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Localized and extended collective optical phonon modes in regular and random arrays
of contacting nanoparticles: Escape from phonon confinement
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In the present paper, we utilize the coupled-oscillator model describing the hybridization of optical phonons in
touching and/or overlapping particles in order to study the Raman spectra of nanoparticles organized into various
types of regular and random arrays including nanosolids, porous media, and agglomerates with tightly bonded
particles. For the nanocrystal solids, we demonstrate that the ratio of the size variance to the coupling strength
allows us to judge the character (localized or propagating) of the optical phonon modes, which left the particles
of their origin and spread throughout an array. The relation between the shift and the broadening of the Raman
peak and the coupling strength and the disorder is established for nanocrystal solids, agglomerates, and porous
media providing us with information about the array structure, the structure of its constituents, and the properties
of optical phonons.
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I. INTRODUCTION

Nanotechnology revolutionized the way we treat materi-
als, opening up exciting possibilities for numerous scientific
and technological advancements. Among the currently studied
nano-objects, significant progress is achieved in manufactur-
ing, characterization, and utilization of nanoparticles [1–3],
which not only can inherit the properties of basic bulk mate-
rials but also possess a distinct set of physical and chemical
features considerably different from the bulk ones. Such fea-
tures as large surface-to-bulk ratio and quantum confinement
effects play an important role in nanoparticles. It is per-
tinent to also mention several useful properties, including
enhanced catalytic activity [4,5], tunable optical and elec-
tronic characteristics [6–8], biocompatibility [9–11], which
attracted significant attention and propelled the rapid growth
of nanoparticle-based research and development. By tailoring
the size, shape, and composition of nanoparticles, researchers
can precisely engineer their properties to meet specific re-
quirements for diverse applications. Among various types
of nanostructures, a significant role is played by the carbon
nanostructures [12,13] and, specifically, the diamond nanopar-
ticles obtained using various synthesis methods [14,15].

Along with benefiting from the direct usage of nanoparti-
cles, nanocrystals, and quantum dots for various technological
and scientific applications, they emerged as a key building
block for materials of the higher levels of organization. Such
materials are the quantum-dot molecules [16–20], nanocrystal
solids [21,22], and networks [23–27]. In addition, the porous
materials [28–32] with certain geometry can be considered as
networks of coupled nanoparticles.
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Furthermore, the nanoparticle agglomerates whose for-
mation is inherent to the specific manufacturing techniques
can also serve as an example of coupled nanoparticle ar-
rays. The diamond nanoparticles of detonation synthesis can
serve as an example. Primary crystallites of approx 3–5 nm
in size [33–37] in hydrosols and dried powders are orga-
nized into stable agglomerates [38–43] with fractal structure
[41,42,44]. The deagglomeration of particles is quite involved
and requires chemical purification and ultrasonication in hard
conditions, leading to the establishment of covalent bonding
between the particles via the carbon phase undergoing the
amorphization [43].

Raman spectroscopy (RS), a potent technique, finds ex-
tensive application in the characterization of contemporary
nanostructured materials such as nanoparticles, nanorods,
and two-dimensional nanostructures. It provides an accurate
energy profile of material-specific excitations like phonons
[45–47], magnons [48], and excitons [49,50]. Currently, the
Raman spectra measurements serve as the standard proce-
dure for characterizing carbon materials and nanomaterials
designed for various applications [45,46,51–56]. By offering
ease of implementation, nondestructive analysis, and a wealth
of versatile data, Raman spectroscopy plays a pivotal role in
advancing nanotechnology and material science. Importantly,
when the nanoparticles are concerned, the theoretical basis
of RS deals usually with single-particle properties only; the
resulting spectra are evaluated as integrated over independent
and noninterfering particles of an array. This paradigm goes
back to the phonon confinement model formulated in seminal
papers [57,58].

Recently, the theory of optical phonon mode hybridiza-
tion has been developed for two and several nanoparticles in
contact and the corresponding effects on Raman spectra have
been studied in Ref. [59]. This theory predicts the vibrational
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properties of a nanoparticle dimer (single quantum dot
molecule). It has been demonstrated that optical phonons in
such a system behave qualitatively similar to the system of two
coupled harmonic oscillators. For a quantitative description,
the coupled oscillators model (COM) has been proposed and
formulated as an eigenproblem for 2 × 2 matrix with certain
coefficients. Despite COM simplicity, it has been shown to
reproduce the results of more involved approaches, namely
the atomistic dynamical matrix method (DMM) [60] and
the continuous Euclidean metric Klein-Fock-Gordon equa-
tion (EKFG) [61] with a good accuracy. Indeed, even for
the atomistic DMM, which accounts for vibrations polariza-
tion, COM describes the mode splitting on average. It means
that when there is some “smearing mechanism”, e.g., scatter
in particle sizes or disorder, COM successfully reproduces
ensemble-averaged observables.

In the present study, we extend the COM approach
onto several physically relevant many-particle ensembles and
explore the effects of particle-particle contacts on optical
phonon hybridization. We investigate how the abovemen-
tioned phenomena manifest themselves in the Raman spectra
of the corresponding arrays. In particular, we study the reg-
ular 3D arrays of nanoparticles (ordered and disordered) as
a model for nanosolids and porous media. Furthermore, we
evaluate the inverse participation ratio (IPR) as a function
of phonon mode hybridization and disorder. We obtain (both
analytically and numerically) the scale of phonon localization,
and attribute our problem as an Anderson transition [62,63].
We also extend our theory onto 2D, 1D arrays, and tight
agglomerates.

Since below we discuss the propagation/localization of
vibrational modes on both regular and disordered arrays we
would like to emphasize the type of optical phonons we
are dealing with. It is precisely the intrinsic modes of indi-
vidual particles that are usually treated as a subject of the
phonon confinement [57,58]. In our approach, they acquire
an opportunity to “jump” from the maternal particles and to
travel throughout an array due to the hybridization of modes
from neighboring particles that occurs due to their contacts
(cf. hybridization of Lamb modes described in Ref. [64]). In
other words, in our treatment vibration modes can escape from
the phonon confinement on a single particle, which essentially
changes the system Raman spectrum. These modes should be
contrasted with the collective vibrational modes (superlattice
phonons) of regular enough arrays whose eigenfrequencies
can be obtained from, e.g., the ball-spring model with suitable
interparticle interaction [65,66]. The latter are not a subject of
the present study.

The rest of the paper is organized as follows. In Sec. II we
formulate the generalization of the COM approach for the case
of a many-particle array/network. In Sec. III we describe the
results for various types of nanoparticle arrays. In subsection
III A we consider three-dimensional regular arrays of identi-
cal particles and establish the correspondence between these
systems and the porous media. In subsection III B we study a
3D regular array of nanoparticles varying in size. The criterion
of optical phonons localization in such a system is formulated
depending on the size variance and the particle overlapping
parameter. Subsection III C describes the model cases of the
2D array and 1D chain. In subsection III D we consider the

nanoparticle agglomerates with the spatial structure governed
by cluster-cluster and cluster-particle aggregation processes.
Section IV is devoted to the analysis of the obtained results
and presents the main conclusions of the conducted study.

II. COUPLED-OSCILLATOR MODEL FOR OPTICAL
PHONONS IN MANY-PARTICLE SYSTEMS

In high-symmetry lattices (e.g., in diamond-type lattices),
the energy spectrum of long-wavelength optical phonons near
the Brillouin zone center is parabolic

ω(q) ≈ ω0 − αq2, (1)

in accordance with Keating model [67]. Evidently, it is con-
sistent with the widely used form of dispersion ω(q̃) ≈ A +
B cos(q̃) [68–70]. The maximal optical phonon frequency for
a diamond is ω0 ≡ A + B ≈ 1333 cm−1.

In nanoparticles, the optical vibration frequencies can be
found, e.g., by direct diagonalization of the system dynamical
matrix [60] or using the continuous EKFG approach [61]. The
latter implies the solution of the Laplace equation with the
Dirichlet boundary condition

�Y + q2Y = 0, Y |∂� = 0 (2)

on the connected manifold � corresponding to the nanopar-
ticle shape. Here Y represents the optical mode envelope
function. For simple shapes, e.g., for sphere, cylinder, or
cube, Eq. (2) can be easily solved analytically and the set
of eigenvalues q2 gives the optical phonon spectrum. For
instance, in the case of spherical particles, the phonon wave
functions are combinations of spherical Bessel functions and
spherical harmonics (see Ref. [61]). The lowest eigenvalue
reads q1 = 2π/L for the s-wave state in a nanoparticle of
the size (i.e., diameter) L. The corresponding wave function
is the most symmetrical one among all modes and gives the
strongest Raman signal I ∝ | ∫

�
Y dr|2 from a single particle

[61]. Due to the dispersion law with negative mass, this mode
is highest in energy.

However, when the manifold is a complex one, the di-
rect solution of Eq. (2) is more involved. The calculations
remain reasonable in size if we are dealing with noninteract-
ing nanoparticles, but when we consider the effect of their
cross-talks (this is what we do in the present study) the
calculation time increases dramatically. This is indeed the
case for systems that consist of many structural units, e.g.,
nanocrystal solids, porous media, and tight nanoparticle ag-
glomerates. In order to overcome this problem, recently the
coupled-oscillator model (COM) was proposed [59]. It allows
to reformulate the problem of the optical phonon spectrum of
several nanoparticles in contact as a simple eigenvalue prob-
lem for a certain matrix. For example, for two interpenetrated
particles the corresponding matrix reads

H =
(

q2
1 − �1 −C12

−C21 q2
2 − �2

)
. (3)

This matrix, which can be referred to as the problem Hamil-
tonian, describes the coupling and hybridization of two
highest-in-energy optical modes belonging to two particles
in contact. Here q2

1,2 are the known smallest eigenvalues of
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the two particles when they are isolated, �1,2 are the on-site
corrections due to the change of the volume accessible for
the mode resulting in consequent slight relaxation of size-
quantization effect, and C12 = C21 are the intermode coupling
constants. The crucial parameter here is the particles’ inter-
section volume V12, which is assumed to be much smaller than
the volumes of both particles V1,2. For a spherical shape, it is
given by the following equation:

V12(R1, R2, δR) ≈ πδR2R1R2

R1 + R2
, (4)

where R1,2 are the particles radii and δR is the penetration
length (overlapping parameter). Now we can present explicit
equations for the model parameters. For the on-site correc-
tions, one has

�1,2 = q2
1,2 f (V12/V1,2), f (x) = x − (x/0.425)2, (5)

whereas the coupling constant reads

C12 =
√

q2
1q2

2V12√
V1V2

. (6)

In our previous study COM was shown to accurately re-
produce the results of the EKFG approach and, on a
semiquantitative level, the ones of an exact dynamical matrix
method.

Importantly, COM allows for the simple generalization
onto many particle arrays. Let the corresponding number of
particles be N . Then, one should accurately calculate the on-
site corrections, which for ith particle reads

�i = q2
i

∑
j

f (Vi j/Vi ). (7)

Next, the coupling constants are

Ci j =
√

q2
i q2

jVi j√
ViVj

. (8)

So, the N × N matrix problem has the following form:

H =

⎡
⎢⎢⎢⎢⎢⎢⎣

. . .
...

. . . q2
i − �i . . . −Ci j . . .

...
. . .

−Ci j
. . .

...
. . .

⎤
⎥⎥⎥⎥⎥⎥⎦

. (9)

Finally, solving the eigenproblem

Hψ = λψ, (10)

one obtains a set of eigenvalues λ [which should be plugged
into Eq. (1) instead of q2 in order to get the phonon energies]
and eigenvectors ψ (n), which indicate the probabilities to find
an optical phonon at a certain particle. Importantly, the latter
can be also utilized for Raman intensity calculations. For a
particular mode ν it reads

Iν =
∣∣∣∣∣

N∑
i=1

√
Vi ψ

(ν)
i

∣∣∣∣∣
2

, (11)

where the summation includes all the particles in the ensemble
(cf. Ref. [61]). The Raman spectrum of an array can be derived
using the equation

I (ω) =
∑

ν

Iνδ(ω − ων ). (12)

The delta function here can be replaced by a Lorentzian
profile with an appropriate intrinsic or experimental
broadening.

Note that the matrix (9) corresponds to the Anderson-like
model [62] with the on-site disorder and variable hopping
elements. Thus, depending on the model parameters, the
eigenmodes, in our case, the optical phonons, can be either
localized or extended (propagating). We show that this phe-
nomenon plays a crucial role when the Raman spectrum of the
ensemble is concerned. For the quantitative characterization
of the localization properties, we use the inverse participation
ratio (IPR) defined as follows

IPR(ν) =
∑

i

∣∣ψ (ν)
i

∣∣4
(13)

and assume function normalization to unity.
For extended states IPR ∼ 1/Nα with some α > 0,

whereas for localized ones IPR saturates to some constant
upon N growth (IPR ∼ N0 ≡ const). Parameter α indicates
the fractal dimension of the corresponding eigenstate. Its flow
upon the decimation procedure [71] allows us to judge the
localization properties of various models including random
regular graphs [72].

The employed COM describes interactions between single-
site excitations, and by its meaning it is close to the wide
family of the tunneling tight-binding model (TBM) Hamil-
tonians. Such Hamiltonians are used to describe electronic
structures of solids [73], for the insight into the properties
of optical lattices [74–77], etc. A similar approach was also
used to describe vibrational excitons in molecular crystal
[78,79]. Importantly, within the TBM approach, the on-site
corrections are not taken into account because they repre-
sent the next order of accuracy of perturbation theory with
respect to couplings [73]. Thus, for TBM, in the simplest
case of two identical interacting sites, the bonding and an-
tibonding wave functions split symmetrically in energy with
respect to bare site energies. On the contrary, COM predicts a
two-times shift for one of the states and a nearly zero shift
for another state. In practice, some intermediate situations
can also take place (see, e.g., the behavior of levels shift of
size-quantized level for exciton-polaritons in etched micro-
cavity pillars [80]). TBM-like Hamiltonians are applicable for
relatively weak tunneling binding between sites. In contrast,
COM by its definition is used to describe eigenvalues and
eigenfunctions of the Helmholtz equation (�Y + λY = 0)
with the Dirichlet boundary conditions (no exponential
tunneling tails) in the case of overlapping of many nearly
spherical sites. Thus, COM can be employed for insight into
any physical system described by this mathematical physics
equation.
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III. RESULTS FOR ORDERED
AND DISORDERED SYSTEMS

A. Three-dimensional nanocrystal solid

In this subsection, we test COM applicability using a rel-
atively simple problem of optical phonons in a nanocrystal
solid. The latter is assumed to be made of identical particles
arranged in a simple cubic lattice. Evidently, in this case,
all the modes will be propagating, i.e., extended over the
whole system since there is no disorder in the model. One can
also expect that the mode with the highest frequency would
have ω → ω0 (BZ center optical phonon frequency, 1333
cm−1 for Diamond) when the overlap among the particles in-
creases. The latter can also be discussed in terms of decreasing
porosity. Hereinafter, we shall use the notion of “porosity” in
order to quantify the relative measure of free space inside the
sample.

We begin our analysis with a comparison between the
results of effective COM and more involved DMM and EKFG
approaches. For this purpose, we consider a 3×3×3 system
made of L = 1.6 nm diamond nanoparticles. Then we shall
vary the penetration depth δR keeping track of the opti-
cal mode with the highest frequency. Importantly, the latter
has the dominant Raman intensity among all the modes be-
ing the most symmetric one. Our findings are presented in
Fig. 1(a), where one can see a good agreement among all
three approaches despite COM and EKFG neglecting phonon
polarization degree of freedom. Notice that for a regular ar-
ray on a simple cubic lattice, δR = L − a, where a is the
lattice parameter (the shortest distance between the particle
centers). Next, we turn to the more complicated case of
11×11×11 3-nm particles array, which can be hardly ana-
lyzed using numerical DMM or even EKFG. Its total size is
approx. 30 nm (depending on the particle overlapping length
δR), which is almost a bulk material from the point of view
of the phonon confinement. Using COM, we examine the
maximal optical phonon frequency as a function of the δR/L
parameter. The maximal porosity of the lattice of slightly
touching spheres (δR = 0) is approx. 0.48. The value δR/L =
0.3 yields the porosity less than 0.03, so the particles are
essentially overlapped. Figure 1(b) shows that the maximal
optical phonon frequency almost reaches ω0 in a small poros-
ity limit, which is quite expected since this limit is close to
the bulk case. In another limiting case of weakly penetrated
spheres, the frequency tends to the maximal frequency of a
single particle, which is 1327 cm−1 according to the EKFG
model.

The obtained results lie in agreement with microscopic
calculations of porous germanium Raman spectra [29]. Both
methods demonstrate a similar approach of Raman peak posi-
tion to the value of bulk material when decreasing the porosity.
Finally, it is instructive to mention that in the considered case
of identical particles arranged into the cubic lattice, COM
Hamiltonian is similar to a finite-difference representation of
the Laplace operator and thus can be considered as a specific
coarse-grained approach for the optical phonons.

To conclude this subsection, we demonstrated that COM
works reasonably well for hybridized optical vibrations in
many-particle systems. Below we shall utilize this knowledge
for disordered arrays.

(a)

(b)

FIG. 1. (a) The highest optical phonon frequency of 3×3×3
regular array of particles arranged into the simple cubic lattice ob-
tained within DMM, EKFG, and COM approaches as a function
of the penetration length. The case of 1.6-nm spherical nanodia-
mond is considered. (b) The highest optical phonon frequencies
of 11×11×11 regular array of 3-nm diamond particles were ob-
tained using the COM approach. The limiting value at zero porosity
1333.3 cm−1 matches the value of the bulk diamond optical phonon
frequency. The simulated structure is depicted in the inset.

B. Regular array with disorder

Now let us take the model from the previous subsection and
“spoil” it. The simplest yet natural way to introduce disorder
is to introduce the size distribution for particles arranged in
the nanocrystal solid, say, in the Gaussian form,

P(L) ∝ exp
[−(L − L0)2/2σ 2

L

]
, (14)

where L0 stands for the average nanoparticle size and σL

shows the typical deviation from it. Keeping the distance
between the centers of neighboring particles intact, one can
see that the variety in particle sizes results in disorder in both
diagonal and off-diagonal matrix elements in Hamiltonian (9).
In order to illustrate this issue, we consider an 11×11×11 ar-
ray of nanoparticles arranged in a simple cubic lattice with the
parameter a. Due to the particle size variation (14), the “bare”
penetration depth δR0 = L0 − a also varies in the present case.

Before presenting our numerical results, let us discuss what
can we expect from the model under investigation. Consid-
ering the case of moderate σL � L0, we see that the main
contribution to disorder in diagonal elements is due to q2

i
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variation, which can be estimated as

δq2
i ∼ σL

L3
0

. (15)

Importantly, the changes in other quantities that are present
in the Hamiltonian (9) are much smaller due to the small-
ness of the relative particle intersection volume. Taking into
account this finding, we arrive at the famous Anderson
model with the diagonal disorder. According to the Thou-
less percolation-theory arguments [81], in order to judge the
extended/localized character of excitation behavior in this
model, one should compare the average deviation in the diag-
onal matrix elements and the hopping (off-diagonal elements)
magnitude. In our case, if 〈δq2

i 〉 � 〈Ci j〉 (“strong coupling”)
then the eigenstates should be extended, whereas for 〈δq2

i 〉 �
〈Ci j〉 (“weak coupling”) the states are localized. The boundary
between the two regimes can be estimated as

σL ∼ δR2
0

L0
. (16)

Let us turn to the results of our numerical simulations,
which were obtained after averaging over 30 disorder real-
izations. In Fig. 2(a) we plotted the logarithm of the IPR for
the mode with minimal IPR, i.e., for the maximally delo-
calized state. Evidently, one can see the boundary between
the regimes of localized and extended states. Moreover, it
has a good correspondence to the qualitative estimate (16).
Thus we indeed observe the Anderson-like transition for op-
tical phonons in our problem. Importantly, the mode with
minimal IPR turns out to be the most antisymmetric one
with respect to the amplitude of ψ on neighboring particles.
Thus, it is characterized by the largest eigenvalue and small-
est frequency. Moreover, its Raman intensity is negligible
[see Eq. (11)].

When the Raman active modes are addressed, we observe
that the ones with the highest intensity have the most sym-
metric wave functions ψ and the highest frequency. In the
delocalized regime, there exists a single mode with dominat-
ing intensity as shown in the inset in Fig. 2(b). In contrast,
when the states are localized, there are several modes with
comparable contributions to the RS. This results in a broader
Raman peaks (see Fig. 3 and discussion below). Figure 2(c),
where the IPR of the mode with the maximal Raman inten-
sity is shown, supports our main claim that the localization
properties of the excitations are crucial for Raman spectra
understanding. Furthermore, we illustrate it with the direct
calculation of the specimen RS for six various parameter sets
corresponding to various regimes, see Fig. 3. When the states
are extended, the RS has a sharp peak with relatively small
linewidth. However, when the disorder is sufficient to localize
the eigenmodes, the signal is essentially broadened. In the
case of weak coupling, when almost all mode wave functions
are essentially localized on single sites, it becomes close to
the one, which we can expect for an ensemble of isolated
particles with the same size distribution (14) (see Fig. 3, or-
ange, green, and dashed-black curves). When the coupling (or,
equivalently, the average penetration depth) becomes larger,
the Raman signal shifts towards higher frequencies as shown
by the cyan curve in Fig. 3. This phenomenon is associated
with the longer localization length in this case so the Raman

0 0.05 0.1 0.15
0

0.05

0.1

0.15
Min IPR(a)

3.0
2.5
2.0
1.5
1.0
0.5

0 0.05 0.1 0.15
0

0.05

0.1

0.15
Max Raman Intensity

0.5
1.0
1.5
2.0
2.5

0 0.05 0.1 0.15
0

0.05

0.1

0.15
IPR of Raman max. int.

2.5
2.0
1.5
1.0
0.5

FIG. 2. Localization of optical phonons in a 3D array of nanopar-
ticles. (a) The log of the inverse participation ratio of the most
delocalized eigenfunction versus the typical size variance σL/L0 and
penetration length δR/L0. (b) The same for the maximal Raman
intensity of a single mode. (c) Depicts the IPR of the mode that has
maximal Raman intensity. The insets show the real-space amplitudes
of the corresponding wave functions.

active modes are mostly localized within several particles and
hence their frequencies are higher than those of isolated parti-
cles. Noteworthy, as one can see from Fig. 2, maximal Raman
intensity expressed by Eq. (11) can serve as a characteristic of
modes localization along with IPR.

155435-5



KONIAKHIN, UTESOV, AND YASHENKIN PHYSICAL REVIEW B 109, 155435 (2024)

FIG. 3. Raman spectra for various values of the size distribu-
tion variance σL/L0 and the overlapping parameter δR/L0 for 3D
array of nanoparticles (cf. Fig. 2). The parameter pairs were chosen
to illustrate various scenarios for the ensemble Raman spectrum
(see text).

Finally, in order to make a connection with the perco-
lation theory [82] even more transparent, we consider the
same problem but with a certain amount of couplings, which
we manually switch off. Then, we study the dependence of
the maximal Raman intensity of a single mode and minimal
IPR among all the modes on the fraction of active bonds x.
Figure 4 summarizes the corresponding findings in the regime
of strong coupling (δR/L0 = 0.25). One can see that in this
case, the size distribution function broadening is irrelevant
because σL � L0, but the fraction of active bonds x is the
crucial parameter. Importantly, the percolation transition oc-
curs at xc = 0.25. At x > xc we indeed observe extended
states with small IPR and large Raman intensity, whereas
at x < xc the modes are localized and their intensities are
relatively small. Moreover, the dependencies here are found
to be in semiquantitative agreement with the results shown

FIG. 4. Percolation scenario in the system of 11×11×11 cubic
nanoparticle array. The overlap δR/L0 = 0.25 is fixed. The solid
curves depict the IPR and the Raman intensity (in units of Raman
intensity of a single particle) as a function of the fraction of active
bonds in the system. The dashed-gray line illustrates the same effects
for a 2D square lattice with 37x37 ≈ 11x11x11 sites. Vertical-dashed
lines show percolation thresholds xc = 0.25 and xc = 0.5 in 3D and
2D, respectively.

0 0.05 0.1 0.15
0
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0.15
Min IPR

2.0

1.5

1.0

0.5

0 0.05 0.1 0.15
0

0.05
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0.15
Max Raman Intensity
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0.75
1.00
1.25
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FIG. 5. Localization of optical phonons in a 2D nanocrystal solid
(array of nanoparticles) arranged in a square lattice. (a) The log
of inverse participation ratio of the most delocalized eigenfunction
vs the typical size variance σL and the overlap length δR. (b) The
maximal Raman intensity of a single mode in the same coordinates.

in Figs. 2(b) and 2(c). However, since the average number
of sites for the largest cluster across the transition changes
continuously, we only observe inflection points for the 3D
and 2D IPRs at x ≈ xc and no visible features for the Raman
intensity, see Fig. 4.

C. The case of 2D and 1D arrays

After discussing the main properties of the model and
establishing its close relation to the 3D percolation problem,
let us examine its behavior in lower dimensions investigating
the square particle lattice and the linear particle chain.

It is well known that in two dimensions the percolation
transition is qualitatively the same as in 3D (see the dashed
line in Fig. 4). An important difference is that xc = 0.5 in this
case; another difference in values of critical exponents is not
important for our crude treatment. Therefore, we can expect
a smaller coefficient of proportionality in Eq. (16) for the
localization boundary. This was indeed what we observed in
our numerics for 11×11 lattice, see Fig. 5. Evidently, in order
to observe 2D extended states at given σL one should involve
larger δR (cf. Fig. 2). Nevertheless, on the qualitative level,
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the properties of the 2D model remain the same as discussed
above for 3D.

It is pertinent to note that it is well known that in 2D
even for weak disorder all states are localized [63]. However,
the localization length is exponentially large (“weak localiza-
tion”) and we cannot observe it in our calculations. Instead,
we discuss strong localization, which is qualitatively similar
to 3D.

In one spatial dimension, the physics is essentially differ-
ent. For infinitely large chains the percolation threshold is
exactly xc = 0 since every “inactive” bond breaks the system
into two separate pieces. However, since we consider the
system with finite size N , the physics is more tricky. An addi-
tional parameter—localization length ξ—comes into play. If
ξ � N then, the optical phonons are in the extended regime.
In the opposite case of ξ < N , the localization takes place.

For the simple estimate of ξ let us assume that δR2
0 � L0σL

(weak disorder) and calculate the probability of finding a
bond with |q2

i − q2
i+1| > Ci,i+1. As a result, without numerical

coefficients, we obtain

ξ ∼ δR2
0

L0σL
exp

(
δR2

0

L0σL

)
. (17)

Next, using N � 1 instead of ξ , we arrive at the following
estimate of the boundary between extended and localized
regimes:

δR2
0

L0σL
∼ ln N, (18)

which a posteriori justifies our assumption δR2
0 � L0σL. This

boundary has been indeed observed in our numerics, see
Fig. 6, where the extended regime is visible in a certain do-
main of parameters in the vicinity of the vertical axis. The
system size here is N = 120.

D. Tight agglomerates

We proceed with another type of physical system—the
tight agglomerate of nanoparticles. Even for identical parti-
cles, it can be considered as a disordered array due to its
spatial structure. Importantly, agglomerates can be character-
ized by their fractal dimension [83–85], which is governed by
the underlying formation mechanism. The fractal dimension
indicated below is defined via the slope in the dependence of
the gyration radius versus the number of particles belonging
to the agglomerate.

In the present study, the agglomeration process is mod-
eled according to the procedures described in Ref. [86]. In
the case of the cluster-cluster aggregation model, both col-
lision and adhesion take place for agglomerates of similar
size. It results in a doubling of the structure size on each
step. For particle-cluster aggregation, the single particles hit
the growing agglomerate. During the cluster-cluster process,
the resulting agglomerates are formed more sparsely (the cor-
responding fractal dimension D f ≈ 1.8) than in the case of the
particle-cluster process where D f ≈ 2.7. The fractal dimen-
sion of detonation nanodiamond agglomerates obtained from
the neutron scattering experiments and optical measurements
has a value close to 2.5 [41,42,44], which indicates that the
particle-cluster model is more relevant to that kind of systems.
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FIG. 6. Localization of optical phonons in 1D chain. (a) The log
of the inverse participation ratio of the most delocalized eigenfunc-
tion vs the typical size variance σL and the typical overlap parameter
δR. (b) The same for the maximal Raman intensity of a single mode.

Importantly, when utilizing the EKFG approach, we ob-
serve a peculiarity. Even considering the particles of the same
size and penetration depth of nearest neighbors, we found that
there is a variance in the particle overlap volumes, which natu-
rally occurs due to the finite size of elements upon creating the
mesh for the solution of �ψ + q2ψ = 0 eigenvalue problem
in Wolfram Mathematica package [87]. To take it into account
in COM calculations, we introduce a random coefficient for
coupling terms with the unit mean value and the variance
equal to 0.5.

In Figs. 7(a)–7(f) we compare the second, the third, and
the fourth eigenfunctions obtained using EKFG and COM
approaches for agglomerates containing eight particles of the
same size L0 = 3.1 nm (the first eigenfunctions, which are
the “boring” constant sign solutions are not shown here).
One can see an excellent agreement in the wave functions’
spatial structure between the employed methods. For EKFG
results, the random points belonging to the agglomerate are
taken to plot the square of the wave function amplitude that is
depicted proportionally to the intensity of color. For the COM
approach, the squared wave function amplitude is proportional
to the color intensity as well. Red and blue colors indicate
different relative signs of the wave functions. Panel (g) shows
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FIG. 7. The second, the third, and the fourth eigenfunctions of
the eight-particle agglomerate obtained within EKFG (a), (c), (e)
and COM (b), (d), (f). Panel (g) shows the Raman spectra of the
ensembles of 8-nanoparticle agglomerates calculated using EKFG
(dashed curves) and COM (solid curves) with various values of the
penetration depth δR. The mean size of particles is L0 = 3.1 nm.

the Raman spectra of the ensembles of 300 agglomerates
for various relative overlapping parameters δR/L0 calculated
using COM and EKFG approaches. One can see a good agree-
ment between the methods. Thus, we can safely use COM for
studying the properties of larger agglomerates, hardly suitable
for EKFG calculations.

In Fig. 8 we show the evolution of the Raman spectra
of agglomerates constructed using cluster-cluster and cluster-
particle mechanisms upon the growth in the number of
particles. In these calculations, we employ COM and use
identical particles with L0 = 2.4 nm and δR/L0 = 0.2. One
can see that in both cases the peak shifts towards higher

(a)

(b)

FIG. 8. Raman spectra of various-sized tight agglomerates. The
size of diamond nanoparticles is 2.4 nm. Various colors correspond
to agglomerates of various sizes. Isolated particle and dimer peak
positions are indicated by dotted and dashed lines, respectively. Panel
(a) shows the results for the cluster-cluster aggregation procedure and
panel (b) shows the results for the cluster-particle aggregation. The
insets demonstrate the typical structure of the agglomerate consisting
of 256 particles.

frequencies when the particle number increases. Notice that
for the cluster-particle mechanism, the peak becomes lower
and broader than in the cluster-cluster case. Importantly, in
both cases, the main peak corresponds to the collective modes
of the agglomerate. Contributions from modes localized on
a single particle or two neighboring particles are at lower
frequencies and are much weaker. Note that choice of another
value of δR/L0 will only lead to rescaling of the Raman shift
axis of Fig. 8 since all the particles are identical.

Now we turn to the characterization of eigenmodes ob-
tained for two types of agglomerates with disorder in particle
sizes using COM. Our findings are presented in Fig. 9. One
can see that the minimal IPR and the maximal Raman inten-
sity of a single mode behave in a qualitatively similar way to
3D and 2D porous media cases (cf. Figs. 2 and 5). When the
particle size variance grows, the eigenmodes become essen-
tially localized, and their Raman intensities drop.

To further check the properties of agglomerate modes with
minimal IPR in the absence of the disorder, we study IPR
evolution with the number of particles N . We observe two dif-
ferent scenarios, see Fig. 10. In the case of the cluster-cluster
mechanism, IPR tends to saturate at large N thus the modes
are localized, whereas for the cluster-particle mechanism, IPR
corresponds to extended fractal states with α ≈ 0.5 [see text
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FIG. 9. IPR and the maximal Raman intensity for cluster-cluster
[(a),(b)] and cluster-particle [(c),(d)] agglomerates consisting of 256
particles.

after Eq. (13); this parameter should not be confused with
the fractal dimension of the agglomerate D f ]. We believe
that this behavior can be understood by comparison of the
agglomerates’ D f parameters with the critical dimension for

FIG. 10. Minimal IPR of a single mode vs the number of
particles in agglomerate N for cluster-cluster and particle-cluster
agglomerates. The lines give a guide for the eye for y ∝ 1/x (solid
line) and y ∝ 1/

√
x (dashed line).

Anderson transition D = 2, which divides regimes of local-
ized and extended states in weakly disordered systems [63].
However, we note that the problem of (de)localization of
elementary excitations in random fractal structures of large
size N deserves a separate comprehensive study (for regular
fractals see, e.g., Refs. [88–90]).

Finally, we summarize the behavior of minimal IPR and
maximal Raman intensity of a single mode for various fractal
dimensions D f of the finite systems with N ∼ 250 particles
as functions of the particle size variance in Fig. 11. One can
see that at σL = 0 the curves start from purely extended states
in ordered systems (integer D f ) and in the agglomerates with
noninteger D f . However, we find that in the former case α = 1
and in the latter case α < 1. Then, upon the σL growth the
most dramatic effect is visible for the 1D chain, whereas for

FIG. 11. Maximal Raman intensity and minimal IPR of a single
mode versus particle size variance for various types of nanoparticle
arrays. 1D chain, regular 2D (256 particles) and 3D (216 particles)
arrays, cluster-cluster agglomerates, and particle-cluster agglomer-
ates (256 particles) characterized by various fractal dimensions are
considered.
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other systems the effects of Raman intensity of a single mode
decrease and the IPR increase are much more gradual.

IV. DISCUSSION AND CONCLUSIONS

This paper is devoted to the description of the collective
optical phonon modes in several physically or chemically
implementable structured materials. These materials are as-
sumed to consist of smaller objects (nanoparticles) mutually
connected and arranged into various types of arrays (ordered
and disordered nanosolids of certain dimensionality, porous
media, fractal agglomerates, etc.) by means of “weak interpar-
ticle links”. The latter provides the mechanism of propagation
throughout an array for otherwise intrinsic (confined) modes
due to the hybridization of phonons with close energies that
belong to different contacting particles. In order to optimize
the calculations the simple coupled-oscillator model is used
instead of more involved and costly DMM or EKFG ap-
proaches, the COM is shown to be working quite well for
the problem at hand. The above theory allows us to judge
confidently the localization/delocalization of optical modes
on scales exceeding the particle size L. The modification of
Raman spectra due to the above phenomena is also discussed
with reasonable accuracy.

To be more specific, the regular 3D arrays of nanoparticles
(ordered and disordered) are proposed as a proper model
of nanosolids and porous media. For disordered arrays, the
inverse participation ratio is investigated as a function of the
overlap parameter (measuring the inter-mode hybridization)
and the particle size variance (responsible for the disorder).
The detailed analysis allows us to obtain analytically the scale
of localization/delocalization transition and to confirm this
result by numerical calculations. This 3D analysis is accom-
panied by the model calculations of 2D and 1D arrays. The
similarity of the problem at hand with the Anderson model
with on-site disorder and with the percolation scenario is
emphasized. The Raman intensity is evaluated as a function of
the above parameters, and the line-broadening enhancement
in the localized regime is attributed. The tight agglomerates of
nanoparticles are presented in the forms of two (cluster-cluster
and cluster-particle) models of aggregation. The influence

of the fractal structure of agglomerates on the localization
properties of optical phonons is investigated via the IPR study,
and the Raman shift and line broadening in such systems are
depicted as the functions of disorder and coupling parameters.

The present paper paves the way toward including many-
particle collective effects in previously developed efficient
methods for nanoparticle ensemble Raman spectra calcula-
tions. These previously neglected effects can significantly
modify the results and thus the interpretation of the cor-
responding experimental data. The results on Raman peak
position in nanoparticle agglomerates allow extracting ad-
ditional information on the nature of agglomeration of
diamond nanoparticles. The deagglomeration methods for
nanodiamonds include annealing in an oxidizing or reducing
atmosphere, chemical deagglomeration by acids or bases, ul-
trasonication, and bead milling, which have in general strong
impact on the agglomerates. Thus the presence of covalent
bonds linking the particles is mostly probable. At the same
time in most of the available references [2,91–93], there is
no evidence of Raman spectra changes for the samples after
deagglomeration by various methods with respect to initial
samples. Thus one can conclude that there are no strong direct
contacts of crystalline nanoparticle cores in such agglomer-
ates, cf. Fig. 8. Particle-particle binding can take place either
via a small number of individual carbon-carbon bonds and
functional groups or via an amorphous sp2-like phase on the
particle surface as proposed in Ref. [43]. The presented COM
approach should be useful to interpret Raman spectra of quan-
tum dot molecules [16–20] and nanocrystal solids [21–27] for
extracting information of their structure.
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