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Diagrammatic approach to excitonic effects on nonlinear optical response
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Optical responses of atomically thin 2D materials are greatly influenced by electron-hole interactions. It is
by far established that exciton signatures can be well identified in the optical absorption spectrum of quasi-2D
materials. However, the same level of understanding of excitonic effects on nonlinear optical responses and the
ability to compute them accurately is still much desired. Based on the functional integral formalisms and working
in the velocity gauge, we introduce a convenient Feynman diagram approach for calculating nonlinear responses
including excitonic effects. By dressing electron-photon interactions with electron-hole ladder diagrams, we
derive an expression for second-order optical responses and provide a comprehensive description of excitonic
effects. We apply our approach to a monolayer h-BN model and show qualitative changes in the second harmonic
generation spectrum when comparing with results assuming independent particles. Our approach can be readily
extended to higher-order optical responses and is feasible for first-principles calculations.
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I. INTRODUCTION

Modern experimental techniques integrated with theoret-
ical simulations enable precise measurements and control
of optical responses, facilitating the validation of quantum
material models. To accurately describe optical responses in
solid-state systems, significant progress has been made in
the past few decades. Theoretically, light-matter interactions
can be written in terms of the vector potential and electron
momentum in a minimal-coupling scheme, which is often
called the velocity gauge. Alternatively, the coupling can also
be cast as the product of the electron position operator and
the electric field, which is known as the length gauge. A
well-defined light-matter interaction in periodic systems was
established by Blount [1], which later led to the development
of modern polarization theory in terms of Berry connection
[2,3]. Based on Blount’s treatment, Sipe et al., derived non-
linear optical responses in terms of density matrix formalism
through perturbation expansion of light-matter couplings [4].
A systematic comparison of these two gauges is made and
it has been shown that the two are formally equivalent [5,6].
Applications of both treatments to study optical responses of
real materials within the independent particle approximation
(IPA) have been widely conducted.

Nonlinear optical responses describe a plethora of phenom-
ena in which the light-induced polarization or current does
not scale linearly with the electric field strength of the inci-
dent light. Typical examples of nonlinear responses include
harmonic generation, optical rectification, shift current and
frequency mixing effects, etc., [7] many of which have prac-
tical applications. Recent investigations on nonlinear optical
spin Hall conductivity and nonlinear anomalous Hall effect
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[8,9] further reveal the potential applications in spintronics
devices. Aside from applications in optoelectronic devices,
studies of nonlinear optical response have also advanced
our fundamental understanding of light-matter interactions.
Recent theoretical study on nonlinear optical responses cul-
minates with the establishment of its connection to quantum
geometry [10–12] and topology [13]. Notably, the role of
electron-hole correlations hence excitonic effects is largely
ignored owing to the typical small exciton binding energy in
3D bulk semiconductors.

The ability to prepare atomically thin 2D materials has
brought opportunities to study excitonic effects on optical
responses as it is well known by now that excitonic effects
become particularly strong due to reduced screening and
quantum confinement effects in quasi-2D materials. Com-
bining efforts of experimental and theoretical first-principles
investigations have shown that bound excitons with binding
energies of hundreds of meV can be clearly identified in
optical absorption or photoluminescence spectrum [14–16].
In recent years, excitons have emerged as a highly effective
sensor for probing charge ordering and quantum phases in
transition metal dichalcogenide (TMD) systems, including
Wigner crystal states in TMD monolayers [17], excitonic in-
sulators, charge transfer and Mott insulators in twisted bilayer
moiré superlattices [18], and fractional quantum Hall states in
twisted bilayer MoTe2 [19], which makes the investigation of
their response spectra an urgent and topical issue. However,
our understanding of excitonic effects on optical responses
is far from complete as the role of excitons in the nonlinear
optical spectrum is under debate [20–22] and accurate abinitio
computational tools are still under development [23–31].

Excitonic effects on optical responses have been studied by
treating electron-hole interactions on the mean-field type of
approximation with either Hartree-Fock, screened exchange
self-energy or range-separated hybrid exchange-correlation
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potentials [25–28]. In the wave function-based method, real-
time propagation approaches have been conducted to study
correlation effects on nonlinear optical responses. In a recent
study, excitonic effects were considered in the framework of
dynamical Berry phase polarization where the light-matter
coupling is written in the length gauge. Expressions of general
second-order optical responses including excitonic effects in
both length and velocity gauge [30] were derived with the
density matrix formalism. In particular, velocity and position
operators are defined in the exciton basis to ensure the gauge
invariance [32].

Although the perturbative derivation within the density ma-
trix formalism is conceptually clean, the derivation involves
tedious bookkeeping of various orders of perturbations even
in the IPA. To provide a concise physical interpretation of
high-order optical responses, a recent paper demonstrates a
Feynman diagram approach to calculate nonlinear optical re-
sponses in the velocity gauge within IPA [33]. An extension
of this method to spatially dispersive nonlinear responses was
reported [34]. This motivates us to pursue a diagrammatic
approach for the derivation of nonlinear optical responses with
excitonic effects.

In the practical calculation, excitons are solutions of the
Bethe-Salpeter equation (BSE) within a static approximation
to screened Coulomb interactions. Diagrammatically, BSE
can be derived from the equation of motion of electron-
hole correlations, in which a series of interactions between
electrons and holes is written as the so-called ladder dia-
grams. In Ref. [35], incorporations of ladder diagrams into
Raman scattering intensity were considered to derive the ex-
citonic effects on resonant Raman spectroscopy of layered
materials. The derived expression can be naturally written in
terms of exciton-phonon coupling matrix elements introduced
in other contexts [36,37]. However, ladder diagrams’ incor-
poration into nonlinear optical responses has not yet been
reported.

In this paper, we develop a convenient Feynman diagram
approach for nonlinear optical responses including exci-
tonic effects. Our goal is to derive a general expression for
second-order optical response with excitonic effects using
the diagrammatic approach in the velocity gauge. The re-
sulting expression offers practical advantages, revealing the
physical interpretations of seemingly complicated summa-
tions over matrix elements and readily distinguishing one-,
two-, and three-photon processes. Moreover, the expression
can be straightforwardly implemented for tight-binding mod-
els and for first-principles calculations of real materials.
The rest of the paper is structured as follows: In Sec. II,
we revisit the functional derivative formalism and Feyn-
man rules for the derivation of the linear and second-order
optical conductivity in the IPA. We introduce the electron-
hole correlation function, ladder diagrams, and BSE for
electron-photon coupling vertex in Sec. III. By employing
the vertex correction method, we derive the expression of
the first-order and the second-order optical responses with
excitonic effects in Sec. IV. In Sec. V, we apply our approach
to an effective two-band tight-binding model for a mono-
layer h-BN, along with a comparison with other derivations.
We conclude and discuss the outlook of our approach in
Sec. VI.

II. FUNCTIONAL INTEGRAL SETUP

A. Independent-particle level

A detailed introduction of the functional integral approach
in independent-particle level can be found in Refs. [33,38]
and references therein. In this section, we revisit the key
equations and introduce our notation to set the stage for the
derivations in the next section.

To determine the optical conductivity using the functional
integral formalism, we start by writing the partition function
in the form of a path integral. The partition function in the
imaginary time τ can be written down as

Z =
∫

D[c(τ ), c̄(τ )]e−S[c(τ ),c̄(τ )], (1)

where the action S is

S[c(τ ), c̄(τ )] =
∫ β

0
dτ {c̄(τ )∂τ c(τ ) + H[c(τ ), c̄(τ )]}. (2)

The first term is known as the Berry phase, and the
normal-ordered Hamiltonian operator in the functional in-
tegral formalism is rewritten in terms of the Grassmann
numbers [39,40]. The Hamiltonian of the system subjected
to a time-dependent optical field is represented in the second
quantization basis within the real-time domain as

Ĥ (t ) = Ĥ0 + ĤA(t ), (3)

which comprises of the independent particle term,

Ĥ0 =
∑

ab

∫
dk εabkc†

kackb. (4)

Following Refs. [33,41], the light-matter couplings can be
written as an expansion of the unperturbed H0 in powers of
the vector potential field Aα ,

ĤA(t ) = eAα1 (t )ĥα1 + e2

2
Aα1 (t )Aα2 (t )ĥα1α2 + · · ·

=
∞∑

n=1

en

n!
Aα1 (t )Aα2 (t ) · · · Aαn (t )ĥα1α2···αn , (5)

where e is the electron charge and α is the Cartesian index of
the polarization direction of the external field. The nth-order
derivative of ĥ is defined as

ĥα1α2···αn = h̄−nDαn · · · Dα2 Dα1 Ĥ0, (6)

where Dα is the covariant derivative operator and its opera-
tion is defined through the commutator with another operator,
[Dα, Ô]ab = ∂Oab

∂kα − i[ξα, Ô]ab. At the lowest order, the veloc-
ity operator in the eigenbasis of the unperturbed Hamiltonian
reads

hα
ab = 1

h̄
[Dα, Ĥ0]ab = 1

h̄

∂εabk

∂kα
δab − i

ξα
ab

h̄
(εa − εb), (7)

where ξα
ab is the matrix element of the interband Berry connec-

tion and we hide the crystal momentum k to make the notation
clean when there is no ambiguity. The lowest-order light-
matter coupling term HA(t ) is the familiar form, e

∫
v̂0 · A(t ).

To work with the electric field directly, we employ
Eα (ω) = iωAα (ω) to convert ĤA into ĤE using the Fourier
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transformation

ĤE (t ) =
∞∑

n=1

en

n!

n∏
l=1

∫
dωl e

−iωl t
Eαl (ωl )

iωl
ĥα1···αn . (8)

The current density is calculated as the expectation value
of the current density operator Ĵ. In terms of the partition
function, we have

〈Ĵμ(t )〉 = 1

Z

∫
D[c, c̄]ev̂μ(t )e−i

∫
dt ′(H0+HE (t ′ )), (9)

where v̂μ(t ) = Dμ[Ĥ0 + ĤE (t )], denotes the time-dependent
velocity operator obtained by taking the derivative of the total
Hamiltonian. Explicitly, it reads

v̂μ(t ) =
∞∑

n=0

en

n!

n∏
l=1

∫
dωl e

−iωl t
Eαl (ωl )

iωl
ĥμα1···αn . (10)

Therefore, both v̂(t ) and ĤE (t ) are functionals of the electric
field E(t ). In the frequency domain, we define conductivity
tensors, which are related to the current density as [41]

Jμ(ω) =
∫

dω1

2π
σμα (ω1)Eα (ω1)(2π )δ(ω − ω1)

+
∫

dω1

2π

dω2

2π
σμαβ (ω1, ω2)Eα (ω1)Eβ (ω2)

× (2π )δ(ω − ω1 − ω2) + · · · (11)

As a demonstration of the functional derivative approach
and an introduction of notations and diagrams, we reproduce
the derivation of the linear optical conductivity tensor given in
Ref. [33] below. The derivation of the second-order conduc-
tivity tensor will be given in Appendix A.

At the linear order, we compute the conductivity tensor by
taking the functional derivative of J (t ) with respect to E (t )
and performing a Fourier transformation

σμα (ω,ω1)δ(ω − ω1) = δJμ(ω)

δEα (ω1)

=
∫

dt1
2π

e−iω1t1
δ

δEα (t1)

∫
eiωt dtJμ(t )

=
∫

dt1
2π

e−iω1t1

∫
eiωt dtσμα (t, t1),

(12)

where in the second line we convert the functional derivative
with respect to the external field in the frequency domain to
the time domain.

To evaluate σμα (t, t1), we note that the velocity operator
in the perturbed system also depends on the external field, cf.
Eqs. (9) and (10), so the functional derivatives can be taken on
the observable vμ(t ) or on the exponent in HE (t ). They are

δv̂μ(t )

δEα (t1)
− iv̂μ(t )

δ

δEα (t1)

∫
dt ′HE (t ′). (13)

We observe that velocity operators, hence the electron-photon
coupling vertex can come from either the current density op-
erator or from HE in Eq. (13), which motivates the authors in
Ref. [33] to define the outgoing vertex for the former and the
incoming vertex for the latter, respectively. After performing

the functional derivative on Eqs. (10) and (8), we have

σμα (t, t1) = ie2
∫

dω1

2π

e−iω1(t−t1 )

ω1

〈
ĥμα (t )

〉

− ie2
∫

dt ′
∫

dω1

2π

e−iω1(t ′−t1 )

ω1
〈ĥμ(t )ĥα (t ′)〉.

(14)

We proceed by writing the expectation values explicitly in
terms of the matrix element hα

ab and the two-particle correla-
tion function. We focus on the second term, which dominates
the finite frequency response for a semiconductor when in-
cluding excitonic effects. We have within the IPA, reads

〈ĥμ(t )ĥα (t ′)〉 = − hμ

abhα
baGb(t, t ′)Ga(t ′, t )

= − hμ

abhα
ba

∫
dω′′

2π
e−iω′′(t−t ′ )

∫
dω′

2π
e−iω′(t ′−t )

× Gb(ω′′)Ga(ω′), (15)

where the single-particle Green’s function is defined as

Ga(k; t, t ′) ≡ −δab
〈
cka(t )c†

kb(t ′)
〉
. (16)

It is important to note that the expectation value is taken
at the unperturbed state. We adopt the convention that the
repeated indices that do not show up on the left-hand side of
the equation are summed. Inserting the frequency integral of
Green’s function given in Appendix C, and using Eq. (12),
we obtain the first-order conductivity from the second term in
Eq. (13), which describes the interband transition,

σ
μα
IP (ω; ω1) = − iC1

h̄ω

fabhα
bahμ

ab

h̄ω1 − εba + iη
, (17)

where fab = fa − fb is defined as the difference of electron
occupations between a and b bands, and εba = εb − εa is the
difference of their energy. We define C1 = ge2 h̄/Vtot , where
the factor g accounts for the spin degeneracy factor, and Vtot =
NkVu is the total volume with Nk being the total number of
k points and Vu being the unit cell volume and η is a small
positive number. This result agrees with the derivation from
density matrix formulation [4,33].

Within the IPA, the first-order conductivity is given by the
two diagrams,

(18)
where ω1, ω indicate absorbed and emitted photons respec-
tively. The first term corresponds to the Drude weight [33] and
the second term describes the interband optical transitions.
The bubble diagram in the second term represents the free
electron-hole correlation function. Physically, the second dia-
gram can be read as follows: An incoming photon generates
a free electron-hole pair, which later recombines and emits a
photon. Expressions of components in the diagrams are given
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TABLE I. Diagram components for the conductivity within IPA.

Physical description Diagram Mathematical expression

Incoming vertex h
Outgoing vertex h

Incoming photon with polarization αn ωn, αn

Outgoing photon with polarization μ ω, μ

Multi-photon absorption hα1α2 ···αN

Multi-photon absorption and single photon emission hμα1α2 ···αN

Electron propagator G

in Table I. We note that different symbols are used to distin-
guish incoming and outgoing photon vertices. In particular,
the outgoing vertex associated with the current observable is
represented by an empty diamond while the incoming ver-
tex, which is associated with the perturbation expansion of
HE (t ), is represented by an empty circle. For the second-
order response, the conductivity tensor σμαβ (ω; ω1, ω2) can
be computed from the second derivative of current expec-
tation value, δJ (t )

δE (t1 )δE (t2 ) . A detailed derivation is given in
Appendix A.

B. Coulomb interaction

Going beyond the independent particle approximation, our
main focus is to derive the response with excitonic effects. We
start by considering a Hamiltonian with Coulomb interactions.
The full Hamiltonian operator reads

Ĥ (t ) = Ĥ0 + Ĥint + ĤA(t ), (19)

with the four-point interaction term,

Ĥint =
∑

abcd,k1k2q

V abcd
k1,k2,qc†

k1+qac†
k2−qbck2cck1d , (20)

where V abcd
k1,k2,q represents matrix elements of the Coulomb

potential and the coupling to the external field part, HA(t ) was
given in Eq. (5).

Following the same procedure in the last section, we derive
the first-order conductivity tensor by taking the functional
derivative of the current expectation value with respect to the
external field. We notice that as the interaction Hamiltonian
does not depend on the external field, we obtain a seem-
ingly identical expression of the first-order conductivity tensor
in Eq. (15). However, the expectation value is now evalu-
ated over the interacting ground state. The velocity-velocity

correlation function reads

〈ĥμ(t )ĥα (t ′)〉int = 1

Zint

∫
D[c†

k(t ′′), ck(t ′′)]

× [c†
ka(t )hμ

abckb(t )c†
kc(t ′)hα

cd ckd (t ′)]

× e−i
∫

dt ′′[H0(t ′′ )+Hint (t ′′ )], (21)

where 〈...〉int indicates that the expectation value is taken over
the interacting ground state and Zint is the corresponding par-
tition function. The first-order perturbative expansion over the
interaction term, Hint of Eq. (21) is shown in Appendix B 1,
which motivates a resummation over ladder diagrams to de-
scribe excitonic effects [42]. A more systematic derivation
of ladder diagrams, which aligns with the ab initio GW-BSE
method for treating excitonic effects can be done by using the
functional derivative approach [43,44], which will be intro-
duced in Sec. III A.

III. DIAGRAMMATIC APPROACH
TO EXCITONIC EFFECTS

To incorporate excitonic effects into our derivation, we
start by solving for the interacting electron-hole correlation
function, the equation of motion of which is described by
the BSE [44–46]. By taking the static approximation on the
screened Coulomb interactions one can construct the cor-
relation function from the eigensolutions of the BSE. For
linear optical responses, excitonic effects can be included
by replacing the bubble diagram with the interacting cor-
relation function, which involves an infinite sum of ladder
diagrams. Such replacement is equivalent to dressing the
electron-photon vertex in the IP conductivity diagrams with
the ladder diagrams [47]. In light of this observation, we apply
the procedure to derive nonlinear optical responses. The same
procedure is recently used in the derivation of Raman cross
section [35].
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FIG. 1. (Top) Diagrammatic representation of the Bethe-Salpeter
equation for the electron-hole correlation function. The symbols L
and L0 represent the electron-hole correlation function for interact-
ing and independent particles, respectively. (Bottom) K denotes the
interaction kernel, which includes an attractive screened electron-
hole interaction, W (double-wiggly line), and a repulsive Coulomb
exchange term, V (single-wiggly line).

A. Electron-hole interaction

Excitons are bound electron-hole pairs, where electrons
and holes interact with each other via Coulomb interactions.
The equation of motion of a general two-particle correla-
tion function, L defined as L ≡ δG

δh , can be derived from the
Dyson’s equation of a dressed single-particle Green’s function
G. Symbolically, we have G = G0 + G0hG + G0G, where
h is the electron-photon coupling vertex and  is the elec-
tron self-energy due to Coulomb interactions. We delegate
the details of the derivation in Appendix B 2. The resulting
equation of motion in the frequency domain reads

Lkab,k′cd (ω) = L0;k,ab(ω)δacδbd + L0;k,ab(ω)

×
∑

k′′,l,l ′
Kkab,k′′ll ′Lk′′ll ′,k′cd (ω), (22)

where we denote the noninteracting electron-hole correlation
function as L0;k,ab with band indices in alphabet letters and
the crystal momentum k. The BSE kernel K describes the
interaction between electron-hole pairs. In the approximation
consistent with the GW quasiparticle self-energy, the kernel K
includes an attractive screened Coulomb potential W (ω) and
a repulsive bare exchange term V . Equation (22) is shown in
terms of diagrams in Fig. 1.

For a general BSE, the screened Coulomb interaction
in the kernel K is frequency dependent and the band in-
dices run over all bands. In practice, a static approximation
to the screened Coulomb interaction W (ω) = W (0) is of-
ten assumed so that the BSE can be transformed into an
eigenvalue problem [45,46]. Moreover, we focus on semicon-
ductors and use the Tamm-Dancoff approximation. With these

FIG. 2. The BSE for the dressed electron-photon vertex.

assumptions, we can write the eigenvalue equation for exci-
tons with zero center-of-mass momentum (see Ref. [43–46]
and Appendix C 1),

HBSE
cvk,c′v′k′Y s

c′v′k′ = EsY
s

cvk, (23)

where the index s labels exciton states, Es and Y s
cvk are the ex-

citon energy and the exciton envelope function, respectively,
and the effective Hamiltonian HBSE

cvk,c′v′k′ is

HBSE
cvk,c′v′k′ = (εck − εvk )δcc′δvv′δkk′ + Kcvk,c′v′k′ , (24)

where εvk and εck are the energy of the conduction and the
valence band electrons, respectively. The interacting electron-
hole correlation function Li jk,nmk′ can be written in terms of
exciton solutions as

Li jknmk′ (ω) = i
∑

λ

[
f̄i f j f̄n fm

Y λ
i jkY λ∗

nmk′

ω − Eλ + iη

− fi f̄ j f̄m fn

Y λ∗
jikY λ

mnk′

ω + Eλ + iη

]
, (25)

where f̄n = 1 − fn. The first term in the parenthesis is the
resonant part while the second term is the antiresonant con-
tribution [46].

B. Vertex correction

In Eq. (17), we derive the interband IP conductivity by
connecting the edges of electron and hole propagators of
a free electron-hole correlation function with the velocity
operators as shown in the second diagram in Eq. (18). To
derive the optical conductivity tensor with excitonic effects,
we are motivated to replace free electron-hole propagators
with their interacting counterparts following the discussion
in Appendix B. The derivation of the first-order optical con-
ductivity can be done straightforwardly as shown in the
next section. For higher-order responses, diagrams of three-
or multi-particle correlation functions appear. In particu-
lar, the three-particle triangle diagram, which represents the
three-particle correlation function appears in the second-order
optical response.

Since a direct calculation of the interacting triangle dia-
gram is challenging, inspired by Ref. [35] we approximate
it with a series of ladder diagrams. The essential idea is to
add all possible noncrossing interaction lines for each pair
of electron and hole legs. We illustrate the procedure for
the electron-photon vertex in Fig. 2. The shaded triangle in
Fig. 2 stands for a dressed vertex, which can be expanded
with respect to the order of interactions. At the zeroth order,
we have a bare noninteracting vertex ĥ. In the first order,
a single-interaction kernel together with a free electron-hole
correlation is included in the diagram. At higher order, we
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FIG. 3. The interacting three-particle correlation function dia-
gram is approximated as a sum of three bare ones with two dressed
vertices in each diagram.

insert more interaction kernels and L. The infinite-order sum
leads to the right-hand side of Fig. 2, where the infinite sum of
ladder diagrams is replaced with the interacting electron-hole
correlation. The BSE for the dressed incoming electron-
photon vertex h̃ satisfies [35]

h̃(ω) = h + KL(ω)h, (26)

where hμ is the bare vertex. Formally, in the matrix notation,
the dressed incoming vertex can be solved by the inverse of
the free electron-hole correlation,

h̃α
abk(ω) = L−1

0,abk(ω)L(ω)abkcdk′hα
cdk′ . (27)

The dressed outgoing vertex is solved by

h̃μ∗
abk(ω) = hμ∗

cdk′L(ω)cdk′abkL−1
0,abk(ω). (28)

The dressed vertex provides a systematical way to in-
clude excitonic effects in diagrams. For second-order optical

conductivity, within the ladder approximation, the interacting
triangle diagram can be decomposed into a sum of three
diagrams, each of which has two dressed vertices as shown
in Fig. 3. We note that the diagram with all three vertices
dressed simultaneously is not included since it would involve
an electron-electron or hole-hole correlation function, which
is beyond the Tamm-Dancoff approximation.

We conclude that excitonic effects can be included in the
nth-order conductivity within the Tamm-Dancoff approxima-
tion by simply dressing all vertices in a way that

(i) Electron and hole propagators of any two e-h corre-
lation functions associated with the dressed vertices can not
directly connect to each other.

(ii) By associating one of the two legs of an e-h correla-
tion function with an electron and the other with a hole for
every propagator in a diagram, all legs can not have mixed
characters of electron and hole.

The first rule is to avoid the double counting while the
second follows from the Tamm-Dancoff approximation. New
components with dressed vertices up to the second-order re-
sponse are listed in Table II.

C. Assumptions and caveats

It is crucial to acknowledge the underlying assumptions
made to simplify the calculation process. We collect all as-
sumptions throughout the entire derivation and discuss the
possible errors from them. We first discuss the approxima-
tions similar to those in Ref. [33] and the caveats in the
following.

Concerning the choice of the gauge, it has been shown that
velocity gauge could lead to incorrect results for two cases:
(a) an effective Hamiltonian, which is limited to a subset of
Brillouin zone and (b) few band model systems [5,6,48]. In
the example we show below, we deal with an effective Hamil-
tonian in the full Brillouin zone so point (a) is irrelevant. For

TABLE II. Diagram components for the conductivity tensor including excitonic effects within the ladder approximation.

Physical description Diagram Mathematical expression

Dressed incoming/outgoing vertex h̃

Interacting two-particle correlation with two bare vertices hLh

Bare two-particle correlation with the left vertex dressed h̃L0h

Bare two-particle correlation with the right vertex dressed hL0h̃

One term of the approximation to the interacting three-particle correlation h̃Gh̃GhG
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few band systems, indeed a convergence check with respect
to the number of bands needs to be checked carefully. Our
derivations in the velocity gauge should be valid in general
and can be applied for different systems if cares are taken in
the numerical calculations.

One should also be aware of the limit of the perturbative
expansion over the equilibrium Green’s function. Both our
derivation and the derivation in Ref. [33] are based on a
perturbative expansion with respect to light-matter couplings
so the applicability is typically limited to the weak field
case. For strong field cases, dynamical effects beyond the
perturbation theory should be treated with the nonequilibrium
Green’s function approach on the Keldysh contour. For in-
stance, light-excited carriers from strong pulses can change
the screening environment and lead to both band and exciton
energy renormalizations. Such effects are not considered from
the perturbation of the equilibrium Green’s function. Never-
theless, the derivation in Ref. [33] and in the present paper
can be considered as a generalization of the Kubo formula to
higher-order responses.

Many-body effects on the single-particle Green’s function
can be approximated with a quasiparticle form

Ga(ω) = 1

ω − εa − a(ω = εa) + iη
. (29)

Within the quasiparticle approximation, the main effect of
the self-energy correction is a shift of energy level, a
state-dependent broadening and a correction to the veloc-
ity operator from the nonlocal self-energy. The former two
corrections can be straightforwardly incorporated in the de-
rived expression by replacing the bare electron energy with
the quasiparticle energy. It is known that corrections from
the nonlocal potential to the velocity operators is necessary
for accurate ab initio calculations [49]. However, it is less
clear how the velocity operator is affected by the nonlocal
self-energy. Since these corrections only change the velocity
operator quantitatively, we ignored them in our derivation
for simplicity. The possible errors will be discussed fur-
ther when comparing with the derivation in Ref. [32] later.
Therefore, as in Ref. [33], we use the bare Green’s func-
tion and the bare velocity operator from Eq. (7) in all our
calculations.

Additional approximations concerning the two-particle
correlations introduced in the present work are the following.
We include only ladder diagrams to approximate the electron-
hole correlation function. As we show in Appendix B 2, this
approximation is equivalent to the choice of GW electron self-
energy in the single-particle level and leads to the standard
BSE for excitons. In the linear response regime, first-principle
GW-BSE method is widely adopted for ab initio calculations
of optical absorption spectrum and is known to work well
for semiconductors. The screened exchange interaction in the
BSE kernel is assumed to be static. As the plasmon frequency
is much higher than the exciton binding energy, the dynam-
ical screening effects can be safely ignored. The functional
dependence of the screened exchange with respect to G is also
ignored as they lead to higher-order correction to electron-
hole interaction vertex [45]. Moreover, the resultant BSE are
solved with the Tamm-Dancoff approximations. Numerical

tests have been conducted and shown that the approximation
is generally valid for cold semiconductors [45].

IV. OPTICAL RESPONSES WITH EXCITONIC EFFECTS

In this section, we derived expressions for optical con-
ductivity up to the second-order following the prescription
introduced in Sec. III A.

A. First-order conductivity

For semiconductors, we ignore the first diagram in
Eq. (18), which corresponds to the Drude weight. The sec-
ond term, which describes the interband transition can be
expressed in terms of bare vertices and the interacting two-
particle correlation function. Replacing the free e-h bubble
with Eq. (26), the expression for the resonant part reads

σ
μα

eh (ω; ω1) = iC1

h̄ω

∑
s

hμ,∗
ab

Y s
abkY s∗

i jk′

h̄ω1 − Es + iη
hα

i j

= iC1

h̄ω

∑
s

dμ∗
s dα

s

h̄ω1 − Es + iη
. (30)

where we defined the excitonic velocity dα
s ,

dα
s = Y s∗

abkhα
abk, (31)

where α is the polarization direction and s is the exciton state
index. The real part of σμα (ω; ω) is related to the optical
absorption spectrum, which is often represented by the imag-
inary part of the dielectric function ε2(ω). We have ε2(ω) =
Re[σ (ω)]/(ε0ω) so

ε
μα
2 (ω) = πe2g

ε0ω2Vtot

∑
s

dμ∗
s dα

s δ(h̄ω − Es), (32)

where ε0 is the vacuum permittivity. Equation (32) is the
familiar expression for optical absorption spectrum in the
literature [50].

Equivalently, we can consider the excitonic effect by
dressing one of the electron-photon vertex and evaluate the
following diagram:

(33)

where we replace the interacting bubble diagram with the
bare one but introduce the dressed vertex h̃. The mathematical
expression for the above diagram is

σ
μα

eh (ω; ω1) = iC1

h̄ω
h̃α

abL0,abk(ω1)hμ∗
ab

= iC1

h̄ω
L−1

0,abk(ω1)Labk,i jk′ (ω1)hα
i jh

μ∗
ab L0,abk(ω1),

(34)

where in the second line we insert the dressed vertex from
Eq. (26). The equivalence of these two derivations can be
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FIG. 4. (Top) The transformation of an interacting electron-hole
bubble diagram into a bare bubble with a dressed vertex. (Bottom)
Equivalence of dressing vertex on either side of the bubble.

expressed diagrammatically as shown in the top panel in
Fig. 4, which demonstrates that we can “push” the shaded area
into one of the vertex. We can also show that it is flexible
to dress either the incoming photon vertex or the outgoing
one.

B. Second-order conductivity

The topologically inequivalent diagrams for the second-
order optical conductivity including excitonic effects are
shown in Eq. (35).

(35)

Compared with diagrams for IP conductivity, the diagram with a three-photon line on the outgoing vertex is ignored since
there are no corresponding corrections within the Tamm-Dancoff approximation and we are dealing with cold semiconductors.
The first two terms are bubble diagrams with an either incoming or outgoing two-photon line. Excitonic effects are included
by dressing one vertex, which is similar to the treatment for the linear-order diagram and is equivalent to replacing the free
electron-hole correlation function with the interacting one as shown in Sec. IV A. At each vertex, the energy conservation of
the photon and the electron-hole pair can be checked from the frequency argument of the single-particle Green’s functions. The
indices a and b run over pairs between valence and conduction bands.

The interacting triangle diagram acquires different corrections from excitonic effects. Following the discussion in Sec. III A,
it is approximated by the sum of three diagrams, each of which has two dressed vertices. Again, energy conservation can be
readily checked at each vertex. We observe that the bare vertex in each diagram couples the electron or the hole states of the
two correlated electron-hole pairs associated with the two dressed vertices. Moreover, the bare vertex only couples conduction
or valence electrons in the same manifold.

After some tedious but straightforward algebra, we obtain an expression for the general second-order optical response
including excitonic effects. The details will be given in the Appendix D. We write down the final expression, which roughly
corresponds to the five diagrams above up to the symmetrization over photon frequency and polarizations,

σ
μαβ

eh (ω; ω1, ω2) = −C2

h̄2ω1ω2

∑
λ

[
dα

λ dμβ∗
λ

h̄ω1 − Eλ + iη
− dα∗

λ dμβ

λ

h̄ω1 + Eλ + iη

]
+ −C2

2h̄2ω1ω2

∑
λ

[
dαβ

λ dμ∗
λ

h̄ω − Eλ + iη
− dαβ∗

λ dμ
λ

h̄ω + Eλ + iη

]

+ C2

h̄2ω1ω2

∑
sλ

[
dα

s �
μ∗
sλ dβ∗

λ

(h̄ω2 + Eλ + iη)(h̄ω1 − Es + iη)
− dμ∗

λ �α
λsd

β
s

(h̄ω − Eλ + iη)(h̄ω2 − Es + iη)

]

− C2

h̄2ω1ω2

∑
sλ

dμ
λ �α

sλdβ∗
s

(h̄ω + Eλ + iη)(h̄ω2 + Es + iη)
+ [(α, ω1) ↔ (β, ω2)], (36)
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where we define the second-order excitonic velocity matrix
element, dαβ

λ = hαβ

ab Y λ∗
abk, the interexciton coupling matrix ele-

ments,

�
β

λs = hβ

cbY
λ∗

cakY s
bak − hβ

baY
λ∗

cakY s
cbk, (37)

and C2 = ge3h̄2/Vtot . The first term in �λs describes the cou-
pling between electrons in two excitons while the second term
is for the coupling between holes. The interexciton coupling
term originates from the bare vertex that appears in the trian-
gle diagram.

Equation (36) is the main result of this paper. The physical
meaning of each term can be read out directly with the help of
diagrams. Terms in the first parenthesis in Eq. (36) correspond
to the first diagram where an incoming photon created an
electron-hole pair with energy Eλ, which later absorbed and
at the same time emitted a photon through the second-order
velocity operator. The second term in the first parenthesis de-
scribes an anti-resonance process. The first term in the second
parenthesis describes the excitation of an electron-hole pair
by absorbing two photons, which emit a photon later. The 1/2
factor comes from the fact that this diagram originates from
the second-order expansion of the coupling Hamiltonian in the
functional integral and an exchange of α ↔ β and ω1 ↔ ω2

gives the same result.
The last three terms come from symmetrization and rear-

rangement of the three triangle diagrams. We can interpret
the third diagram in Eq. (35) by starting from the bottom-left
corner. An electron-hole pair was generated by absorbing a
photon. The hole state was scattered to another hole state
and emitted part of its energy at the bottom-right corner.
The electron and the hole absorbed light but deexcited at
the vertex on the top-left corner. In the fourth diagram, an
electron-hole pair is generated by absorbing a photon on the
top-left corner. The hole is scattered by another photon in the
bottom-left corner. The pair recombines and emits a photon
with frequency ω at the right vertex. In the fifth diagram,
which has a correspondence to the symmetrized partner term
in the last line in Eq. (36), an antiresonance process gener-
ates an electron-hole pair then the hole state is scattered at
the bare vertex. Finally, the e-h pair recombines and emits a
photon.

It is interesting to compare Eq. (36) with other reported
derivations. A comparison between Eq. (36) and Eq. (B1c)
in Ref. [32] will be given in the next section. We will
show that there is a one-to-one correspondence for each term
between that expression and Eq. (36). However, the two
derivations differ in how the velocity operators are defined.
In the next section, we will present the numerical results of
the second harmonic generation (SHG) for a simple two-band
model.

V. APPLICATION ON A MONOLAYER HEXAGONAL
BORON NITRIDE

In this section, we apply our method to compute the linear
absorption and the SHG spectrum for a model of monolayer
hexagonal boron nitride (h-BN). Since monolayer h-BN is
a large band gap semiconductor it is known to have strong
excitonic effects as we shall also demonstrate later.

A. Two-band tight-binding model

We employ a two-band tight-binding model for monolayer
h-BN [51]. In the local basis of B and N atoms, the tight-
binding Hamiltonian in the momentum space reads

HhBN
k =

(
� t0 fk

t0 f ∗
k −�

)
, (38)

where we define the structure factor fk = 1 + e−ik·a1 + e−ik·a2

with the primitive lattice vectors a1 = a0(
√

3
2 x̂ − 1

2 ŷ), a2 =
a0(

√
3

2 x̂ + 1
2 ŷ), and the lattice constant a0 = 2.46 Å. The

asymmetric on-site energies are denoted as � and −� for B
and N atoms, respectively. We choose � = 3.9 eV and the
nearest-neighbor-hopping strength t0 = 2.7 eV in our calcula-
tions below. The eigenenergies and eigenstates read

εc/vk = ±
√

�2 + (t0| fk|)2, |ck〉 = 1√
2

⎛
⎜⎝

√
1 + �

εck√
1 − �

εck

f ∗
k

| fk|

⎞
⎟⎠,

|vk〉 = 1√
2

⎛
⎜⎝−

√
1 − �

εck

fk
| fk|√

1 + �
εck

⎞
⎟⎠. (39)

With our choices of parameters, the band gap is 2� = 7.8 eV.
Berry connection plays a crucial role in calculating optical

matrix elements in both length gauge and velocity gauge. It
is defined as ξnmk = iA−1

∫
A dru∗

nk∇kumk, where A is the unit
cell area and unk is the cell-periodic part of the Bloch state,
which is distinct from the eigenstates in Eq. (39). Following
Ref. [51], we compute

ξnmk = i(∇qUnk;mk+q)|q=0, (40)

where the overlap matrix element U is defined as

Unk;mk+q =
∑

j=A,B

〈nk| j〉 〈 j|mk + q〉 e−iq·τ j , (41)

where 〈nk| j〉 is the wavefunction coefficients of the jth sub-
lattice orbital and the atom positions are given by τA = 0
and τB = 1

3 (a1 + a2) for A and B sublattice, respectively. The
off-diagonal part of ξnmk is the matrix elements of the position
operator, which describes interband optical transition ampli-
tude. The Hermiticity of the overlap matrix can be seen from
the definition.

We numerically solve BSE for excitons in this model. In
our implementation, the repulsive exchange term V is ignored
and the attractive screened Coulomb interaction W is modeled
by a Yukawa form [52]

Wvc,kk′ = − 1

8π2εε0
Uvk′,vkUck,ck′

e−l|k−k′ |

|k − k′| , (42)

where Unk,mk′ is the overlap matrix elements defined above,
we set the effective thickness l to be 1 Å and the dielectric
constant ε = 1.5. The unit-cell volume V = Al is used in
the calculation. Excitonic velocity matrix elements dμ

s from
Eq. (31), and the interexciton coupling matrix element �α

λs
defined in Eq. (37) are then computed from exciton envelope
functions for optical responses. The contraction over band
indices is trivial for a two-band model.
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FIG. 5. The xx tensor component of the imaginary part of the
dielectric function computed without (blue-solid line) and with (red-
solid line) excitonic effects.

B. Optical response from the h-BN model

We show the numerical results of absorption and SHG
tensors for the two-band Hamiltonian in Figs. 5 and 6, re-
spectively. Excitonic effects on these optical responses are
demonstrated by comparing the IP results with those including
e-h interactions. In the IP case, we use the expression given in
Ref. [41], which is derived in the velocity gauge within the
density matrix formalism.

For the SHG conductivity tensor, we evaluate the expres-
sions by setting ω1 = ω2 = ω. Lattice symmetry constrains
that the xxx tensor component is the only independent ten-
sor component for second-order conductivity tensors. Other
components are either equal or differ by a minus sign. Hence,
we only show the xxx component below. In our numerical
calculations, a uniform 48 × 48 k grid and a broadening of
0.01 Ry is used. With the chosen parameters, we obtain a
binding energy of 1.4 eV for the lowest exciton state. The
imaginary part of the dielectric function, which represents the
absorption spectrum is shown in Fig. 5. For IP results, We
see a step function like a spectrum close to the band edge
and a peak at 9.5 eV, which reflects the joint density of state
of the monolayer h-BN in the same energy range. Excitonic
effects qualitatively change the spectrum. We observe that
the spectrum manifests two peaks compared to the IP case,
which can be attributed to A and B exciton excitations at 6.4
and 7.8 eV, respectively [29]. This result suggests substantial
enhancement of the response due to excitonic effects. Our
results generally agree with the reported results from model
calculations [52]. We also confirm numerically that the results
of Eq. (36) reduced to the IP results if we set the kernel to zero
when solving the BSE Hamiltonian.

In Fig. 6, we show the xxx tensor component of SHG
conductivity, which are comparable to the results in Ref. [52].
For the IP response shown in Fig. 6(a), higher responses
are observed between 4–5 eV and 8–10 eV. The real part
of the SHG responses between 8–10 eV resembles those in
the absorption spectrum, which are due to the single-photon

FIG. 6. SHG conductivity spectrum, σ xxx
eh (2ω; ω, ω), (a) com-

puted with IPA and (b) computed from Eq. (36) including excitonic
effects. Black-, red-, and blue-solid lines are for the absolute value,
the real part, and the imaginary part of the conductivity tensor,
respectively.

resonance structure in the denominator of Eq. (36) while those
between 4–5 eV can be understood as the corresponding two-
photon resonance contribution.

Comparing Figs. 6(a) and 6(b), we can see that excitonic
effects greatly enhance the SHG intensity and shift the spec-
trum to the low energy side. Moreover, two pronounced peaks
appear; one is at 6.4 eV, which is identical to that in the
absorption spectrum, and the second peak is located at 3.2 eV,
which is half the energy of the first peak. The presence of
these peaks is the consequence of either a one-photon or a
two-photon resonance to the A exciton from the pole structure
shown in Eq. (36). Secondary peaks due to B excitons can also
be identified at 7.8 eV and 3.9 eV. A detailed analysis reveals
that the excitonic enhancement is a result from strong exci-
tonic dipole matrix elements and large interexciton couplings
between A and B excitons [31].

C. Comparison with the density matrix formulation

We compare our expression Eq. (36) with those derived
from the density matrix formulation. In Ref. [32], expressions
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of second-order conductivity tensors including excitonic ef-
fects in different gauges are derived from the density matrix
formulation. In particular, Eq. (B1c) in Ref. [32], which is also
derived in the velocity gauge reads

σ
μαβ

eh [πλs](ω; ω1, ω2)

= C2

ih̄2ω1ω2

∑
λ

[
Aμβ

λ πα∗
λ

h̄ω1 − Eλ

+ Aμβ∗
λ πα

λ

h̄ω1 + Eλ

]

− C2

2ih̄2ω1ω2

∑
λ

[
π

μ

λ Aαβ∗
λ

h̄ω − Eλ

+ π
μ∗
λ Aαβ

λ

h̄ω + Eλ

]

+ C2

h̄2ω1ω2

∑
λs

[
π

μ
λ πα

λsπ
β∗
s

(h̄ω − Eλ)(h̄ω2 − Es)

+ π
μ∗
λ πα∗

λs πβ
s

(h̄ω + Eλ)(h̄ω2 + Es)

− π
β

λ π
μ
λsπ

α∗
s

(h̄ω2 + Eλ)(h̄ω1 − Es)

]
, (43)

where C2 is defined earlier and πλ, πλs, and As are the
excitonic velocity matrix elements, the interexciton velocity
matrix elements, and the second-order velocity matrix ele-
ments, respectively. They are defined as follows. We first
define the excitonic dipole matrix element, ξλ = Y λ

cvkξvck.
The definition of the matrix element of the excitonic veloc-
ity operator follows from the commutator between the BSE
Hamiltonian and the excitonic dipole operator, πλ = −iEλξλ.
Similarly, the interexciton velocity operator πλs is defined as

πλs = i(Eλ − Es)ξλs. (44)

The interexciton dipole matrix element ξλs consists of inter-
and intraband part,

ξλs = Qλs + Rλs, (45)

where Rλs represents the interband contribution within elec-
trons or holes states in excitons,

Rλs =
∑
cvk

Y λ,∗
cvk

( ∑
c1 
=c

Y s
c1vkξcc1k −

∑
v1 
=v

Y s
cv1kξv1vk

)
(46)

while Qλs corresponds to the intraband contribution described
by the covariant derivative defined earlier,

Qλs = i
∑

k

Y λ,∗
cvk Dg(Y s

cvk ), (47)

where Dα
g is the generalized derivative, defined as Dα

g Oab =
∂Oab
∂kα − i(ξα

aa − ξα
bb)Oab. In a two-band model, Rλs vanishes so

we have ξλs = Qλs. The matrix element of the second-order
velocity operator Aαβ

s is defined by taking the commutator of
the excitonic dipole operator and πs, which is expressed as
As = ∑

λ(ξλπλs − πλξλs).
In contrast to our excitonic operators defined earlier, the

excitonic velocity operators here are defined through the com-
mutator between the excitonic dipole operators and the exci-
ton Hamiltonian. By comparing Eqs. (36) and (43), we can
see that the two expressions can be related to each other
by the following substitutions, dα

λ → πα∗
λ , dαβ

λ → iAαβ∗
λ , and

�α
λs → πα

λs. For the correspondence between �λs and πλs,
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FIG. 7. The absolute value of SHG conductivity tensors com-
puted with Eq. (36) (blue-solid line), σ xxx

eh [�x
λs] and Eq. (43)

(orange-solid line), σ xxx
eh [π x

λs].

we note the similarity between Eqs. (37) and (46). The IP
velocity matrix elements is related to the dipole matrix ele-
ments through Eq. (7). In our definition, the excitonic velocity
matrix elements are defined by contracting the IP velocity
matrix elements with exciton envelope functions while it is
defined as the two-particle generalization of the velocity op-
erator in Ref. [32]. A similar comparison also applies to the
interexciton velocity and the second-order excitonic velocity
operators. Such difference originates from the fact that we
start with a single-particle formulation and treat electron-hole
interactions as a perturbation, while in Ref. [32] the derivation
starts with the single-particle density matrix formulation but
is generalized to excitonic operators defined from the two-
particle Hamiltonian in the end. In Fig. 7, we compare the
numerical results from the two expressions. We observe that
although the two results are qualitatively similar to each other,
their absolute intensity differs. Our expression tends to give a
higher conductivity than the result from Eq. (43) and the first
peak around 3 eV is more pronounced. To further understand
this difference, we analyze the contribution of each term sep-
arated by parenthesis in Eq. (36). We find that the first three
terms have the dominant contributions to the SHG conductiv-
ity tensor. Their contributions are shown in Figs. 8(a) and 8(b)
for Eqs. (36) and (43), respectively. From the peak position
in each panel, we can identify their single- or two-photon
resonance origins. A term-by-term comparison shows that the
frequency dependence and the sign of corresponding terms
from the two derivations qualitatively agree. However, the
difference in their relative magnitude leads to the difference
in total responses. Specifically, the large deviation at around
3.0 eV is due to the cancellation between the contribution
of the second and the third term as shown in Fig. 8(b). In
contrast, the cancellation is less effective from our expres-
sion as shown in Fig. 8(a). We further compare the different
matrix elements defined above. For the interexciton coupling
matrices, by definition the diagonal elements of πα

λs vanish
while �α

λs can have finite diagonal elements. We find that the
off-diagonal elements of �α

λs is larger than πα
λs in magnitude in
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FIG. 8. The real part of the three dominant terms to SHG. They
correspond to the first term through the third term in (a) Eq. (36) and
(b) Eq. (43).

our calculation. The comparison of the second-order velocity
matrix elements also shows a similar trend.

We caution that the comparison of the two expressions
should be made carefully. Although the enhancement from
excitonic effects have been demonstrated in previous calcula-
tions, we observe that the enhancement is stronger when using

the expression derived in the present study as shown in Fig. 7.
One possible issue is the small number of bands used in our
calculations as we are working with a two-band model. It is
shown that a large number of bands are needed to converge
the calculations in the velocity gauge [5,6,48]. Another pos-
sible reason for the discrepancy of the two derivations is the
lack of self-consistency in our paper. Since we use the bare
Green’s function in all calculations, accordingly the velocity
operator is defined from the corresponding IP Hamiltonian.
For a self-consistent theory, one would include electron-hole
interaction effects through the self-energy, which could lead
to a correction term to the velocity operator from the effective
single-particle Hamiltonian. A fully self-consistent treatment
is beyond this work and will be left in the future work.

VI. CONCLUSIONS

In summary, we derive the expression for second-order
optical responses including excitonic effects with a diagram-
matic approach. Our approach extends the previous derivation
for the IP cases by dressing the electron-photon coupling
vertex with the electron-hole ladder diagrams. It is known
that excitonic effects are strong for low dimensional materials.
Hence, we expect that excitonic effects are essential to de-
scribe nonlinear optical responses. First-principle calculations
of second-order optical responses including excitonic effects
can be straightforwardly performed by implementing the de-
rived expression. All the ingredients can be obtained from
standard density functional theory packages and software with
BSE solvers implemented. Although we only focus on the
second-order response, the diagrammatic rules provided here
can be readily applied to higher-order responses.
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APPENDIX A: DERIVATION OF THE SECOND-ORDER CONDUCTIVITY TENSOR

In the first part of this section, we give the detailed derivations of the second-order optical conductivity within IP approxima-
tion. The derivation including electron-hole interactions is given in Appendix D. These derivations demonstrate the Feynmann
rules listed in Ref. [33] and in our paper.

For the second-order response, the conductivity tensor σμαβ (ω; ω1, ω2) can be computed from the second derivative of the
current density with respect to the external fields, δJμ(t )

δEα (t1 )δEβ (t2 ) |E=0. From Eq. (9) we can identify that there are two operators,
which consist of expansion of the external field. One is the velocity operator associated with the current operator and the other
is the coupling Hamiltonian HE . In total there are four terms contributing to the second-order conductivity,

δ2v
μ
E (t )

δEβ (t2)δEα (t1)
− v

μ
E (t )

δ2
∫

dt ′HE (t ′)
δEβ (t2)δEα (t1)

− δv
μ
E (t )

δEβ (t2)

δ
∫

dt ′HE (t ′)
δEα (t1)

+ 1

2!
v

μ
E (t )

δ2(
∫

dt ′′HE (t ′′))2

δEα (t1)δEβ (t2)
, (A1)

where E = 0 is set after taking the derivatives. As we discussed in the main text, we identify the vertex associated with the
current operator as the outgoing vertex and those associated with the HE as the incoming vertex. The number of photon lines
on a vertex is determined by the order of derivatives with respect to the external field. Therefore the first term correspond
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to the diagram with three photon lines on the outgoing vertex, the third term is the diagram with two photon lines on the
outgoing vertex and one photon line on the incoming vertex. The second and fourth term both have two incoming vertex and one
outgoing vertex. While the second term has two photon lines on the incoming vertex, the fourth term has one photon line on each
incoming vertex. We note that the functional derivative can be taken in a different order, which corresponds to the symmetry of
exchanging the two external fields.

We are interested in the second and the third term, which generate diagrams with two incoming or two outgoing photons
on the same vertex. The third term can be obtained by combining terms we calculated for the first-order conductivity. Using

δ
δE (t ) = ∫

dω′ eiω′t δ
δE (ω′ ) , we have

− δv
μ
E (t )

δEβ (t2)

δ

δEα (t1)

∫
dt ′HE (t ′) = −

∫
dω1 eiω1t2

δ

δEβ (ω1)

[ ∞∑
n=0

1

n!

n∏
k=1

∫
dωk

2π
e−iωkt

(
ie

h̄ωk

)
Eαk (ωk )ĥμα1...αn

]

×
∫

dt ′
∫

dω2 eiω2t1
δ

δEα (ω2)

[ ∞∑
n=1

1

n!

n∏
k=1

∫
dωk

2π
e−iωkt ′

(
ie

h̄ωk

)
Eαk (ωk )ĥα1...αn

]

= −
∫

dt ′
∫

dω1

2π

∫
dω2

2π
e−iω2(t ′−t1 ) e−iω1(t−t2 )

(
ie

h̄ω1

)
ĥμβ (t )

(
ie

h̄ω2

)
ĥα (t ′). (A2)

The term with the second derivative in the second term of Eq. (A1) reads

δ2

δEβ (t2)δEα (t1)

∫
dt ′HE (t ′) =

∫
dω′′eiω′′t2 δ

δEβ (ω′′)

∫
dω′eiω′t1 δ

δEα (ω′)

∫
dt ′

∞∑
n=1

1

n!

n∏
k=1

∫
dωk

2π
e−iωkt ′

(
ie

h̄ωk

)
Eαk (ωk )ĥα1...αn

= 1

2!

∫
dω′′eiω′′t2 δ

δEβ (ω′′)

∫
dω′eiω′t1 δ

δEα (ω′)

∫
dt ′

∫
dω1

2π

∫
dω2

2π

× e−iω1t ′
e−iω2t ′

(
ie

h̄ω1

)(
ie

h̄ω2

)
Eα1 (ω1)Eα2 (ω2)ĥα1α2

= 1

2!

∫
dt ′

∫
dω′′

2π
eiω′′(t2−t ′ )

∫
dω′

2π
eiω′(t1−t ′ )

(
ie

h̄ω′′

)(
ie

h̄ω′

)(
ĥαβ (t ′) + ĥβα (t ′)

)
. (A3)

Using v
μ
E = hμ at the zeroth order, the second term is

−hμ(t )
1

2!

∫
dt ′

∫
dω′′

2π
eiω′′(t2−t ′ )

∫
dω′

2π
eiω′(t1−t ′ )

(
ie

h̄ω′′

)(
ie

h̄ω′

)(
ĥαβ (t ′) + ĥβα (t ′)

)
.

The Fourier transformation of the expectation value of the third term is

σ
μαβ,3
IP (ω; ω1, ω2)

δ(ω − ω1 − ω2)

2π

= −e
∫

dteiωt
∫

dt1
2π

e−iω1t1

∫
dt2
2π

e−iω2t2

∫
dt ′

∫
dω3

2π

∫
dω4

2π
e−iω4(t ′−t1 ) e−iω3(t−t2 )

(
ie

h̄ω3

)(
ie

h̄ω4

)
〈ĥμβ (t )ĥα (t ′)〉

= −e
∫

dt
∫

dt1
2π

ei(−ω1+ω4 )t1

∫
dt2
2π

ei(−ω2+ω3 )t2

∫
dt ′

∫
dω3

2π

∫
dω4

2π
e−iω4t ′

e−i(ω3−ω)t

(
ie

h̄ω3

)(
ie

h̄ω4

)
〈ĥμβ (t )ĥα (t ′)〉

= 1

(2π )2

e3

h̄2ω2ω1

∫
dt

∫
dt ′ eiω1t ′

e−i(ω2−ω)t hμβ

ab hα
cd〈c†

a(t )cb(t )c†
c (t ′)cd (t ′)〉

= − 1

(2π )2

e3

h̄2ω2ω1

∫
dt

∫
dt ′ eiω1t ′

e−i(ω2−ω)t hμβ

ab hα
baGb(t, t ′)Ga(t ′, t )

= − 1

(2π )2

e3

h̄2ω2ω1

∫
dt

∫
dt ′ eiω1t ′

e−i(ω2−ω)t hμβ

ab hα
ba

∫
dω′

2π
Gb(ω′)e−iω′(t−t ′ )

∫
dω′′

2π
e−iω′′(t ′−t )Ga(ω′′)

= − 1

(2π )4

e3

h̄2ω2ω1

∫
dω′

∫
dω′′

∫
dt

∫
dt ′ ei(ω1+ω′−ω′′ )t ′

e−i(ω2−ω+ω′−ω′′ )t hμβ

ab hα
baGb(ω′)Ga(ω′′)

= − e3

h̄2ω2ω1

δ(ω − ω1 − ω2)

2π

∫
dω′

2π
hμβ

ab hα
baGb(ω′)Ga(ω1 + ω′), (A4)
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where the superscript 3 indicates that it is the third term in Eq. (A1) and in the sixth line only the connected diagram is considered.
For the second term, we have

σ
μαβ,2
IP (ω; ω1, ω2)

δ(ω − ω1 − ω2)

2π

= − e

2!

∫
dteiωt

∫
dt1
2π

∫
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∫
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)(
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)
〈ĥμ(t )ĥαβ (t ′)〉

= e3

h̄2ω1ω2

1

2!(2π )2

∫
dteiωt

∫
dt ′e−i(ω1+ω2 )t ′ 〈ĥμ(t )ĥαβ (t ′)〉

= 1

2!(2π )2

e3

h̄2ω1ω2

∫
dteiωt

∫
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hμ
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a(t )cb(t )c†

c (t ′)cd (t ′)〉

= − 1

2!(2π )2

e3

h̄2ω1ω2

∫
dteiωt

∫
dt ′e−i(ω1+ω2 )t ′

hμ

abhαβ

cd Gbc(t, t ′)Gda(t ′, t )

= − 1

2!(2π )2

e3

h̄2ω1ω2

∫
dteiωt

∫
dt ′e−i(ω1+ω2 )t ′

hμ

abhαβ

ba

∫
dω′

2π
Gb(ω′)e−iω′(t−t ′ )

∫
dω′′

2π
e−iω′′(t ′−t )Ga(ω′′)

= − 1

2!(2π )2

e3

h̄2ω1ω2

∫
dt

∫
dt ′ei(−ω1−ω2+ω′−ω′′ )t ′

hμ

abhαβ

ba

∫
dω′

2π

∫
dω′′

2π
ei(ω′′+ω−ω′ )t Gb(ω′)Ga(ω′′)

= − e3

2h̄2ω1ω2

δ(ω − ω1 − ω2)

2π
hμ

abhαβ

ba

∫
dω′′

2π
Gb(ω′′ + ω1 + ω2)Ga(ω′′). (A5)

These results agree with Eq. (42) in Ref. [33]

APPENDIX B: EQUATION OF MOTION
OF THE TWO-PARTICLE CORRELATION FUNCTION

1. Perturbative expansion

In this Appendix we show how the ladder diagrams can
be derived from the perturbative expansion of Coulomb inter-
actions when evaluating Eq. (21). The infinite sum of ladder
diagrams was performed in Ref. [47] to describe the exciton
absorption spectrum. In the first-order expansion over Hint for
both the numerator and the denominator of Eq. (21), we obtain
[40]

〈c†
ka(t )ckb(t )c†

kc(t ′)ckd (t ′)〉int

= 〈c†
ka(t )ckb(t )c†

kc(t ′)ckd (t ′)〉

− i

〈
c†

ka(t )ckb(t )c†
kc(t ′)ckd (t ′)

×
∫

dt ′′V abcd
k1,k2,qc†

k1+qac†
k2−qbck2cck1d

〉conn.

,+ · · · ,

(B1)

where the superscript conn. indicates that we only consider
connected diagrams since the disconnected diagrams are
canceled by the expansion of the denominator. The bubble
diagram in Fig. 9 corresponds to the first term in Eq. (B1)
while the other diagram represents one of the non-self-energy
diagrams from the second term.

FIG. 9. Zero-order and first-order expansion.

In the next-order expansion over V abcd
k1,k2,q, we have the term

〈c†cc†cH2
int〉, which involves twelve creation and annihilation

operators. Excluding the self-energy and disconnected dia-
grams, two of the new diagrams are depicted in Fig. 10 [40].
We could continue with higher-order expansions. However,
in most cases, only approximate solutions can be attained.
It has been shown by Mahan [42] that for semiconductors,
additional vertex corrections, such as “entangled” interactions
(cross Coulomb line diagrams in Fig. 10) beyond ladder di-
agrams is proportional to the density of excited electrons or
holes and can be safely ignored in the weak field limit. Keep-
ing only the ladder diagrams leads to the Dyson-like equation.
Symbolically, we have

L = G0G0 + G0G0VqG0G0 + G0G0VqG0G0VqG0G0 + · · ·
= L0 + L0VqL0 + L0VqL0VqL0 + · · ·
= L0 + L0VqL, (B2)

where G0 is defined in Eq. (16), and L0 ≡ G0G0, and the
interacting two-particle correlation function (B1) is denoted
as L. The infinite sum of ladder diagrams is illustrated in
Fig. 11. Equation (B2) is the BSE with kernel Vq for the two-
particle correlation function. For a static interaction Vq, the
Bethe-Salpeter equation can be reformulated as an eigenvalue
problem, from the solutions of which we can evaluate the
two-particle correlation function Eq. (B1) and the velocity-
velocity correlation function, Eq. (21). In the above derivation,

FIG. 10. Second-order expansion.
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FIG. 11. Ladder diagrams of the two-particle correlation function.

the bubble diagrams are not included for simplicity. In
Appendix B 2, we will show a derivation, which systemati-
cally includes both bubble and ladder diagrams [43,44,53].

2. Functional derivative approach

We show that ladder diagrams can be derived using a func-
tional derivative approach with the choice of GW self-energy.
Moreover, the derivation ensures that there are no new light-
matter coupling vertices introduced in the two-particle level.
A detailed derivation can be found in [43,44,53]. Here, we
reproduce the key steps. The Dyson’s equation for a single-
particle Green’s function G is G = G0 + G0hG0 + G0G,
where G0 is the bare Green’s function, h is the electron-
photon coupling vertex and  is the electron self-energy due
to Coulomb interactions. The equation of motion of the two-
particle correlation can be derived from the definition

L(1, 4; 2, 3) ≡ δG(1, 2)

δh(3, 4)
. (B3)

Use functional integral identity [43],∫
dzF [ψ (ξ ); x, z]F−1[ψ (ξ ); z, y] = δ(x, y), (B4)

δ

δψ (z)
F [ψ (ξ ); x, y] = −

∫
dξdζF [ψ (ξ ); x, ξ ]

δ

δψ (z)
F−1

× [ψ (ξ ); ξ, ζ ]F [ψ (ξ ); ζ , y] (B5)

and
δF

δψ (y)
=

∫
dy

δF

δG(y)

δG(y)

δψ (y)
, (B6)

we rewrite

L(1, 4; 2, 3) = −
∫

d5d6 G(1, 5)
δ

δh(3, 4)
G−1(5, 6)G(6, 2).

(B7)

Inserting Dyson equation for the single-particle Green’s func-
tion, G(1, 2) = G0(1, 2) + ∫

d3d4 G0(1, 3)[h(3)δ(3, 4) +
(3, 4)]G(4, 2), to the equation above, we have

L(1, 4; 2, 3) = −
∫

d5d6 G(1, 5)
δ

δh(3, 4)

[
G−1

0 (5, 6) − h(5, 6) − (5, 6)
]
G(6, 2)

= −
∫

d5d6 G(1, 5)

[
−δ(5, 3)δ(6, 4) − δ(5, 6)

δh(3, 4)

]
G(6, 2)

= G(1, 3)G(4, 2) +
∫

d5d6 G(1, 5)
δ(5, 6)

δh(3, 4)
G(6, 2)

= G(1, 3)G(4, 2) +
∫

d5d6 G(1, 5)G(6, 2)
∫

d7d8
δ(5, 6)

δG(7, 8)

δG(7, 8)

δh(3, 4)

= L0(1, 4; 2, 3) +
∫

d5d6d7d8 L0(1, 6; 2, 5)K (5, 8; 6, 7)L(7, 4; 8, 3), (B8)

where in the last line the kernel K is defined as δ
δG . We obtain

the BSE for the two-particle correlation L = L0 + L0
δ
δG L. In

our work we choose the Hartree and the GW self-energy,
where W is the screened Coulomb potential. Ignoring the
higher-order corrections from δW

δG , the equation of motion of
the two-particle correlation function is described by the ladder
diagrams shown in Fig. 12 with Vq replaced by the kernel
K . As we can see from the final equation of motion that no

FIG. 12. Two-particle correlation function L(1, 4; 2, 3).

new electron-photon vertex are generated, which justifies the
Feynman rule we introduced at the two-particle level.

APPENDIX C: GREEN’S FUNCTION AND CORRELATION
FUNCTION

Throughout Appendix C we set h̄ = 1 to simplify the book-
keeping and the Einstein summation convention is implied
for band and momentum indices. Following Ref. [33], the
noninteracting single-particle Green’s function is

Gb(ω) = 1

ω − εb
. (C1)

Its frequency integral is

I1(ω1) =
∫

dω

2π
Ga(ω) = f (εa), (C2)
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where f (εa) is the Fermi-Dirac function. The convolution of
two and three Green’s function are

I2(ω1) =
∫

dω

2π
Ga(ω)Gb(ω + ω1), (C3)

I3(ω1, ω2) =
∫

dω

2π
Ga(ω)Gb(ω + ω1)Gc(ω + ω1 + ω2),

(C4)

respectively. The evaluation of these integrals can be done by
working with Matsubara frequencies then perform analytical
continuation back to the real frequencies [47]. For I2, we
consider

S2(iω1) = 1

β

∑
n

1

zn − εa

1

zn + iω1 − εb
, (C5)

where zn = i(2n + 1)π/β. The summation can be done by
considering a contour integral of a function

0 =
∫

dz

2π i
f (z)F (z) (C6)

with f (z) = 1
eβz+1 and

F (z) = 1

z − εa

1

z + iω1 − εb
. (C7)

The function f (z)F (z) has poles and contribute to the contour
integral at

z = zn, R1 = − 1

β
F (zn), (C8)

z = εa, R2 = f (εa)

εa − εb + iω1
, (C9)

z = εb − iω1, R3 = f (εb)

εb − εa − iω1
. (C10)

We note that the residue of Fermi function is −1/β so we have

S2(iω1) = 1

β
F (zn) = f (εa)

εa − εb + iω1
− f (εb)

εa − εb + iω1

= − fba

iω1 − εba
, (C11)

where we define fab = f (εa) − f (εb) and εab = εa − εb. For
I3, we consider the following function:

F3(z) = 1

z − εa

1

z + iω1 − εb

1

z + iω1 + iω2 − εc
. (C12)

The contour integral has three pieces

z = zn, R1 = − 1

β
F3(zn), (C13)

z = εa, R2 = f (εa)

(εab + iω1)(εac + iω12)
, (C14)

z = εb − iω1, R3 = f (εb)

(εba − iω1)(εbc + iω2)
, (C15)

z = εc − iω1 − iω2, R4 = f (εc)

(εca − iω12)(εcb − iω2)
. (C16)

where ω12 = ω1 + ω2. The sum of them gives

I3(iω1, iω2) = f (εa)

(εba − iω1)(εca − iω12)
+ f (εb)

(εba − iω1)(εbc + iω2)
+ − f (εc)

(εca − iω12)(εbc + iω2)

= f (εa)(εbc + iω2) + f (εb)(εca − iω12) − f (εc)(εba − iω1)

(εba − iω1)(εbc + iω2)(εca − iω12)

= fab(iω2 − εcb) + fcb(iω1 − εba)

(iω1 − εba)(iω2 − εcb)(iω12 − εca)
. (C17)

1. Two-particle correlation function

To compute the noninteracting two particle correlation
function, we start from the Matsubara component,

LM
ab(iωp) = i

β

∑
m

GM
b (iωm)GM

a (iωm + iωp). (C18)

Using the result in the previous section, we have

LM
ab(iωp) = i

fba

iωp − εab
. (C19)

The retarded component can be obtained by an analytical
continuation, which reads

LR
0,ab(ω) = i

fba

ω + iη − εab
, (C20)

where the subscript 0 indicates that it is the noninteracting
correlation function.

Interacting electron-hole correlation function can be
constructed from the BSE solutions [35,45,46,54]. With
Tamm-Dancoff approximation, we have

Hcvc′v′Y λ
c′v′ = (ωcv − Kcvc′v′ )Y λ

c′v′ = �λY λ
c′v′ , (C21)

Hvcv′c′X λ
c′v′ = (ωvc + Kvcv′c′ )X λ

v′c′ = −�λX λ
v′c′, (C22)

where �λ is the eigenvalue, Y λ and X λ are eigenvectors for
resonant and antiresonant sectors, respectively. We see that
Hvcv′c′ = −H∗

cvc′v′ and X λ
v′c′ = Y λ∗

c′v′ . The interacting correlation
function can then be constructed as

LR
i jknmk′ (ω) = i

∑
λ

[
f̄i f j f̄n fm

Y λ
i jkY λ∗

nmk′

ω − �λ + iη

− fi f̄ j f̄m fn

Y λ∗
jikY λ

mnk′

ω + �λ + iη

]
, (C23)

where we define f̄ = 1 − f .
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APPENDIX D: DERIVATION OF THE SECOND-ORDER CONDUCTIVITY TENSOR
WITH ELECTRON-HOLE INTERACTIONS

For the second-order response, there are four diagrams and their permutations. Vertex corrections of the first three diagrams
in Ref. [33] are similar to those in the linear response. The second term in Eq. (42) in Ref. [33] gets vertex correction on the
out-going vertex with two photon lines,

σ
μαβ,2
eh = −e3

h̄2ω1ω2
hα

ab

∫
dω′Gb(ω′)Ga(ω′ + ω1)h̃μβ

ab (ω1) = −e3

h̄2ω1ω2
hα

abL0,ab(ω1)hμβ∗
cd Lcd,ab(ω1)L−1

0,ab(ω1)

= −e3

h̄2ω1ω2
hα

abLcd,ab(ω1)hμβ∗
cd = −e3

h̄2ω1ω2

∑
λ

hα
ab

[
f̄c fd f̄a fb

Y λ
cdkY λ∗

abk′

h̄ω1 − �λ + iη
− fc f̄d f̄a fb

Y λ∗
dckY λ

bak′

h̄ω1 + �λ + iη

]
hμβ∗

cd

= −e3

h̄2ω1ω2

∑
λ

[
dα

λ dμβ∗
λ

h̄ω1 − �λ + iη
− dα∗

λ dμβ

λ

h̄ω1 + �λ + iη

]
, (D1)

where we denote dressed operators with a tilde and the superscript 2 indicates that it is the second term in Eq. (42) in Ref. [33];
In the third line we use the inverse of the bare two particle correlation function,

L−1
0,ab = h̄ω − εab

fba
, (D2)

and in the last line we define dαβ

λ = hαβ

ab Y λ∗
abk. We can also dress the incoming vertex,

σ
μαβ,2
eh = −e3

h̄2ω1ω2
h̃α

ab(ω1)
∫

dω′Gb(ω′)Ga(ω′ + ω1)hμβ

ba = −e3

h̄2ω1ω2
L−1

0,ab(ω1)Lab,cd (ω1)hα
cd L0,ab(ω1)hμβ

ba

= −e3

h̄2ω1ω2
hα

cd Lab,cd (ω1)hμβ

ba , (D3)

which is equivalent to Eq. (D1).
For the third diagram in Eq. (42) in Ref. [33], we dress the incoming vertex and get

σ
μαβ,3
eh = −e3

2h̄2ω1ω2
h̃αβ

ab (ω)
∫

dω′Gb(ω′)Ga(ω′ + ω12)hμ

ba = −e3

2h̄2ω1ω2
L−1

0,ab(ω12)Lab,cd (ω12)hαβ

cd L0,ab(ω12)hμ

ba

= −e3

2h̄2ω1ω2
hαβ

cd Lab,cd (ω12)hμ

ba = −e3

2h̄2ω1ω2

∑
s

[
hαβ

cd

Y λ
abkY λ∗

cdk′

h̄ω − �λ + iη
hμ

ba − hαβ

cd

Y λ∗
bakY λ

dck′

h̄ω + �λ + iη
hμ

ba

]

= −e3

2h̄2ω1ω2

∑
s

[
dαβ

λ dμ∗
λ

h̄ω − �λ + iη
− dαβ∗

λ dμ
λ

h̄ω + �λ + iη

]
. (D4)

The new diagram at the second-order response is the triangle diagram with three vertices. As discussed in the main text, we
approximate the interacting three particle correlation function with the e-h ladder diagram and obtain three diagrams, each of
which has two dressed vertices and one bare vertex. For the first derived diagram we dress one of the incoming vertices and the
outgoing vertex,

σ
μαβ,4.1
eh = −e3

h̄2ω1ω2
h̃α

ba(ω1)hβ

cbh̃μ
ca(ω)Iabc(ω1, ω2) = −e3

h̄2ω1ω2
L−1

0,ba(ω1)Lba,i j (ω1)hα
i jh

β

cbhμ∗
ns Lns,ca(ω)L−1

0,ca(ω)Iabc(ω1, ω2)

= −e3

h̄2ω1ω2

ω1 − εba

fab
Lba,i j (ω1)hα

i jh
β

cbhμ∗
ns Lns,ca(ω)

ω − εca

fac

fab(ω2 − εcb) + fcb(ω1 − εba)

(ω1 − εba)(ω − εca)(ω2 − εcb)

= −e3

h̄2ω1ω2

∑
sλ

hα
i jh

β

cbhμ∗
ns

1

fab

1

fac

fab(ω2 − εcb) + fcb(ω1 − εba)

(ω2 − εcb)

×
(

Y s
bakY s∗

i jk′

h̄ω1 − �s + iη

Y λ
nskY λ∗

cak′

h̄ω − �λ + iη
+ Y s∗

abkY s
jik′

h̄ω1 + �s + iη

Y λ∗
snkY λ

ack′

h̄ω + �λ + iη

)

= e3

h̄2ω1ω2

∑
sλ

hα
i jh

β

cbhμ∗
ns

(
− Y s

bakY s∗
i jk′

h̄ω1 − �s + iη

Y λ
nskY λ∗

cak′

h̄ω − �λ + iη
+ Y s∗

abkY s
jik′

h̄ω1 + �s + iη

Y λ∗
snkY λ

ack′

h̄ω + �λ + iη

)

= e3

h̄2ω1ω2

∑
sλ

hβ

cb

(
− Y s

bakdα
s

h̄ω1 − �s + iη

dμ∗
λ Y λ∗

cak′

h̄ω − �λ + iη
+ Y s∗

abkdα∗
s

h̄ω1 + �s + iη

dμ

λ Y λ
ack′

h̄ω + �λ + iη

)
, (D5)
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where the superscript 4.1 indicates that it is the first diagram derived from the triangle diagram, in the third line, we replace the
bare three particle correlation function Iabc with Eq. (C17) introduced in Appendix. A, in the sixth line we set the occupations to
their equilibrium values, and in the fifth line, we replace the product of the two correlation functions with the following:

Lba,i j (ω1)Lns,ca(ω) =
∑

sλ

(
Y s

bakY s∗
i jk′

h̄ω1 − �s + iη

Y λ
nskY λ∗

cak′

h̄ω − �λ + iη
+ Y s∗

abkY s
jik′

h̄ω1 + �s + iη

Y λ∗
snkY λ

ack′

h̄ω + �λ + iη

)
. (D6)

For the second derived diagram, we dressed the other incoming vertex and the outgoing vertex,

σ
μαβ,4.2
eh = −e3

h̄2ω1ω2
hα

bah̃β

cb(ω2)h̃μ
ca(ω)Iabc(ω1, ω2) = −e3

h̄2ω1ω2
hα

baL−1
0,cb(ω2)Lcb,lm(ω2)hβ

lmhμ∗
ns Lns,ca(ω)L−1

0,ca(ω)Iabc(ω1, ω2)

= −e3

h̄2ω1ω2

∑
sλ

hα
ba

ω2 − εcb

fbc
hβ

lmhμ∗
ns

ω − εca

fac

fab(ω2 − εcb) + fcb(ω1 − εba)

(ω1 − εba)(ω − εca)(ω2 − εcb)
Lcb,lm(ω2)Lns,ca(ω)

= −e3

h̄2ω1ω2

∑
sλ

hα
bahβ

lmhμ∗
ns

1

fbc

1

fac

fab(ω2 − εcb) + fcb(ω1 − εba)

(ω1 − εba)

×
(

Y λ
cbkY λ∗

lmk′

h̄ω2 − �λ + iη

Y s
nskY s∗

cak′

h̄ω − �s + iη
+ Y λ∗

bckY λ
mlk′

h̄ω2 + �λ + iη

Y s∗
snkY s

ack′

h̄ω + �s + iη

)

= −e3

h̄2ω1ω2

∑
sλ

hα
bahβ

lmhμ∗
ns

(
− Y λ

cbkY λ∗
lmk′

h̄ω2 − �λ + iη

Y s
nskY s∗

cak′

h̄ω − �s + iη
+ Y λ∗

bckY λ
mlk′

h̄ω2 + �λ + iη

Y s∗
snkY s

ack′

h̄ω + �s + iη

)

= −e3

h̄2ω1ω2

∑
sλ

hα
ba

(
− Y λ

cbkdβ

λ

h̄ω2 − �λ + iη

dμ∗
s Y s∗

cak′

h̄ω − �s + iη
+ Y λ∗

bckdβ∗
λ

h̄ω2 + �λ + iη

dμ
s Y s

ack′

h̄ω + �s + iη

)
. (D7)

In the above, we replace the product of the correlation functions with

Lcb,lm(ω2)Lns,ca(ω) =
∑

sλ

(
Y λ

cbkY λ∗
lmk′

h̄ω2 − �λ + iη

Y s
nskY s∗

cak′

h̄ω − �s + iη
+ Y λ∗

bckY λ
mlk′

h̄ω2 + �λ + iη

Y s∗
snkY s

ack′

h̄ω + �s + iη

)
. (D8)

For the third derived diagram we dress both incoming vertices,

σ
μαβ,4.3
eh = −e3

h̄2ω1ω2
h̃α

ba(ω1)h̃β

cb(ω2)hμ
caIabc(ω1, ω2) = −e3

h̄2ω1ω2
L−1

0,ba(ω1)Lba,i j (ω1)hα
i jL

−1
0,cb(ω2)Lcb,lm(ω2)hβ

lmhμ
acIabc(ω1, ω2)

= −e3

h̄2ω1ω2

ω1 − εba

fab
Lba,i j (ω1)hα

i jh
β

lmLcb,lm(ω2)
ω2 − εcb

fbc
hμ

ac

fab(ω2 − εcb) + fcb(ω1 − εba)

(ω1 − εba)(ω − εca)(ω2 − εcb)

= −e3

h̄2ω1ω2
hμ∗

ca hα
i jh

β

lm

fab(ω2 − εcb) + fcb(ω1 − εba)

(ω − εca) fab fbc

×
∑

sλ

(
− Y s

bakY s∗
i jk′

h̄ω1 − �s + iη

Y λ∗
bckY λ

mlk′

h̄ω2 + �λ + iη
− Y s∗

abkY s
jik′

h̄ω1 + �s + iη

Y λ
cbkY λ∗

lmk′

h̄ω2 − �λ + iη

)

= −e3

h̄2ω1ω2
hμ∗

ca hα
i jh

β

lm

∑
sλ

(
Y s

bakY s∗
i jk′

h̄ω1 − �s + iη

Y λ∗
bckY λ

mlk′

h̄ω2 + �λ + iη
− Y s∗

abkY s
jik′

h̄ω1 + �s + iη

Y λ
cbkY λ∗

lmk′

h̄ω2 − �λ + iη

)

= − e3

h̄2ω1ω2

∑
sλ

[
hμ∗

ca Y s
bakY λ∗

bckdα
s dβ∗

λ

(h̄ω1 − �s + iη)(h̄ω2 + �λ + iη)
− hμ∗

ca Y s∗
abkY λ

cbkdα∗
s dβ

λ

(h̄ω1 + �s + iη)(h̄ω2 − �λ + iη)

]
. (D9)

In the fourth line we replace the product of two correlation functions using

Lba,i j (ω1)Lcb,lm(ω2) =
∑

sλ

(
− Y s

bakY s∗
i jk′

h̄ω1 − �s + iη

Y λ∗
bckY λ

mlk′

h̄ω2 + �λ + iη
− Y s∗

abkY s
jik′

h̄ω1 + �s + iη

Y λ
cbkY λ∗

lmk′

h̄ω2 − �λ + iη

)
. (D10)
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Combining all three derived diagrams and explicitly symmetrizing them by adding terms with exchanged indices and frequencies,
α ↔ β, ω1 ↔ ω2, we get

σ
μαβ,4
eh = e3

h̄2ω1ω2

∑
sλ

(
− hβ

cbY
s

bakdα
s

h̄ω1 − �s + iη

dμ∗
λ Y λ∗

cak′

h̄ω − �λ + iη
+ hβ

cbY
s∗

abkdα∗
s

h̄ω1 + �s + iη

dμ

λ Y λ
ack′

h̄ω + �λ + iη

)

+ e3

h̄2ω1ω2

∑
sλ

(
− hα

cbY
s

bakdβ
s

h̄ω2 − �s + iη

dμ∗
λ Y λ∗

cak′

h̄ω − �λ + iη
+ hα

cbY
s∗

abkdβ∗
s

h̄ω2 + �s + iη

dμ
λ Y λ

ack′

h̄ω + �λ + iη

)

− e3

h̄2ω1ω2

∑
sλ

(
− hα

baY
λ

cbkdβ

λ

h̄ω2 − �λ + iη

dμ∗
s Y s∗

cak′

h̄ω − �s + iη
+ hα

baY
λ∗

bckdβ∗
λ

h̄ω2 + �λ + iη

dμ
s Y s

ack′

h̄ω + �s + iη

)

− e3

h̄2ω1ω2

∑
sλ

(
− hβ

baY
λ

cbkdα
λ

h̄ω1 − �λ + iη

dμ∗
s Y s∗

cak′

h̄ω − �s + iη
+ hβ

baY
λ∗

bckdα∗
λ

h̄ω1 + �λ + iη

dμ
s Y s

ack′

h̄ω + �s + iη

)

− e3

h̄2ω1ω2

∑
sλ

[
hμ∗

ca Y s
bakY λ∗

bckdα
s dβ∗

λ

(h̄ω1 − �s + iη)(h̄ω2 + �λ + iη)
− hμ∗

ca Y s∗
abkY λ

cbkdα∗
s dβ

λ

(h̄ω1 + �s + iη)(h̄ω2 − �λ + iη)

]

− e3

h̄2ω1ω2

∑
sλ

[
hμ∗

ca Y s
bakY λ∗

bckdβ
s dα∗

λ

(h̄ω2 − �s + iη)(h̄ω1 + �λ + iη)
− hμ∗

ca Y s∗
abkY λ

cbkdβ∗
s dα

λ

(h̄ω2 + �s + iη)(h̄ω1 − �λ + iη)

]
. (D11)

Grouping terms with the same denominator, we have

σ
μαβ,4
eh /C = −

∑
sλ

hβ

cbY
s

bakdα
s

h̄ω1 − �s + iη

dμ∗
λ Y λ∗

cak′

h̄ω − �λ + iη
+

∑
sλ

hβ

baY
λ

cbkdα
λ

h̄ω1 − �λ + iη

dμ∗
s Y s∗

cak′

h̄ω − �s + iη

+
∑

sλ

hβ

cbY
s∗

abkdα∗
s

h̄ω1 + �s + iη

dμ
λ Y λ

ack′

h̄ω + �λ + iη
−

∑
sλ

hβ

baY
λ∗

bckdα∗
λ

h̄ω1 + �λ + iη

dμ
s Y s

ack′

h̄ω + �s + iη

−
∑

sλ

hα
cbY

s
bakdβ

s

h̄ω2 − �s + iη

dμ∗
λ Y λ∗

cak′

h̄ω − �λ + iη
+

∑
sλ

hα
baY

λ
cbkdβ

λ

h̄ω2 − �λ + iη

dμ∗
s Y s∗

cak′

h̄ω − �s + iη

+
∑

sλ

hα
cbY

s∗
abkdβ∗

s

h̄ω2 + �s + iη

dμ

λ Y λ
ack′

h̄ω + �λ + iη
−

∑
sλ

hα
baY

λ∗
bckdβ∗

λ

h̄ω2 + �λ + iη

dμ
s Y s

ack′

h̄ω + �s + iη

−
∑

sλ

hμ∗
ca Y s

bakY λ∗
bckdα

s dβ∗
λ

(h̄ω1 − �s + iη)(h̄ω2 + �λ + iη)
+

∑
sλ

hμ∗
ca Y s∗

abkY λ
cbkdβ∗

s dα
λ

(h̄ω2 + �s + iη)(h̄ω1 − �λ + iη)

+
∑

sλ

hμ∗
ca Y s∗

abkY λ
cbkdα∗

s dβ

λ

(h̄ω1 + �s + iη)(h̄ω2 − �λ + iη)
−

∑
sλ

hμ∗
ca Y s

bakY λ∗
bckdβ

s dα∗
λ

(h̄ω2 − �s + iη)(h̄ω1 + �λ + iη)
, (D12)

where C = e3

h̄2ω1ω2
. We note that both λ and s are dummy indices so we can redefine them in the summation,

σ
μαβ,4
eh /C = −

∑
sλ

dα
s dμ∗

λ

(
hβ

cbY
s

bakY λ∗
cak − hβ

baY
s

cbkY λ∗
cak

)
(h̄ω1 − �s + iη)(h̄ω − �λ + iη)

+
∑

sλ

dα∗
s dμ

λ

(
hβ

cbY
s∗

abkY λ
ack − hβ

baY
s∗

bckY λ
ack

)
(h̄ω1 + �s + iη)(h̄ω + �λ + iη)

−
∑

sλ

dβ
s dμ∗

λ

(
hα

cbY
s

bakY λ∗
cak − hα

baY
s

cbkY λ∗
cak

)
(h̄ω2 − �s + iη)(h̄ω − �λ + iη)

+
∑

sλ

dβ∗
s dμ

λ

(
hα

cbY
s∗

abkY λ
ack − hα

baY
s∗

bckY λ
ack

)
(h̄ω2 + �s + iη)(h̄ω + �λ + iη)

−
∑

sλ

(
hμ∗

ca Y s
bakY λ∗

bck − hμ∗
ca Y λ∗

abkY s
cbk

)
dα

s dβ∗
λ

(h̄ω1 − �s + iη)(h̄ω2 + �λ + iη)
+

∑
sλ

dα∗
s dβ

λ

(
hμ∗

ca Y s∗
abkY λ

cbk − hμ∗
ca Y λ

bakY s∗
bck

)
(h̄ω1 + �s + iη)(h̄ω2 − �λ + iη)

= −
∑

sλ

dα
s dμ∗

λ �
β

λs

(h̄ω1 − �s + iη)(h̄ω − �λ + iη)
−

∑
sλ

dα∗
s dμ

λ �
β

sλ

(h̄ω1 + �s + iη)(h̄ω + �λ + iη)

−
∑

sλ

dβ
s dμ∗

λ �α
λs

(h̄ω2 − �s + iη)(h̄ω − �λ + iη)
−

∑
sλ

dβ∗
s dμ

λ �α
sλ

(h̄ω2 + �s + iη)(h̄ω + �λ + iη)

+
∑

sλ

�
μ∗
sλ dα

s dβ∗
λ

(h̄ω1 − �s + iη)(h̄ω2 + �λ + iη)
+

∑
sλ

dα∗
s dβ

λ �
μ∗
λs

(h̄ω1 + �s + iη)(h̄ω2 − �λ + iη)
, (D13)

where we use Eq. (37) for interexciton couplings in the last three lines. It is easy to check that �
β

λs = �
β∗
sλ .
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Finally, combining all three terms and symmetrized σ
μαβ,2
eh and σ

μαβ,3
eh , we have

σ
μαβ

eh (ω; ω1, ω2) + σ
μβα

eh (ω; ω2, ω1)

= − e3

h̄2ω1ω2

∑
λ

[(
dα

λ dμβ∗
λ

h̄ω1 − �λ + iη
− dα∗

λ dμβ

λ

h̄ω1 + �λ + iη

)
+

(
dβ

λ dμα∗
λ

h̄ω2 − �λ + iη
− dβ∗

λ dμα
λ

h̄ω2 + �λ + iη

)]

− e3

2h̄2ω1ω2

∑
λ

[(
dαβ

λ dμ∗
λ

h̄ω − �λ + iη
− dαβ∗

λ dμ

λ

h̄ω + �λ + iη

)
+

(
dβα

λ dμ∗
λ

h̄ω − �λ + iη
− dβα∗

λ dμ

λ

h̄ω + �λ + iη

)]

+ e3

h̄2ω1ω2

∑
sλ

[
− dμ∗

λ �
β

λsd
α
s

(h̄ω1 − �s + iη)(h̄ω − �λ + iη)
− dμ

λ �
β

sλdα∗
s

(h̄ω1 + �s + iη)(h̄ω + �λ + iη)

]

+ e3

h̄2ω1ω2

∑
sλ

[
− dμ∗

λ �α
λsd

β
s

(h̄ω − �λ + iη)(h̄ω2 − �s + iη)
− dμ

λ �α
sλdβ∗

s

(h̄ω + �λ + iη)(h̄ω2 + �s + iη)

]

+ e3

h̄2ω1ω2

∑
sλ

[
dα

s �
μ∗
sλ dβ∗

λ

(h̄ω1 − �s + iη)(h̄ω2 + �λ + iη)
+ dα∗

s �
μ∗
sλ dβ

λ

(h̄ω1 + �s + iη)(h̄ω2 − �λ + iη)

]
. (D14)

Without explicit symmetrization, we can write

σ
μαβ

eh (ω; ω1, ω2)

= −e3

h̄2ω1ω2

∑
λ

[
dα

λ dμβ∗
λ

h̄ω1 − �λ + iη
− dα∗

λ dμβ

λ

h̄ω1 + �λ + iη

]
+ −e3

2h̄2ω1ω2

∑
λ

[
dαβ

λ dμ∗
λ

h̄ω − �λ + iη
− dαβ∗

λ dμ

λ

h̄ω + �λ + iη

]

+ e3

h̄2ω1ω2

∑
sλ

[
− dμ∗

λ �α
λsd

β
s

(h̄ω − �λ + iη)(h̄ω2 − �s + iη)
− dμ

λ �α
sλdβ∗

s

(h̄ω + �λ + iη)(h̄ω2 + �s + iη)

]

+ e3

h̄2ω1ω2

∑
sλ

dα
s �

μ∗
sλ dβ∗

λ

(h̄ω2 + �λ + iη)(h̄ω1 − �s + iη)
, (D15)

which is the part explicitly shown in Eq. (36) in the main text.
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