recall that further
decrease in V drives the system to a PS regime, hence the
interrupted curves. Overall, for fixed V , Tc tends to increase
with increasing |U |, but the superconducting region is even-
tually suppressed in favor of PS. It is also noteworthy that
these V -enhanced critical temperatures are even higher than
the maximum value obtained for V = 0 [49].

We have also analyzed the d-wave region, starting with an
FSS ansatz for the pairing structure factor [60], according to
which a Kosterlitz-Thouless transition is signaled by a cross-
ing of the curves for different sizes. In contrast with the third
quadrant, no crossing was found for β < 10, with V = −0.5
and for two values of U , namely U = 0 and U = 0.5. Unfor-
tunately, the minus sign problem is much more severe in this
region, which precludes any analysis for β > 10; note that
this region lies outside the sign-free region through CHSF.

Nonetheless, one may conclude that Tc either vanishes or is
much lower than those found in the third quadrant for s-wave
pairing. If finite, we may conjecture an exponential behavior
with V < 0, for fixed U � 0, i.e., Tc ∼ exp(−C/|V |), where
C is independent of V ; an alternative linear dependence with
|V | emerged from a recent mean-field approach [61]. It is
interesting to note that if one takes order of magnitude data
from the cuprates, such as a bandwidth W ∼ 10 eV [62] and
Tc ∼ 102K, we get (in the dimensionless units used here)
βc ∼ 102, a range way beyond our limitations imposed by the
sign problem.

V. CONCLUSIONS

In summary, we have resolved long standing issues rel-
ative to the ground state phase diagram of the half-filled
extended Hubbard model on a square lattice, such as the
pairing symmetries of the superconducting phase, and loca-
tions of phase boundaries in all four quadrants of the U −
V plane. Indeed, through our DQMC simulations, accurate
boundaries involving antiferromagnetic, charge-density wave,
s-wave and d-wave superconducting, and phase-separated
phases were determined. It is worth emphasizing that the
minus-sign problem of QMC simulations was overcome by
performing extensive simulations, and by using the recently
proposed connection between critical points and strong dips
in 〈s〉. Indeed, the multitude of phases in the diagram allowed
us to verify that dips in 〈s〉 only occur at transitions involving
different universality classes, such as AFM-CDW, AFM-SC,
SC-PS, and CDW-SC, but not between s and d waves.

We have also determined the critical temperatures for the
CDW and s-wave superconducting phases. For the CDW
phase, we found that for fixed U the critical temperature
increases sharply with V , reaching higher Tc’s than in other
electronic models for CDW’s such as the Holstein model.
Hopefully these findings will stimulate experiments with ul-
tracold atoms interacting beyond on-site couplings: phase
transitions at temperatures within a feasible range could be
probed with a quantum gas microscope.

The presence of a d-wave superconducting ground state
over a reasonably wide region of the parameter space has
bearings on the high-Tc cuprates, particularly in the U > 0,
V < 0 region. Our analyses of the finite temperature data for
the d-wave structure factor suggests βc somewhat larger than
10 (in dimensionless units), which is consistent with actual
data for the cuprates; note that the Tc’s predicted here for the
s-wave pairing in the U < 0, V < 0 region are much higher
than those for d-wave. These results add credence to the use
of the EHM as a minimal single-band model (with U > 0 and
V < 0) to describe the high-Tc cuprates [6]. Nonetheless, a
more stringent test would be to investigate the properties of
the current in the doped regime.
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APPENDIX A: REAL HUBBARD-STRATONOVICH
FIELDS (RHSF)

In preparing for the simulations, the interaction terms are
separated through a Suzuki-Trotter decomposition,

e−βH ≈ (e−�τHk e−�τHU e−�τHV )Lτ + O(�τ 2), (A1)

so that the 2D problem is mapped onto a 3D system, with
the extra dimension being the imaginary time axis, and the
inverse of the temperature β is cut into Lτ discrete intervals
with length �τ = β/Lτ . The quartic terms in HU and HV are
expressed in a quadratic form using the Hubbard-Stratonovich
transformation [13,37],

e−�τW niσ njσ ′ = 1

2

∑
xν=±1

e[αxν (niσ −njσ ′ )− �τW
2 (niσ +njσ ′ )] (A2)

with cosh α = exp �τW/2, and W is either U or V , respec-
tively if j = i or if j is a first neighbor of i; σ and σ ′ stand
for the original fermionic spin variable, ↑ or ↓. The second
term in the argument of the exponential in Eq. (A2) vanishes
at half filling, that is, for μ = U/2 + 4V . When dealing with
the on-site coupling, HU , we define one species of auxiliary
field, x0(i, l ), at each lattice site i and time slice l . For the
nearest-neighbor coupling, HV , we write

V ninj = V (ni↑nj↑ + ni↑nj↓ + ni↓nj↑ + ni↓nj↓), (A3)

and define four additional species of auxiliary fields for
each bond between sites i and j, namely x1(i, j, l ), x2(i, j, l ),
x3(i, j, l ), and x4(i, j, l ). For an N-site square lattice with
periodic boundary conditions, there are 2 × N bonds, hence
8 × N × Lτ auxiliary fields, in addition to the N × Lτ aux-
iliary fields for the on-site term. The partition function then
becomes,

Z = 1

29NLτ

∑
xν=±1

∏
σ

det Aσ (x0, x1, x2, x3, x4), (A4)

with

Aσ (x0, x1, x2, x3, x4) = 1 + Bσ (Lτ )Bσ (Lτ − 1) · · · Bσ (1)
(A5)

and

Bσ (l ) = e−�τ Ĥk e−�τ ĤU e−�τ ĤV . (A6)

The weight P(xν ) of each configuration of auxiliary fields is
therefore given by

P(xν ) = | det[A↑A↓]|. (A7)

One can also compute Green’s functions [63],

Gσ
i,j = 1

29NLτ

∑
xν=±1

[Aσ ]−1
i,j

∏
σ

det Aσ (x0, x1, · · · , x4), (A8)

and calculate the relevant physical quantities. The simulations
are then carried out by importance-sampling the 29NLτ HSF,
{xν}, taken as Ising variables, ±1.

APPENDIX B: COMPLEX HUBBARD-STRATONOVICH
FIELDS (CHSF)

The use of CHSF emerges as an alternative to mitigate
the minus sign problem [31,38]. We start by defining an
interaction term as

HI = g

2

∑
〈i,j〉

�2
ij, (B1)

where for each bond between sites i and j we define �ij ≡
ni − 1 + a(nj − 1), with a = V/g, and g = U/(2 + 2a2). In
order to recover the original interaction terms in Eq. (1), a
must be a solution of the quadratic equation, 2Va2 − Ua +
2V = 0, which only admits a real solution if |V | � |U |/4.
Thus the introduction of CHSF is restricted to this range.

One may then write

e−�τg�2
ij/2 ≈

∑
ν=±1,±2

η(ν) exν

√−g�τ�ij , (B2)

with η(±1) ≡ (1 + √
6/3)/4, η(±2) ≡ (1 − √

6/3)/4, x±1 ≡
±

√
3 − √

6, and x±2 ≡ ±
√

3 + √
6. One should keep in mind

that when dealing with RHSF, each species can be in two
(Ising) states, while with CHSF one has only one species,
which can be in four states, ν = ±1,±2. It is worth mention-
ing that this transformation is not exact, since it introduces
an error of O(�τ 4); nonetheless, this is negligible in com-
parison with the Trotter error, which is O(�τ 2). We also
note that when g < 0, the argument of the exponential on the
RHS is real, so that the up and down determinants are equal.
Further, if g > 0 the exponential yields a complex number,
but if particle-hole symmetry is satisfied, the determinants
are complex conjugate of each other, so that their product is
positive definite [31,38], and the simulation is sign free.

In the formulation with CHSF, Eq. (A8) is replaced by

Gσ
i,j = 1

22NLτ

∑
ν=±1,±2

[�σ ]−1
i,j

∏
σ

det Aσ (xν ). (B3)

Now, the number of Hubbard-Stratonovich fields grows as
22NLτ , which renders the code even faster in comparison with
the RHSF case within the sign-free region |V | � |U |/4.

APPENDIX C: SAMPLING
THE HUBBARD-STRATONOVICH FIELDS

The Ising sampling of the HSF consists of sweeping
over the sites and bonds in each imaginary time slice
l , and attempting to flip xν → −xν . Say a flip of the
x0 field at a single site on a time slice is proposed: if
the change is accepted, the new Green’s function is com-
puted through O(N2) operations using the Sherman-Morrison
update [64], instead of computing it from scratch using
Eq. (A8), which requires O(N3) operations. The same ap-
proach can be used to update the Green’s functions by
flipping the x2 and x3 fields, which couples the terms with σ �=
σ ′ in Eq. (A2), and consequently allows us to use Sherman-
Morrison update for G↑ and G↓ separately. The challenge
is to update the Green’s functions by flipping the x1 and
x4 fields since they change the Green’s functions related to
different sites for σ = σ ′. Following the procedure described
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(a) (b) (c)

FIG. 14. Average fermion sign as a function of V for (a) L = 8 and U = 1.0, (b) L = 10 and U = 2.0 and (c) L = 10 and U = 4.0. The
dashed lines indicates the estimated critical values of V .

in Ref. [63] we use the Woodbury matrix identity, which is
a generalized Sherman-Morrison update. The steps to imple-
ment this update are detailed below. Starting with a known
Green’s function at a time slice l , and given the fields x1(4),
one proposes a flip x1(4) → x′

1(4) = −x1(4) in a bond between
sites i and j for a time slice l individually. Under this change
the Aσ matrix becomes,

Aσ → 1 − Bσ (Lτ ) · · · (1 + �σ )Bσ (l ) · · · Bσ (1) = A′σ .

(C1)
The label σ corresponds to spin up or down for x1 and x4,
respectively. The matrix �σ is diagonal and has only two
nonzero elements, namely

�σ
i,i = exp [−2xν (i, j, l )] − 1,

�σ
j, j = exp [2xν (i, j, l )] − 1. (C2)

One can decide whether or not to accept a change using the
ratio of determinants [64],

Rσ = det [A′σ ]

det [Aσ ]
= det [1 − �σ (1 − Gσ )]. (C3)

If the flipping is accepted, by using matrix identities it is
possible to write a simple expression for the updated Gσ ′ after
the flip [64],

G′σ → Gσ − Gσ 1

R�σ (1 − Gσ ). (C4)

Due to the sparseness of the matrices R and �σ , Eq. (C4) can
be written in terms of matrix elements [63],

G′σ
r,s → Gσ

r,s −
∑
i, j

Gσ
r,iDi, j

(
δ j,s − Gσ

j,s

)
, (C5)

where the matrix D may be cast in a 2 × 2 form,

D = �σ
i,i�

σ
j, j

Rσ

(
1 − Gσ

j, j + 1
�σ

j, j
Gσ

i, j

Gσ
j,i 1 − Gσ

i,i + 1
�σ

i,i

)
(C6)

with i and j being the indices of the sites related with the flip
of xν (i, j, l ), and,

Rσ = det R = [
�σ

i,i

(
1 − Gσ

i,i

) + 1
][

�σ
j, j

(
1 − Gσ

j, j

) + 1
]

− �σ
i,iG

σ
i, j�

σ
j, jG

σ
j,i. (C7)

In order to decide whether a proposed change is accepted
we use a combination of the Metropolis and the heat-bath
algorithm, similar to the one used in Ref. [63],

PT =
{ Rσ

1+γ Rσ if Rσ � 1

Rσ

γ+Rσ if Rσ > 1.
(C8)

The parameter γ is tuned self-consistently to achieve an ac-
ceptance ratio of approximated 50%.

The order of flipping attempts is also a crucial detail in
the DQMC method when more than one auxiliary field per
site/bond. We have tried four different strategies. As it turned
out, the most efficient is the following. A sweep attempting to
flip just x0(i, l ) is carried out over all sites and all time slices,
(i, l ). This is followed by a sweep over all bonds and time
slices, trying to flip just x1(i, j, l ), then followed by another
sweep over the whole space-time lattice attempting to flip
just x2(i, j, l ), and so on and so forth for x3(i, j, l ) and for
x4(i, j, l ) to complete one Monte Carlo step. Any attempt of
grouping more than one flip at any xi, despite speeding up the
sweep, leads to much more noisy averages than with the above
mentioned strategy.

As a final remark, we note that when dealing with CHSF,
one is restricted to Metropolis algorithm, since the heat bath
algorithm leads to a very low acceptance ratio.

APPENDIX D: ASYMPTOTIC BEHAVIOR
OF THE FERMION SIGN FOR THE

AFM-CDW TRANSITION

Figure 2 in the main text shows that the fermion sign ex-
hibits a dip near the critical value of V at a fixed temperature.
Here we extend the analysis a bit further, by discussing the be-
havior of 〈s〉 as β → ∞. Figure 14 shows data for 〈s〉 for three
different values of U , near their respective AFM-CDW critical
points. Starting with Fig. 14(a), we see that as V decreases
from the CDW phase, the dip in 〈s〉 deepens considerably as
β increases, such that 〈s〉 → 0 at V ≈ 0.35, as indicated by
the dotted vertical line; this would be even more apparent in
a log-linear scale. Therefore, estimates obtained from 〈s〉 at
higher temperatures (Sec. III A) are not strongly dependent
on β. Indeed, Fig. 14(b) complements Fig. 2, in the sense that
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now L is fixed, and β is increased: 〈s〉 → 0 at V ≈ 0.65, again
within the error bars quoted in Sec. III A. The data for U = 4

displayed in Fig. 14(c) provides yet another consistency check
that 〈s〉 → 0 signals a critical point.
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Ferlaino, O. Marković, and M. Greiner, Nature (London) 622,
724 (2023).

[10] X. Wang, E. Khatami, F. Fei, J. Wyrick, P. Namboodiri, R.
Kashid, A. F. Rigosi, G. Bryant, and R. Silver, Nat. Commun.
13, 6824 (2022).

[11] H. Q. Lin, E. R. Gagliano, D. K. Campbell, E. H. Fradkin, and
J. E. Gubernatis, The phase diagram of the one-dimensional ex-
tended Hubbard model, in The Hubbard Model: Its Physics and
Mathematical Physics, edited by D. Baeriswyl, D. K. Campbell,
J. M. P. Carmelo, F. Guinea, and E. Louis (Springer, Boston,
MA, 1995), pp. 315–326.

[12] B. Xiao, J. R. Moreno, M. Fishman, D. Sels, E. Khatami, and
R. Scalettar, arXiv:2209.10565.

[13] Y. Zhang and J. Callaway, Phys. Rev. B 39, 9397 (1989).
[14] M. Aichhorn, H. G. Evertz, W. von der Linden, and M. Potthoff,

Phys. Rev. B 70, 235107 (2004).
[15] E. G. C. P. van Loon, A. I. Lichtenstein, M. I. Katsnelson,

O. Parcollet, and H. Hafermann, Phys. Rev. B 90, 235135
(2014).

[16] J. Paki, H. Terletska, S. Iskakov, and E. Gull, Phys. Rev. B 99,
245146 (2019).

[17] M. Vandelli, V. Harkov, E. A. Stepanov, J. Gukelberger, E.
Kozik, A. Rubio, and A. I. Lichtenstein, Phys. Rev. B 102,
195109 (2020).

[18] H. Terletska, S. Iskakov, T. Maier, and E. Gull, Phys. Rev. B
104, 085129 (2021).

[19] W.-M. Huang, C.-Y. Lai, C. Shi, and S.-W. Tsai, Phys. Rev. B
88, 054504 (2013).

[20] S. Wolf, T. L. Schmidt, and S. Rachel, Phys. Rev. B 98, 174515
(2018).

[21] M. Jiang, U. R. Hähner, T. C. Schulthess, and T. A. Maier, Phys.
Rev. B 97, 184507 (2018).

[22] S. Kundu and D. Sénéchal, arXiv:2310.16075.
[23] W.-C. Chen, Y. Wang, and C.-C. Chen, Phys. Rev. B 108,

064514 (2023).
[24] R. Blankenbecler, D. J. Scalapino, and R. L. Sugar, Phys. Rev.

D 24, 2278 (1981).
[25] J. E. Hirsch, Phys. Rev. B 31, 4403 (1985).

[26] R. T. Scalettar, N. E. Bickers, and D. J. Scalapino, Phys. Rev. B
40, 197 (1989).

[27] N. Kawashima, Prog. Theor. Phys. Suppl. 145, 138 (2002).
[28] R. R. dos Santos, Braz. J. Phys 33, 36 (2003).
[29] F. Becca and S. Sorella, Quantum Monte Carlo Approaches for

Correlated Systems (Cambridge University Press, Cambridge,
2017).

[30] A. Sushchyev and S. Wessel, Phys. Rev. B 106, 155121 (2022).
[31] M. Yao, D. Wang, and Q.-H. Wang, Phys. Rev. B 106, 195121

(2022).
[32] N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966).
[33] P. C. Hohenberg, Phys. Rev. 158, 383 (1967).
[34] S. Wessel, B. Normand, F. Mila, and A. Honecker, SciPost

Phys. 3, 005 (2017).
[35] R. Mondaini, S. Tarat, and R. T. Scalettar, Science 375, 418

(2022).
[36] R. Mondaini, S. Tarat, and R. T. Scalettar, Phys. Rev. B 107,

245144 (2023).
[37] J. E. Hirsch, Phys. Rev. B 28, 4059(R) (1983).
[38] M. Golor and S. Wessel, Phys. Rev. B 92, 195154 (2015).
[39] S. R. White, D. J. Scalapino, R. L. Sugar, N. E. Bickers, and

R. T. Scalettar, Phys. Rev. B 39, 839(R) (1989).
[40] L. O. Lima, A. R. Medeiros-Silva, R. R. dos Santos, T. Paiva,

and N. C. Costa, Phys. Rev. B 108, 235163 (2023).
[41] D. A. Huse, Phys. Rev. B 37, 2380(R) (1988).
[42] E. A. Nowadnick, S. Johnston, B. Moritz, R. T. Scalettar, and

T. P. Devereaux, Phys. Rev. Lett. 109, 246404 (2012).
[43] S. Johnston, E. A. Nowadnick, Y. F. Kung, B. Moritz, R. T.

Scalettar, and T. P. Devereaux, Phys. Rev. B 87, 235133
(2013).

[44] N. Costa, K. Seki, S. Yunoki, and S. Sorella, Commun. Phys. 3,
80 (2020).

[45] D. L. B. Ferreira, T. O. Maciel, R. O. Vianna, and F. Iemini,
Phys. Rev. B 105, 115145 (2022).

[46] B. Xing, W.-T. Chiu, D. Poletti, R. T. Scalettar, and G. Batrouni,
Phys. Rev. Lett. 126, 017601 (2021).

[47] E. Dagotto, J. Riera, Y. C. Chen, A. Moreo, A. Nazarenko, F.
Alcaraz, and F. Ortolani, Phys. Rev. B 49, 3548 (1994).

[48] R. Micnas, J. Ranninger, and S. Robaszkiewicz, Rev. Mod.
Phys. 62, 113 (1990).

[49] R. A. Fontenele, N. C. Costa, R. R. dos Santos, and T. Paiva,
Phys. Rev. B 105, 184502 (2022).

[50] M. E. Fisher, in Proceedings of the Enrico Fermi International
School of Physics, Vol. 51, edited by M. S. Green (Academic,
New York, 1971).

[51] M. N. Barber, in Phase Transitions and Critical Phenomena,
Vol. 8, edited by C. Domb and J. L. Lebowitz (Academic, New
York, 1983), p. 145.

[52] R. R. dos Santos and L. Sneddon, Phys. Rev. B 23, 3541 (1981).
[53] H. E. Stanley, Introduction to Phase Transitions and Critical

Phenomena, International Series of Monographs on Physics
(Oxford University Press, Oxford, 1971).
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