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Multiple wave packets running in the photon number space
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If a two-level system coupled to a single-mode cavity is strongly driven by an external laser, instead of
a continuous accumulation of photons in the cavity, oscillations in the mean photon number occur. These
oscillations correspond to peaks of finite width running up and down in the photon number distribution,
reminiscent of wave packets in linear chain models. A single wave packet is found if the cavity is resonant
to the external laser. Here, we show that for finite detuning, multiple packet structures can exist simultaneously,
oscillating at different frequencies and amplitudes. We further study the influence of dissipative effects resulting
in the formation of a stationary state, which, depending on the parameters, can be characterized by a bimodal
photon number distribution. While we give analytical limits for the maximally achievable photon number in the
absence of any dissipation, surprisingly, dephasing processes can push the photon occupations towards higher
photon numbers.
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I. INTRODUCTION

Ever since the dawn of quantum theory, there has been
an effort towards controlling the quantum states of various
matter systems, such as atoms or molecules [1–8]. Their inter-
action with electromagnetic fields is commonly used as a lever
to achieve this goal. More recently, control of the quantum
state of light itself has attracted much attention, where now
the matter systems take on the supportive role [9–14]. With
the methods of cavity quantum electrodynamics (cQED),
nonclassical photonic states can be deliberately generated, in-
cluding but not limited to Fock states [15–21], squeezed states
[22–26], and Schrödinger cat states [27–31]. In addition to the
fundamental interest in nonclassical states as manifestations
of the intricacies of quantum physics, they offer perspectives
for technological advancements, e.g., through the use of, in
principle, unlimited degrees of freedom to encode information
[32–40].

In this work, we focus on the simplest model providing a
platform to study cQED, namely a two-level system (TLS)
coupled to a single-mode microcavity. This model is capa-
ble of capturing the central features of a large variety of
real systems, such as atoms, semiconductor quantum dots,
or superconducting qubits. Each realization is understood as
sampling different regions of the parameter space [41].

We investigate novel highly nonclassical states that are
characterized by multiple peaks in the photon number distri-
bution, each of which constitutes the center of a structure of
finite width, which we will call a packet. They exhibit rich
dynamics with each peak oscillating at different frequencies
and amplitudes. We show that these states can be produced
in simple fashion via strong continuous wave (cw) driving
of the TLS. As the result of dissipation, a stationary state
will form after some time, which describes a similar bimodal
distribution under the right circumstances. The characteristics

of both the dynamical behavior as well as the stationary state
can be easily controlled by varying the driving strength and
detuning the frequency of the external driving with respect to
the resonance frequency of the cavity. In addition, we discuss
a remarkable mechanism that allows for occupation of photon
numbers higher than in equivalent conservative systems if the
dephasing of the TLS dominates the losses of the cavity.

II. THEORETICAL MODEL

The TLS-cavity system is described by a Jaynes-
Cummings model [42]. The Hamiltonian in the interaction
picture with respect to the driving frequency ωL reads

H = h̄�ωXL σ+σ− + h̄�ωCL a†a

+ h̄g (aσ+ + a†σ−) − h̄ f (σ+ + σ−). (1)

The ground state �G of the TLS is chosen as a state of
energy zero, whereas the excited state �X has energy h̄ωX.
�ωXL = ωX − ωL and �ωCL = ωC − ωL are the detunings
between the external driving and the TLS and cavity, respec-
tively, where ωC is the frequency of the cavity-mode. Both
parts of light-matter interaction are taken into account within
the rotating-wave approximation. The coupling strength g
between the TLS and cavity is half its vacuum Rabi fre-
quency, and, analogously, the driving strength f is half the
Rabi frequency of the classical external field. a (a†) is the
familiar photonic annihilation (creation) operator; σ+ and σ−
denote the ladder operators of the TLS satisfying fermionic
anticommutation relations. The basis of product states {�G

n ≡
�G ⊗ �n, �X

n ≡ �X ⊗ �n | n ∈ N0}, named the bare state
basis, spans the Hilbert space of the combined system, where
�n is the Fock state with photon number n. For simplicity’s
sake, we consider only cases of a resonantly driven TLS
�ωXL = 0. Numerical studies indicate that a finite value of
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FIG. 1. (a) Time-dependent mean photon number and (b) the absolute value of its Fourier transform calculated from solutions of Eq. (2)
using a driving strength of f = 5 g and detunings δ = 0 g (blue line) and δ = 0.1 g (red line). (c)–(f) Photon number distribution Pn(t ) (left
panel) at fixed time and the corresponding Wigner function W (z) obtained from solutions of Eq. (2) with a driving strength of f = 5 g and
detunings δ = 0 g (c),(d) and δ = 0.1 g (e),(f). A Poisson distribution (blue boxes) is fit to each packet in the photon number distribution by
calculating the mean and norm of the individual packets directly from the numerical solution (gray bars). (g),(h) Photon number distribution
Pn(t ) resolved in both photon number n as well as time t obtained from solutions of Eq. (2) with a driving strength of f = 5 g and detunings
δ = 0 g (g) and δ = 0.1 g (h).

�ωXL � �ωCL does not noticeably change the results dis-
cussed in this work. However, the novel phenomena that we
shall present in this paper appear only for finite laser–cavity
detuning. We therefore have to allow for a finite �ωCL = δ.

As long as no dissipative effects are considered, we inte-
grate the Schrödinger equation

ih̄ �̇(t ) = H�(t ), (2)

expanding the wave function �(t ) in the bare state basis, by
using a classic Runge-Kutta method (RK4). Unless otherwise
mentioned, the initial state is taken as the ground state without
photons, �(0) = �G

0 .
In Sec. V we present the behavior of the system under

the influence of different dissipative effects. All of them are
assumed to be well-approximated as Markov processes, so
that the dynamical evolution of the density matrix ρ(t ) can
be calculated as the solution to the Liouville–von Neumann
equation

ρ̇(t ) = 1

ih̄
[H, ρ(t )] + Lcav ρ(t ) + LRD ρ(t ) + LPD ρ(t ), (3)

where the superoperators Lcav, LRD, and LPD are of Lindblad
form,

Lcav ρ = κ

(
aρa† − 1

2
a†aρ − 1

2
ρa†a

)
, (4a)

LRD ρ = γRD

(
σ−ρσ+ − 1

2
σ+σ−ρ − 1

2
ρσ+σ−

)
, (4b)

LPD ρ = γPD

2
(σ3ρσ3 − ρ). (4c)

These terms model losses of the cavity, radiative decay, and
pure dephasing of the TLS, respectively. We solve Eq. (3)
similar to Eq. (2) by expanding the density matrix in the bare
state basis and integrating the resulting system of differential
equations by application of RK4.

III. NUMERICAL RESULTS

To obtain a clear picture of the dynamical behavior, we first
investigate the solutions without any dissipation. As will be
shown in Sec. V, the same dynamical characteristics will be
present transiently when dissipation is taken into account.

In Fig. 1(a), the time-resolved mean photon number 〈a†a〉
is shown in both a resonant (δ = 0) and a nonresonant case
(δ > 0). In the former, a harmonic damped oscillation can be
seen. Accordingly, its Fourier transform F〈a†a〉 [cf. Fig. 1(b)]
consists of a single broad peak. Due to the well-known
collapse-and-revival effect [43], the oscillation will reappear
after some time [not shown in Figs. 1(a) and 1(b)]. We em-
phasize that the photon number will never exceed a finite
maximal value even without dissipation. This is remarkable
since the system is continuously driven enabling an energy
flow between the TLS and the laser. Furthermore, in the driven
system all of the infinitely many photon number states �n are
coupled.

For finite but small detuning δ > 0, a significantly different
behavior is found. The most prominent oscillation frequency
is shifted with respect to that of δ = 0 while the corresponding
peak is of much lower spectral width. Hence, the decay of
the oscillation is only visible on a longer timescale. In addi-
tion to small peaks at the second and third harmonic of this
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oscillation, contributions at a second higher fundamental fre-
quency appear [cf. Fig. 1(b)]. Since it does not coincide with
an integer multiple of the first frequency, this fact indicates the
presence of two separate oscillating structures.

The photon number distribution

Pn(t ) = ∣∣〈�G
n

∣∣�(t )
〉∣∣2 + ∣∣〈�X

n

∣∣�(t )
〉∣∣2

, (5)

shown at fixed time in Fig. 1(c) for δ = 0 and Fig. 1(e)
for δ > 0, reveals the two frequencies to correspond to two
separate packets that oscillate independently from each other.
In contrast, only a single packet is present for δ = 0 consis-
tent with the single oscillation frequency of the mean photon
number. This is also in line with Ref. [43] where, starting from
the analytical solution for δ = 0 and without dissipation, a
single oscillation of the mean photon number was approxi-
mately derived. Unfortunately, the solution method cannot be
generalized to finite cavity detuning, necessitating the use of
numerical simulations and analytical approximations [44–46].

Distributions with multiple peaks obviously correspond to
highly nonclassical states. Yet, in some cases even the packets
themselves can be classified as such, which can be shown by
comparing them to best fits of Poisson distributions to the
peak structures or identifying regions of negative values in the
Wigner function [47],

W (z) = 2

π
Tr((−1)a†aD†(z)ρphotD(z)). (6)

Here, ρphot = Tr{�G,�X}(ρ) denotes the photonic density ma-
trix, and D(z) = exp(za† − z∗a) is the displacement operator
[48]. Both the single packet in the resonant case as well as the
packet of lower photon number in the detuned case clearly
exhibit these characteristics of nonclassicality, whereas the
packet of higher photon number is more akin to a coherent
state [cf. Figs. 1(d) and 1(f)].

Figures 1(g) and 1(h) visualize the time dependence of
Pn(t ) itself. For δ = 0, the initially present packet quickly
disperses, in agreement with the collapse of the oscillation
of the mean photon number in Fig. 1(a). Similar behavior is
exhibited for δ > 0 by the packet of lower oscillation ampli-
tude, which incidentally corresponds to a higher oscillation
frequency. The packet of higher photon number shows a stable
propagation for much longer times, providing further evidence
that it behaves in a similar fashion to a single harmonic oscil-
lator. Indeed, this structure remains stable for more than 20
oscillation cycles for the particular set of parameters given in
Fig. 1(h).

IV. ANALYTICAL RESULTS FOR STRONG DRIVING

With the aim of gaining a qualitative understanding of the
dynamics, we analyze the situation of a strongly driven TLS.
Here, we concentrate on limiting cases in which analytical
results can be found. We assume a cavity that is only slightly
detuned, such that the hierarchy δ � g � f holds.

A. Low excitation numbers

Since f constitutes the dominant energy scale, it is natural
to attempt a description in terms of the laser-dressed states

(LDSs),

�± = 1√
2

(�G ± �X), (7)

which diagonalize the driving operator −h̄ f (σ+ + σ−). The
energies of the corresponding product states �±

n = �± ⊗ �n

are given by h̄δn ∓ h̄ f . Via cavity coupling, transitions be-
tween states of neighboring photon numbers are induced,
both at unchanged LDS as well as accompanying a transition
�+ ↔ �−, as sketched in Fig. 2(a). The absolute values of
the corresponding matrix elements are h̄g

√
n/2.

At the beginning of the dynamics and also after completion
of a cycle in an oscillation of a packet, only states with small
photon numbers n are occupied. We concentrate on the regime
where the following inequality holds for all occupied states
with photon number n in a given packet:

n �
(

4 f

g

)2

. (8)

In this regime, the transitions �+
n ↔ �−

n±1 become negligible,
since the transition matrix elements are much smaller than the
energy differences between these states. However, this does
not hold for the transitions �+

n ↔ �+
n±1 and �−

n ↔ �−
n±1.

Consequently, the two subspaces spanned by �+
n and �−

n can,
to a good approximation, be viewed as independent of each
other. To retain the effects of the cross-coupling �+

n ↔ �−
n±1

perturbatively, effective Hamiltonian operators

H±
eff = h̄δ a†a ∓ h̄ f ± h̄g

2
(a + a†) ± h̄ϑ

2
(a − a†)2, (9)

with

ϑ =
(

g

2

)2( 1

2 f + δ
+ 1

2 f − δ

)
, (10)

can be derived, as detailed in Appendix A. These describe the
evolution within the respective subspaces. The solutions to the
corresponding Schrödinger equations

ih̄ �̇±(t ) = H±
eff�

±(t ) (11)

with initial state �±(0) = �0 are characterized by mean pho-
ton numbers:

〈a†a〉±(t ) =
(

g

δ

)2 1 − cos(±t )

2
+ higher harmonics,

(12)
where

± = δ

√
1 ∓ 2ϑ

δ
(13)

(cf. Appendix A). It is further noted that the photon number
distribution of �±(t ) will be approximately Poissonian since,
for ϑ = 0, the solutions to Eq. (11) are easily shown to be
coherent states. For f → ∞, ϑ is asymptotically equivalent to
g2/4 f according to Eq. (10). Hence, the limiting case ϑ = 0
can be arbitrarily well realized within the hierarchy f � g �
δ if f is chosen high enough. The superposition

�(t ) = 1√
2

(�+ ⊗ �+(t ) + �− ⊗ �−(t )) (14)
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FIG. 2. (a),(b) Energy level diagrams in the laser- and cavity-dressed state bases, respectively, in the case of a positive detuning δ > 0.
The blue arrows mark energy differences between states, whereas the red ones indicate possible transitions. (c) Sketch of the eigenfrequencies
ωn,± of the cavity-dressed states as a function of the excitation number n for multiple values of the detuning δ � 0. The blue (red) background
marks the area of wavelike propagation 0 � ωn,− � −2 f (0 � ωn,+ � 2 f ) of the wave packet corresponding to an initial state �+

0 (�−
0 ). The

accordingly colored markers indicate the respective upper turning points.

is a consistent approximation to the solution of Eq. (2) if and
only if the maximal involved photon number fulfills Eq. (8),
which is the case if

|δ| � g2

4 f
. (15)

Thus, we find that, in this restricted parameter range, the pho-
ton number distribution consists of two packets of finite width
oscillating independently, where the oscillations are equal in
amplitude g2/δ2 but differ in frequency ±.

B. High excitation numbers

In contrast, h̄g
√

n constitutes the dominant energy scale
at sufficiently high photon numbers n. This regime can be
reached when a packet climbs up high enough in the photon
number space. In this case, a description in terms of the cavity-
dressed states (CDSs) is more appropriate, which are defined
as the eigenstates of the undriven Jaynes-Cummings model:

(h̄δ a†a + h̄g (aσ+ + a†σ−))ϒn,± = h̄ωn,±ϒn,±. (16)

For excitation numbers n � 1, these are given by

ϒn,± ≈ 1√
2

(
�G

n ± �X
n−1

)
(1)

with the corresponding eigenfrequencies

ωn,± = δn ± g
√

n. (18)

The external driving induces transitions between states of
neighboring excitation numbers ϒn,+ ↔ ϒn±1,+, ϒn,− ↔
ϒn±1,−, and ϒn,+ ↔ ϒn±1,− with approximately constant ma-
trix elements of absolute value h̄ f /2 for n � 1 [cf. Fig. 2(b)].

For high excitation numbers

n �
(

f

4g

)2

, (19)

the energy differences between states ϒn,+ and ϒn±1,− are
much larger than the respective coupling strengths. Hence, the
subspaces spanned by ϒn,+ and ϒn,− are effectively decou-
pled, analogous to the decoupling of the LDS in the preceding

discussion. To obtain an understanding of the dynamical evo-
lution within each subspace, we neglect any cross-coupling
ϒn,+ ↔ ϒn±1,− and determine the expansion coefficients βn,±
corresponding to an eigenstate at eigenfrequency λ in the
subspace spanned by ϒn,± from

h̄ωn,± βn,± ∓ h̄ f

2
(βn+1,± + βn−1,±) = h̄λ βn,±. (20)

Solutions of Eq. (20) approximate the structure of exact
eigenstates at high excitation numbers. According to a WKB
approximation, which is presented in Appendix B, these show
wavelike behavior in the range

λ − f � ωn,± � λ + f (21)

and exponential decay outside thereof. Thus, wave packets
consisting of modes around some central eigenfrequency λ0

will traverse this region, while being continually reflected at
the turning points N±, given by the boundaries of the range
defined in Eq. (21).

With an initial state of zero photons, the wave function
begins to evolve according to the laws of the LDS-decoupled
regime. Once the photon number is sufficiently high, the
behavior dynamically transitions to that described by the
CDS-decoupled regime. In particular, those solutions of
Eq. (20) that approximate eigenstates of H with non-
negligible overlap with the initial state will be relevant for the
dynamical solution. The spectrum of �±

0 is centered around

〈H〉±0 ≡ 〈�±
0 | H�±

0 〉 = ∓h̄ f (22)

with a width of √
〈H2〉±0 − 〈H〉± 2

0 = h̄g√
2
. (23)

In the case of strong driving f � g, we can therefore inter-
pret �±

0 as a wave packet with λ0 = ∓ f and the initial state
�(0) = �G

0 as a superposition of both of these wave packets.
For δ = 0, we find that �+

0 (�−
0 ) is constructed solely of

modes in ϒn,− (ϒn,+), since ωn,+ > 0 (ωn,− < 0) for all n.
Due to the symmetry between ωn,+ and ωn,− in the case of
vanishing detuning, both wave packets exhibit equal charac-
teristics. In particular, the semiclassical solution predicts that
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they are reflected at the common lower and upper turning
points

N<
± (δ = 0) = 0, (24a)

N>
± (δ = 0) =

(
2 f

g

)2

, (24b)

in agreement with the results of Ref. [43]. However, if δ is
nonzero, this symmetry is broken leading to different behavior
of the individual packets. For sufficiently small values of |δ|,
the upper turning points are shifted slightly:

N>
+

(
δ > − g2

8 f

)
=

(
g

2δ

)2
(√

1 + 8 f δ

g2
− 1

)2

, (25a)

N>
−

(
δ <

g2

8 f

)
=

(
g

2δ

)2
(√

1 − 8 f δ

g2
− 1

)2

. (25b)

In particular, for positive values of δ, N>
+ is increased,

whereas N>
− is decreased and vice versa for δ < 0. If δ >

g2/8 f , the minimum of ωn,− is greater than −2 f . Similarly,
if δ < −g2/8 f , the maximum of ωn,+ is less than 2 f . As a
result, N>

− and N>
+ are given by the roots of ωn,− or ωn,+,

respectively:

N>
−

(
δ >

g2

8 f

)
= N>

+

(
δ < − g2

8 f

)
=

(
g

δ

)2

, (26)

coinciding with the amplitude of oscillation in the LDS-
decoupled regime [cf. Eq. (12)]. This behavior of the turning
points is sketched in Fig. 2(c).

The frequencies ωn,− tend towards +∞ in the limiting case
n → ∞ for any nonvanishing positive detuning. As a conse-
quence, there exist modes in ϒn,− at eigenvalues λ ≈ f that
describe wavelike propagation between the turning points,

Ñ<
− =

(
g

δ

)2

, (27a)

Ñ>
− =

(
g

2δ

)2
(√

1 + 8 f δ

g2
+ 1

)2

. (27b)

The lower turning point lies at high excitation numbers
Ñ<

− � 1, which implies that the overlap of these eigenstates
with �−

0 is negligible. Hence, these modes typically do not
contribute to the dynamical solution. However, if they overlap
with the modes in ϒn,+, the cross-coupling between CDS,
which we neglected up to this point, leads to a coupling
between the ϒn,+- and ϒn,−-modes. It is noted that a weak
perturbation suffices for strong coupling between the modes,
since they correspond to similar eigenvalues. The overlap be-
comes non-negligible once Ñ<

− ≈ N>
+ , so that the ϒn,−-modes

are visible for parameters fulfilling

δ � g2

f
. (28)

Whenever the packet arrives at Ñ<
− ≈ N>

+ , part of it will travel
towards higher excitation numbers, as described by the ϒn,−-
modes, while the rest will propagate towards lower excitations
numbers in accordance with the ϒn,+-modes, resulting in a
continuous split of the packet.

FIG. 3. Photon number distribution Pn(t ) resolved in both photon
number n as well as time t (right) and at fixed time gt = 18 (left) with
a driving strength of f = 5 g and a detuning of δ = g2/ f = 0.2 g. The
gray solid line indicates gt = 18, while the red dashed lines mark
the intermediate turning point Ñ<

− given by Eq. (27a) and the upper
turning point Ñ>

− given by Eq. (27b).

With the roles of ϒn,+ and ϒn,− reversed, the same phe-
nomenon occurs if

δ � −g2

f
. (29)

C. Comparison with numerical results

In typical situations, the photon number distribution con-
sists of two oscillating packets, which are symmetric only
if δ = 0 and therefore cannot be distinguished in this case.
This qualitative picture imposed by the foregoing discussion
is clearly supported by the numerical results presented in
Sec. III. For |δ| ≈ g2/ f , more than two packets are expected
due to the continuous split at the intermediate turning point.
Similarly, this is confirmed by numerical calculations, as is
shown in Fig. 3.

We now demonstrate that the analysis not only qualita-
tively but also quantitatively reproduces the characteristics
of the exact solution. To this end, we perform calculations
with initial state �(0) = �+

0 , thereby isolating the packet in
�+

n in the LDS-decoupled regime or the one in ϒn,− in the
CDS-decoupled regime. In Fig. 4, we compare the maximum
of the mean photon number with the turning points calculated
in Sec. IV. With the expected exception at δ ≈ −g2/ f , both
are in excellent agreement. As it turns out, the region around
δ ≈ −g2/ f appears to be the point of transition between the
CDS- and LDS-decoupled solutions.

V. INFLUENCE OF DISSIPATIVE EFFECTS

To investigate to what extend the previous results hold
in realistic systems, which invariably experience some kind
of dissipation, we turn our attention to solutions of the
Liouville–von Neumann equation containing various dissipa-
tive contributions in Lindblad form, as detailed in Sec. II.

When isolating cavity losses, i.e., choosing γRD = γPD =
0, while κ �= 0, the oscillations of the packets are damped,
resulting in an eventual stationary state. In general, the mean
photon numbers of the individual packets in this stationary
state differ from each other. This provides the possibility of

155436-5



L. NIMMESGERN et al. PHYSICAL REVIEW B 109, 155436 (2024)

FIG. 4. Maximum of the mean photon number (solid line) as
a function of the detuning δ with a driving strength of f = 5 g
compared to the turning points in the CDS-decoupled regime given
by Eqs. (25b) and (26) (dashed line). The gray dashed line indicates
the amplitude of the approximate mean photon number in the LDS-
decoupled regime shown in Eq. (12), whereas the red solid line shows
the position δ = −g2/ f of the area around which the split of packets
occurs. All calculations are performed with initial state �(0) = �+

0 .
The inset shows the same results plotted for a smaller range of δ and
higher photon numbers.

bimodal distributions, the existence of which were already
reported in Ref. [49]. However, only in the restricted set of
parameters, given by

δ ≈ g2

4 f
, (30)

are both packets present in the stationary state. For values of
the detuning δ < g2/4 f , only one packet with a mean photon
number

〈a†a〉 ≈
(

f

g

)2

(31)

and for δ > g2/4 f only one with a mean photon number

〈a†a〉 ≈
(

g

2δ

)2

(32)

are seen [cf. Fig. 5(a)]. This is reflected in the transient be-
havior, as one of the packets experiences considerable decay
in the respective parameter regions. Illustrative examples of
the dynamics in single- and dual-packet cases are shown in
Figs. 5(b) and 5(c). It should be noted that the rules of thumb
given in Eqs. (31) and (32) only hold for sufficiently low decay
rates. Obviously, for increasing values of κ , there will be a
transition to a stationary state with zero photons in the limit
κ → ∞.

Examining now the decay channels of the TLS while
neglecting cavity losses, we find little qualitative difference
between the effects of radiative decay and pure dephasing.
Examples of both cases are shown in Figs. 6(a) and 6(b),
respectively. In contrast to the previously studied situation,
the oscillations are not damped, but rather the packets them-
selves disperse until any discernible structure is lost. Further, a
number of additional packets are noticeable, which even reach
higher photon numbers than those without dissipation. Their

FIG. 5. Photon number distribution Pn(t ) calculated by numer-
ically integrating the Liouville-von Neumann equation (4) with
a driving strength of f = 5 g and cavity loss rate κ = 0.01 g.
Any dissipation of the TLS itself is neglected γRD = γPD = 0.
Both the stationary distribution in dependence of the detuning δ

(a) as well as its temporal evolution for values of the detun-
ing of δ = 0.02 g (b) and δ = 0.05 g (c) are shown. In (a), the
white dashed lines are graphs of the analytical expressions for the
mean photon number of the packets given in Eqs. (31) and (32),
whereas the blue line indicates the parameter region δ = g2/4 f [cf.
Eq. (30)] around which two packets are present in the stationary
distribution.

origin can be understood in the LDS-decoupled case discussed
in Sec. IV A. With the help of the phase space operators

Q = 1√
2

(a + a†), (33a)

P = − i√
2

(a − a†), (33b)

the effective Hamiltonian operators that describe the photonic
evolution within the isolated branches �± are written as [cf.
Eq. (9)]

H±
eff = δ ∓ 2ϑ

2
P2 + δ

2

(
Q ± g√

2δ

)2

+ const. (34)

From this expression, we can immediately read off that parts
of the Wigner function W (z) corresponding to the TLS state
�± will travel along ellipses around the center z = ∓g/

√
2δ

with its width in the Re(z) direction scaled by a factor
of

√
1 ∓ 2ϑ/δ with respect to its width in the Im(z) di-

rection. This is visualized in Fig. 6(c) using a numerical
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FIG. 6. (a),(b) Dynamical evolution of the photon number dis-
tribution Pn(t ) with a driving strength of f = 5 g and a detuning
δ = 0.1 g. Any dissipation is neglected with the exception of radia-
tive decay with γRD = 0.1 g (a) or pure dephasing with γPD = 0.05 g
(b). (c) Wigner function W (z) at fixed time gt = 20 starting from the
initial state �(0) = �G

0 in the LDS-decoupled regime ( f = 10 g, δ =
0.2 g) without any dissipation. (d) Difference between the Wigner
functions with γPD = 0.005 g and without any dissipation at fixed
time gt = 20 starting from the initial state �(0) = �+

0 in the LDS-
decoupled regime ( f = 10, δ = 0.2 g).

calculation without any dissipation. For the sake of clarity,
we consider an initial state of �(0) = �+

0 for analyzing the
influence of dephasing. In the absence of any dissipation, the
Wigner function resembles a Gaussian shape following the
trajectory

z(t ) = − g√
2δ

(1 − cos(+t )) − i
g√

2+ sin(+t ). (35)

Pure dephasing induces transitions between the LDS �+ ↔
�− while the photonic state remains unchanged. Hence,
the original �+-solution is depleted leaving behind a trail
of �−-states, where each part of this trail now orbits the
center, z = g/

√
2δ [cf. Fig. 6(d)]. By this mechanism, sig-

nificantly higher photon numbers are reached. For instance,
sections that are generated at times +t = π , i.e., when the
original packet has reached its maximum g2/δ2 [cf. Eq. (12)],
will eventually reach z = 4g/

√
2δ corresponding to a pho-

ton number of |z|2/2 = 4g2/δ2. The appearance of additional
packets is now attributed to situations in which large parts
of the trail accumulate around similar photon numbers. This
interpretation is consistent with the fact that the additional
packets are sharply visible only during short periods of
time.

FIG. 7. Photon number distribution Pn(t ) with a driving strength
of f = 5 g, a detuning δ = 0.05 g, and decay rates κ = 0.01 g, γRD =
0.005 g, and γPD = 0.0025 g.

The effects of photonic and electronic dissipation combine
in a straightforward manner if both are taken into account con-
comitantly. An example of this is shown in Fig. 7. The packets
induced by electronic dephasing as well as the main packets
perform damped oscillations. It should be noted that the upper
packet is of considerably lower probability compared to the
case of mere cavity losses.

VI. CONCLUSION

We have studied the Jaynes-Cummings model with strong
cw driving of the TLS. We recovered therein the known result
of a singular packet with oscillating mean photon number if
the cavity is resonant to the external driving. If the driving is
slightly detuned with respect to the frequency of the cavity,
two or more packets simultaneously oscillate with consider-
ably different characteristics.

When taking into account various forms of dissipation,
the oscillatory patterns remain present transiently. Radiative
decay and polarization dephasing of the TLS largely lead
to the structure becoming indistinct, whereas cavity losses
damp the oscillations themselves. We found that the latter
results in the decay of one of two packets depending on the
value of the detuning. Only in a narrow transition region do
both packets remain stable under cavity losses, opening the
possibility of bimodal stationary states.

We have presented a very simple way of preparing highly
nonclassical photon states. We can expect to find these states
in numerous physical systems, due to the universality of the
model. Our results might pave the way to photonic appli-
cations in particular new methods of quantum information
processing that either exploit the bimodal stationary photon
number distribution or the characteristic transient structures in
the distribution to encode quantum information. It should be
noted that modern measurement techniques allow for a direct
experimental monitoring of the photon number distribution
[50–52] and therefore for a readout of information stored in
the distribution.
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APPENDIX A: EFFECTIVE HAMILTONIAN IN THE
STRONG DRIVING LIMIT

The Hamiltonian in the LDS basis reads

H = h̄δ a†a +
(

h̄g

2
(a + a†) − h̄ f

)
μ3

+ h̄g

2
(a − a†)(μ+ − μ−), (A1)

where μ+ and μ− are the ladder operators defined by

μ+�+ = 0, μ+�− = �+,

μ−�+ = �−, μ−�− = 0, (A2)

and μ3 = μ+μ− − μ−μ+. As described in Sec. IV, the cross-
coupling, mediated by the operator μ+ − μ−, only enacts a
small effect on the dynamics at sufficiently low photon num-
bers. We therefore seek a unitary transformation

U = exp(iA), (A3)

with A = A†, such that

Heff = UHU † (A4)

is diagonal in the LDS basis, thereby treating the influence
of the cross-coupling perturbatively (for a detailed account of
this method, see Ref. [53]). To second order in g/ f this is
achieved by choosing

A = i (p1 a + q1 a† + p2 a2 + q2 a† 2 + r2 (a†a + aa†)) μ+
+ H.c., (A5)

where

p1 = g

2

1

2 f + δ
, (A6a)

q1 = −g

2

1

2 f − δ
, (A6b)

p2 =
(

g

2

)2 1

(2 f + δ)( f + δ)
, (A6c)

q2 = −
(

g

2

)2 1

(2 f − δ)( f − δ)
, (A6d)

r2 =
(

g

2

)2 1

2 f

(
1

2 f + δ
− 1

2 f − δ

)
. (A6e)

Using this expression, we obtain up to an additive constant

Heff = H+
eff μ+μ− + H−

eff μ−μ+ + O

(
g3

f 3

)
, (A7)

where H±
eff is given by Eq. (9).

Since H±
eff is quadratic in the photonic annihilation and

creation operators, it can be readily diagonalized,

H±
eff = h̄± b†b + const, (A8)

such that b, b† fulfill bosonic commutation relations. We use
the ansatz

b = cosh(χ±) a + sinh(χ±) a† + ζ±, (A9)

with χ±, ζ± ∈ R, according to which

b†b = cosh(2χ±) a†a + ζ± exp(χ±) (a + a†)

+ 1

2
sinh(2χ±) (a2 + a† 2) + const. (A10)

By comparing coefficients with

H±
eff = h̄(δ ∓ ϑ ) a†a ± h̄g

2
(a + a†)

± h̄ϑ

2
(a2 + a† 2) + const (A11)

and solving the resulting equations, we obtain the unique
solution

± = δ

√
1 ∓ 2ϑ

δ
, (A12a)

χ± = 1

2
arsinh

(
± ϑ

±

)
, (A12b)

ζ± = ± g

2± exp(−χ±). (A12c)

After solving Eq. (A9) for a and a†, the mean photon
number under evolution of H±

eff with initial condition �0 can
be determined,

〈a†a〉±(t ) =
(

g

δ

)2 1 − cos(±t )

2

+ ϑ

2δ2

(
ϑ ± g2

2±

)
1 − cos(2±t )

2
. (A13)

APPENDIX B: WKB ANALYSIS OF A LINEAR
CHAIN MODEL

We consider the equation

ω(εn) βn + ξ

2
(βn+1 + βn−1) = λ βn, (B1)

which recovers Eq. (20) after identifying ω(εn) → ωn,±, ξ →
∓ f , and βn → βn,±. In the limit ε → 0, corresponding to
slowly varying frequencies ω, we seek an asymptotic solution
of the form

βn = exp

(
S(εn)

ε

)
(β (0)(εn) + εβ (1)(εn) + O(ε2)), (B2)

where S and β ( j) are smooth functions. In evaluating the
expansion at neighboring excitation numbers, S and β ( j) are
expanded in a Taylor series,

βn±1 = exp

(
S(εn)

ε
± S′(εn)

)
(β (0)(εn) + O(ε)). (B3)

Inserting Eqs. (B2) and (B3) into Eq. (B1) results in leading
order in the eikonal equation

1

2
(exp(S′) + exp(−S′)) = λ − ω

ξ
. (B4)

Since the right-hand side of Eq. (B4) is real, S′ has to be either
real, purely imaginary, or consist of a nonvanishing real part
and a constant imaginary part of π . These conform to the cases
(λ − ω)/ξ < −1, −|ξ | < λ − ω < |ξ |, and (λ − ω)/ξ > 1,
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respectively. We thus conclude that βn exhibit wavelike be-
havior in the range given by

λ − |ξ | � ω � λ + |ξ | (B5)

and exponential decay outside thereof.

In this work, we will not be interested in stating an ex-
plicit expression of S or determining β ( j). The latter would
be achieved by considering the higher-order equations. For a
detailed discussion of the present method, see Ref. [54] and
references therein.
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