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Topological phases of many-body non-Hermitian systems
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We show that many-body fermionic non-Hermitian systems require two distinct sets of topological invariants
to describe the topology of energy bands and quantum states, respectively, with the latter yet to be explored.
We identify 10 symmetry classes—determined by particle-hole, linearized time-reversal, and linearized chiral
symmetries. Each class has a topological invariant associated with each dimension, dictating the topology of
quantum states. These findings pave the way for a deeper understanding of the topological phases of many-body
non-Hermitian systems.
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I. INTRODUCTION

The quantum Hall effect has inspired developments that
have ushered in the topological phases paradigm for phase
classification and description [1–19]. In these phases, an
underlying foundation is laid by internal symmetries. In Her-
mitian systems, primary internal symmetries fuse in the form
of Altland-Zirnbauer (AZ) symmetry—time-reversal symme-
try, particle-hole symmetry, and chiral symmetry, leading to
a suite of 10 symmetry classes [20]. The topological phase
is classified and described by a topological invariant defined
in its specific symmetry class, and all unique properties of
topological phases are characterized by a topological invari-
ant [21–23]. Changes in the topological invariant always occur
at points where the gap closes. Since the phase transitions
of quantum states at half-filling in Hermitian systems are
invariably associated with gap closing, the topological invari-
ant is able to capture not only the band properties, such as
gapless modes, but also the quantum state properties, such
as entanglement entropy [24–27]. The confines of Hermitian
systems have been extended in recent years, as the inclusion
of non-Hermitian effects has led to an expanded lattice of
38 symmetry classes, incorporating time-reversal symmetry,
particle-hole symmetry, chiral symmetry, and three related
Hermitian conjugates [28–30]. In these classes, topological
invariants are assigned to distinct systems, which changes
with the band-gap closing.

The effectiveness of this expanded classification frame-
work is unquestionable in the context of energy band
structures. However, since it is hard to detect the character-
istics of quantum states in many-body systems, the question
remains whether it can also classify and describe the quan-
tum state, which is specifically defined by the half-filling
steady state evolving under the dynamics of many-body
non-Hermitian systems [31]. In the field of non-Hermitian
physics, a distinct divergence from Hermitian systems has
been observed. The non-Hermitian attribute, specifically the
nonorthogonality of eigenstates, can induce singularities that
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yield phase transitions between quantum states of different
phases not compulsorily occurring at the point of the band-
gap closing [32–35]. This implies that, in the phase diagram,
the phases of quantum states may not be confined by gap
closing points, unlike the topological phase diagram defined
by the 38-fold classification, which is clearly limited by these
points. The presence of topologically protected edge states
is frequently utilized as a brief criterion for the existence of
topological phases. In single-body non-Hermitian systems,
the gapless modes correspond to the topologically protected
edge states, potentially leading to the belief that such edge
states exist in many-body systems as well. Consequently, it
is generally believed that the quantum states of these many-
body systems possess the same phase diagrams with band
structures. However, for non-Hermitian systems, the charac-
teristics of the quantum states of their many-body versions
diverge significantly from their single-body counterparts. Nu-
merous instances consistent with this observation have been
noted in the realm of research concerning the well-known
non-Hermitian skin effect in many-body systems. Here, it
is common to observe that each integral single-body wave
function exhibits an exponential skinlike profile. Neverthe-
less, the manifestation of the skin effect within the composite
many-body wave function can deviate markedly from this
behavior, with almost no skin effect under specific condi-
tions [36–39]. This phenomenon is interpreted as the result
of nonorthogonality of the eigenstates of the non-Hermitian
system, which induces an overlap of particle wave functions,
hence significantly enhancing the exchange force between
identical particles, resulting in a significant influence on a
particular particle by others. It dictates that many-body prob-
lems in non-Hermitian systems cannot be trivially distilled
down to a mere issue of particle filling of their single-body
counterparts [39]. Addressing these concerns, our study raises
two pivotal questions: Can the existing framework describe
the quantum states of many-body non-Hermitian systems? If
not, what alternative approach can describe the topology of
quantum states?

In this paper, we use a one-dimensional topological insu-
lator as an example, leading to the discovery of topological
phase transitions independent of gap closing, suggesting a
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FIG. 1. Schematic diagram of the non-Hermitian topological
insulator.

unique property of such a system: the separation of states
topology and the energy bands topology. This discrepancy
also indicates that the state topology necessitates distinct char-
acterization schemes. In light of these findings, we propose
a classification approach that leads to 10 symmetry classes
based on particle-hole symmetry, linearized time-reversal
symmetry, and linearized chiral symmetry of Hamiltonians.
Each class wields distinct topological invariants associated
with each dimension. Notably, systems with significant skin
effects lack a well-defined topological invariant. Through this
unveiling, we hope to advance the understanding of topologi-
cal many-body non-Hermitian systems.

This paper is organized in the following way. In Sec. II,
we taking a particular non-Hermitian topological insulator
as an example, and we analyze phase transitions and phase
diagrams for non-Hermitian topological insulators. In Sec. III,
we introduce the topological invariants characterizing this
system, necessitating two sets of topological invariants to
describe the energy band topology and the quantum state
topology of the topological insulator, with the latter being
previously unexplored. In Sec. IV, we explore the topological
invariants that characterize the quantum states for general
models. Finally, in Sec. V, we summarize our findings.

II. PHASE DIAGRAM FOR NON-HERMITIAN
TOPOLOGICAL SYSTEMS

We begin with a half-filling one-dimensional (1D) non-
Hermitian model, the Hamiltonian of which is

ĤNH =
∑

k

ψ
†
k HNH(k)ψk, (1)

where

HNH(k) = (U − t cos k)σz + J sin k σy − iγ sin k σx. (2)

Here ψk = (ak, bk )T , and ak and bk are the annihilation oper-
ators of fermions on sublattices a and b with quasimomentum
k, respectively. k = 2πn

L , n = 1, 2, . . . , L; here L is the num-
ber of lattices. σx,y,z are Pauli matrices. J , U , t , and γ are all
real numbers. We set J, t > 0, and we consider cases in which
|γ | ≡

√
γ 2 is less than J . The schematic diagram of the model

is shown in Fig. 1.
Such a many-body model can be achieved as a controlled

open quantum system O, composed of a Hermitian system S
coupling with a Markov environment E [32,40]. The Hamil-
tonian of the subsystem is the Hermitian part of Eq. (1),
i.e., ĤS = 1

2 (ĤNH + Ĥ†
NH), with the set of Lindblad operators

describing the coupling between subsystem S and an environ-
ment E :

L̂1 j =
√

2|γ |
(

a j + i
γ

|γ |b j+1

)
, (3)

L̂2 j =
√

2|γ |
(

b j + i
γ

|γ |a j+1

)
. (4)

In the case of open boundary conditions, we set j =
0, 1, 2, . . . , L and a0 = aL+1 = b0 = bL+1 = 0. As for the
periodic boundary conditions, we set j = 1, 2, . . . , L and
aL+1 = a1, bL+1 = b1. Those Lindblad operators actualized
via a nonlocal Rabi coupling to auxiliary degrees of freedom
paired with swift local loss can be experimentally achieved
using ultracold atoms in optical lattices proposed in Ref. [41].

The time evolution equation for such an open system at half
filling is

d

dt
ρ = −i(ĤNHρ − ρĤ†

NH) +
∑

a

L̂aρL̂†
a − 4|γ |Lρ, (5)

where ρ represents the density matrix of the system, and a
spans all possible indices of the Lindblad operator L̂.

Under full-counting measurement, the number of parti-
cles on the subsystems O is controlled to remain unchanged
through postselection (the effect of the postselection on the
density matrix is ρ → P̂ρP̂/trP̂ρP̂, where P̂ is the projec-
tion operator projecting to the subspace of a specific particle
number), the quantum jumping processes represented by∑

a L̂aρL̂†
a are projected out, and we obtained the time evolu-

tion equation for the non-Hermitian system with a many-body
Hamiltonian ĤNH [42,43]:

i
d

dt
ρ = ĤNHρ − ρĤ†

NH + [tr(Ĥ†
NH − ĤNH)ρ]ρ. (6)

The first two terms correspond to the standard Liouville evo-
lution, while the third term ensures the normalization of the
density matrix.

In this model, the absence of the skin effect signifies that its
characteristics can be described using the Bloch Hamiltonian
HNH(k) under both periodic boundary conditions and open
boundary conditions [44,45]. The band gap at the k-point is

�k = 2
√

U 2 + J2 − γ 2 + (t2 − J2 + γ 2) cos2 k − 2Ut cos k.

The gap min(�k ) closes at

Ug± = ±t . (7)

We examine the quantum states of this system. To more
accurately reflect a physical setup, it is important to note that
experimental systems will inevitably couple with a thermal
environment. This results in an evolution equation that is
equivalent to a non-Hermitian system (realized by the ex-
perimental system) coupled with a thermal environment. For
the aforementioned open system O, which is used to realize
the non-Hermitian Hamiltonian ĤNH, we assume that it also
couples with a thermal bath B with a coupling of ĤBS =∑

i(λ
1
i a†

i ai ⊗ B̂1
i + λ2

i b†
i bi ⊗ B̂2

i ). Here, λ1
i , λ

2
i is a small real

coupling constant and B̂1
i , B̂2

i is an operator in a thermal bath
B. When the effect of the postselection measurement applied
on O is not considered, the time evolution equation of the
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half-filling open system O coupled with heat bath B is

d

dt
ρt = − i(Ĥtρt − ρt Ĥ

†
t ) +

∑
a

(L̂a ⊗ ÎB)ρt (L̂
†
a ⊗ ÎB)

− 4|γ |Lρt , (8)

where ρt is the density matrix of the whole system. The
Hamiltonian Ĥt comprises three components:

Ĥt = ĤNH ⊗ ÎB + ÎS ⊗ ĤB + ĤBS. (9)

After applying the previously mentioned postselection mea-
surement, the quantum jump term

∑
a(L̂a ⊗ ÎB)ρt (L̂†

a ⊗ ÎB)
will still be projected out due to retaining the particle number
on subsystems O. The system’s evolution equation is

i
d

dt
ρt = Ĥtρt − ρt Ĥ

†
t + [tr(Ĥ†

t − Ĥt )ρt ]ρt , (10)

equivalent to coupling the non-Hermitian system ĤNH with a
thermal bath.

Therefore, in this paper, to reflect physical setup, we con-
template a non-Hermitian system coupled with a thermal bath,
and we define its steady-state (reduced) density matrix of
the non-Hermitian system as the state at temperature T if it
coupled with a thermal bath at temperature T —this definition
is consistent with the Hermitian definition. Importantly, as
the temperature is limited to zero, the derived density matrix
reduces to the system’s ground state—an aspect abundantly
researched in the field of condensed-matter physics [46]. We
considers a case of sufficiently weak coupling, such that the
self-energy terms introduced by the heat bath can be neglected
[47].

We obtain the unnormalized density matrix (it generates
the system’s authentic density matrix upon normalization) at
inverse temperature β ≡ 1

T as (see details in Appendix A)

ρ = e−βĤNH e
1
2 ln J+γ

J−γ

∑
i ψ

†
i σzψi . (11)

Here, ψi = (ai, bi )T , ai and bi denote the fermion annihilation
operators on the ith sublattices a and b. All operators are
confined within the Fock subspace characterized by a particle
number of L. This formula holds for both periodic boundary
conditions and open boundary conditions. In view of the fact
that the density matrix of the system retains a Gaussian profile,
we are in a position to define an effective Hamiltonian of
quadratic form, represented as

Ĥeff ≡ − ln ρ. (12)

The Bloch Hamiltonian corresponding to Ĥeff emerges as

Heff (k) = W (k)√
Ay(k)2 + Az(k)2

[Ay(k)σy + Az(k)σz],

with

W (k) = cosh−1

{
1√

J2 − γ 2

[
J cosh (β�k/2)

+ 2γ (t cos k − U ) sinh (β�k/2)�−1
k

]}
,

Ay(k) = sin k
J2 − γ 2

J
,

Az(k) = U − t cos k − γ

2J

�k

tanh (β�k/2)
. (13)

FIG. 2. Phase diagram for the non-Hermitian topological in-
sulator at T = 0.2, t = 0.5, and J = 1. Region I: Both quantum
states and band structure are nontopological. Region II: Topological
quantum states with nontopological band structure. Region III: Non-
topological quantum states with topological band structure. Region
IV: Both quantum states and band structure are topological.

Heff captures the information of the quantum state in which
the non-Hermitian system resides. Specifically, the quantum
state of the non-Hermitian system is mapped to the quantum
state of a Hermitian system with Hamiltonian Heff at unit
temperature. The closing of the band gap in Heff is recog-
nized as the phase transition point of the quantum state. For a
Hermitian system, the effective Hamiltonian is proportional to
the system’s Hamiltonian, thus yielding the same gap closing
points. Interestingly, in the non-Hermitian case, the closing
of the band gap in Heff did not align with the closure of the
system gap Ug±. It occurs at

Uc± = T

2
ln

J + γ

J − γ
± t . (14)

This implies that a phase transition has occurred in the system
without gap closing.

The gap closing points Ug and phase transition critical
points Uc divide the phase diagram into four regions, as shown
in Fig. 2. To understand the significance of the regions in the
phase diagram, we briefly analyze the implications of the two
lines.

First, we analyze the physical significance of the band
closing point Ug. We note that two zero modes appear among
the two band closing points Ug±. See Fig. 3(a). Therefore,
the critical point Ug± is the topological phase transition point
for the band structure of the non-Hermitian system; when
Ug− < U < Ug+, the band structure of the system resides in
a topological phase, whereas for U > Ug+ or U < Ug−, the
band structure transitions into a trivial phase.

Second, we analyze the physical significance of the phase
transition critical points Uc. We note that for the effective
model that characterizes the quantum states of the system, two
zero modes appear among the two band closing points Uc±;
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FIG. 3. (a) Numerical spectra for the non-Hermitian topologi-
cal insulator with 50 lattice cells (L = 50) under open boundary
conditions, featuring the zero-mode line depicted in red. This line
denotes a twofold-degenerate state, with any inconspicuous splitting
being neglected. (b) Numerical spectra of the corresponding effective
model for the non-Hermitian topological insulator, also with 50
lattice cells (L = 50) and subjected to open boundary conditions.
Here, the zero-mode line is illustrated in blue, indicating a twofold-
degenerate state while disregarding any negligible splitting. For these
calculations, we set T = 1, t = 1, J = 1, and γ = 0.5.

see Fig. 3(b). Therefore, the critical point Uc± is the topolog-
ical phase transition point for the state of the non-Hermitian
system; when Uc− < U < Uc+, the quantum states of the sys-
tem reside in a topological phase, whereas for U > Uc+ or
U < Uc−, the quantum states transition into a trivial phase.

Based on the above analysis, the four regions of the phase
diagram correspond to whether the system state and the en-
ergy band structure are in a topological phase. Interestingly,
in addition to the regions where both the bands and quantum
states are either topological (region IV) or trivial (region I),
there exist distinct cases: one in which the quantum state is
in a topological phase while the energy band structure is not
(region II), and another with the energy band structure in a
topological phase while the quantum state is not (region III).
To visualize the verification, we calculated the state density
distribution and the energy band for regions II and III in the
phase diagram, as shown in Fig. 4. In Fig. 4(a), the system
does not exhibit a zero mode, but calculation of the particle
density shows an accumulation near the edges, indicating the
existence of edge states. In contrast, in Fig. 4(b), while the
system has a zero mode, there is no particle accumulation
towards the edges—the slight particle density fluctuations
at the boundary are a boundary effect that is also present
in topologically trivial Hermitian models and does not lead
to an accumulation of particles at the edges. This result
demonstrates the unique properties of the phase diagram of a
many-body non-Hermitian topological phase: the band struc-
ture and quantum states can have different phase transition
points.

III. STATE TOPOLOGICAL INVARIANT

The above result implies that many-body non-Hermitian
systems need to be characterized by a pair of topological
invariants (W,w), which respectively describe the topology
of the energy bands and the quantum states. The topology of
the energy bands is described by the topological invariant in
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FIG. 4. (a) Particle distributions of the system. The upper plot illustrates the average quantity of particles per cell (the number of cells is
L, the number of particles is L + 1). Parameters are set to U = 1.2, T = 0.1, γ = J − δ. (b) Particle distributions given by U = 0, T = 0.15,
and γ = −(J − δ). All figures are examined under parameters L = 500, t = 1, J2 = 1.6 × 104, and δ2 = 2.5 × 10−10.
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FIG. 5. (a) Numerical result of the topological invariant W .
(b) Numerical result of the topological invariant w. We set T = 1,
t = 1, J = 1, and γ = 0.5.

the 38-fold classification. We present the topological invariant
characterizing this model within the 38-fold classification. In
this classification, the topological invariants are determined by
the symmetry class of the system, which is dictated by time-
reversal symmetry, particle-hole symmetry, chiral symmetry,
and three related Hermitian conjugates, as well as the type of
gap. We consider the case in which both U and t are nonzero.
The model has chiral symmetry, time-reversal symmetry, and
particle-hole symmetry:

σxH†
NH(k)σx = −HNH(k),

H∗
NH(k) = HNH(−k),

σxHT
NH(k)σx = −HNH(−k). (15)

The Z topological invariant is well defined in the presence of
a line gap, which is given as the winding number

W = 1

4π i

∫ π

−π

dk tr σxH−1
NH(k)

d

dk
HNH(k). (16)

We have W = 1 for Ug− < U < Ug+ and W = 0 for U > Ug+
or U < Ug−; see Fig. 5(a). The transition of the topological
number W signifies both the emergence of zero modes and the
closure of the band gap. However, this topological invariant
does not characterize the quantum states of the system.

We construct a topological invariant to characterize the
topology of quantum states. Previous constructions use HNH

as the starting point, which should be revised to reflect
the properties of the many-body quantum state. Therefore,
the topology of the state for the non-Hermitian system is
characterized by the topological invariant of the system with
Hamiltonian Heff . The effective model has chiral symmetry,

time-reversal symmetry, and particle-hole symmetry:

σxH†
eff (k)σx = −Heff (k),

H∗
eff (k) = Heff (−k),

σxHT
eff (k)σx = −Heff (−k), (17)

where the topological invariant is defined as

w = 1

4π i

∫ π

−π

dk tr σxH−1
eff (k)

d

dk
Heff (k). (18)

By calculating the winding number, we find that its change
does not occur at Ug±. Instead, the change occurs at Uc±.

We have w = 1 for Uc− < U < Uc+ and w = 0 for U > Uc+
or U < Uc−; see Fig. 5(b). The transition of the topological
number, the emergence of boundary states, and the location
of phase transitions without gap closing all align consistently.
Therefore, we have identified the correct topological invariant
for the system.

In this model, the topological invariant w is simply ob-
tained by substituting HNH in the topological invariant W with
Heff , but it is important to note that in general many-body
non-Hermitian systems, the state topological invariants are
not defined simply by replacing the non-Hermitian Hamilto-
nian HNH with its corresponding effective Hamiltonian Heff

in the topological invariants as defined within the frame-
work of the 38-fold classification. One reason lies in the
fact that the symmetries of the system’s Hamiltonian gen-
erally do not correspond to the symmetries of the effective
Hamiltonian. Consequently, the system may fall into different
symmetry classes within the 38-fold classification, while the
state remains within the same AZ symmetry class and is
necessarily characterized by the same topological invariant.
For example, for the model described by Eq. (1), when U
and t are not all equal to zero, the system exhibits chiral
symmetry, particle-hole symmetry, and time-reversal symme-
try. When U = t = 0, the system has an additional sublattice
symmetry

σzHNH(k)σz = −HNH(k). (19)

However, the effective Hamiltonian Heff (k) ∝ Ay(k)σy +
Az(k)σz, with

Ay(k) = sin k
J2 − γ 2

J
,

Az(k) = − γ

2J

�k

tanh (β�k/2)
, (20)

which yield for the non-Hermitian case γ �= 0,

σzHeff (k)σz �= −Heff (k), (21)

do not have additional symmetry. The symmetry of its
effective Hamiltonian is not increased, including the zero-
temperature limit. The symmetry class of the effective
Hamiltonian is always BDI. When breaking time-reversal
symmetry and particle-hole symmetry by introducing certain
nonreciprocity between cells, which changes sin k to sin k + δ

in the Bloch Hamiltonian, the symmetry of the effective
Hamiltonian remains unaffected by the presence of sublattice
symmetry at U = t = 0, consistently belonging to class AIII.
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TABLE I. AZ symmetry classes for Hermitian Hamiltonians.
TRS, PHS, and CS, respectively, represent time-reversal symmetry,
particle-hole symmetry, and chiral symmetry.

Class TRS PHS CS

A 0 0 0
AI +1 0 0
AII −1 0 0
AIII 0 0 1
BDI +1 +1 1
CII −1 −1 1
D 0 +1 0
C 0 −1 0
DIII −1 +1 1
CI +1 −1 1

Additionally, even if the system lacks certain AZ symme-
tries, the effective Hamiltonian of the system may still possess
these AZ symmetries. An example of this ineffectiveness can
be considered in the scenario in which

Ĥ ′
NH = (1 − i)ĤNH. (22)

Here ĤNH is defined in Eq. (1). In this situation, the system
will be trapped in the state with the largest imaginary part,
which is the zero-temperature state of ĤNH [46]. That is, the
effective Hamiltonian Ĥ ′

eff , which corresponds to the non-
Hermitian Hamiltonian Ĥ ′

NH, is Ĥ ′
eff = Ĥeff (T → 0), where

Ĥeff is defined in Eq. (13). The effective Hamiltonian still
exhibits chiral symmetry σxH ′

eff (k)†σx = −Heff
′(k), but the

Hamiltonian of the system will change under the chiral
operator.

The above discussion means that we require symmetry
classes of a non-Hermitian Hamiltonian that is different from
the 38 symmetric classes, and defining topological invariants
that are associated with them.

IV. SYMMETRY CLASS AND TOPOLOGICAL
INVARIANTS FOR NON-HERMITIAN SYSTEM’S STATES

We deduce the symmetry class and topological invariants
that dictate the topology of quantum states in non-Hermitian
systems. The completion of the symmetry class can be based
on the following observation: while non-Hermitian systems
have non-Hermitian Hamiltonians, their quantum state density
matrix ρ is invariably Hermitian, thus it can be character-
ized by the effective Hermitian Hamiltonian Ĥeff ≡ − ln ρ

(apart from direct calculations, the effective Hamiltonian can
be determined by the statistical mechanics of non-Hermitian
systems, which are described in Appendix D). The effective
Hamiltonian is classified according to the AZ symmetry class.
Consequently, the core issue in obtaining the symmetry class
of the Hamiltonian for non-Hermitian systems is to determine
how the symmetry class of the effective Hamiltonian maps to
that of the Hamiltonian of the non-Hermitian systems. The
AZ symmetry class is based on whether the system possesses
particle-hole symmetry or chiral symmetry; see Table I.

In the table, 0 signifies that the system’s Hamiltonian lacks
the corresponding symmetry, while 1, ±1 represent the pres-
ence of the same. Furthermore, +1 (−1) implies that the

system not only embodies this symmetry, but the square of
the respective first-quantized symmetry operator is equal to
+1 (−1). Therefore, in order to understand how the symmetry
class of the effective Hamiltonian maps to the symmetry class
of the non-Hermitian Hamiltonian of non-Hermitian systems,
we need to address three key points: (i) Identifying the prop-
erties in the system’s Hamiltonian correlating to particle-hole
symmetry in the effective Hamiltonian, and noting charac-
teristics when the square of the first-quantized particle-hole
operator equals +1 or −1. (ii) Identifying the properties in the
system’s Hamiltonian that match with the chiral symmetry in
the effective Hamiltonian. (iii) Identifying the properties in the
system’s Hamiltonian that correspond to time-reversal sym-
metry in the effective Hamiltonian, and noting characteristics
when the square of the first-quantized time-reversal operator
equals +1 or −1.

The following theorem provides the first step to solving
this problem:

Theorem 1: The Hamiltonian of a non-Hermitian sys-
tem ĤNH and the system’s effective Hamiltonian Ĥeff exhibit
the following relation: SĜ(ĤNH) = ĤNH if and only if
|Ĝe−Ĥeff Ĝ†| = |e−Ĥeff | (for finite-temperature situations, the
system-environment coupling also needs to be invariant under
the action of SĜ). Here the symbol |Â| represents the opera-
tor norm, which is defined as |Â| = Â

tr(Â)
. Ĝ is an invertible

operator such that SĜ( ) ≡ Ĝ( )Ĝ−1 is linear under addition
and satisfies SĜ(λÂ) = λSĜ(Â), where λ is a complex number
and Â is an operator in the form of a free many-body system
Hamiltonian.

We operate under the generally valid assumption that this
steady state is unique. The proof of the theorem is pro-
vided in Appendix B. This theorem can be interpreted as the
non-Hermitian Hamiltonian, and quantum states share certain
symmetry like Ĝ. This illustrates that the particle-hole sym-
metry can be mapped from the quantum state symmetry of the
non-Hermitian system to the Hamiltonian’s symmetry. We can
take the logarithm on both sides of the equation satisfied by
Ĥeff , resulting in ĤNH and Ĥeff sharing the particle-hole sym-
metry. For instance, for the model ĤNH described by Eq. (1),
the particle-hole symmetry

σxHT (k)σx = −H (−k) (23)

is simultaneously preserved in the non-Hermitian Hamilto-
nian and the effective Hamiltonian. The first key point has
already been addressed.

However, both time-reversal operator T̂ and chiral operator
�̂ satisfy the condition of SĜ(λÂ) = λ∗SĜ(Â) for quadratic
operators Â [29]. Therefore, this theorem is not applicable
to these symmetries. An example of this ineffectiveness is
the scenario in which Ĥ ′

NH = (1 − i)ĤNH. As discussed at
the end of the previous section, the effective Hamiltonian
still exhibits chiral symmetry, but the Hamiltonian of the
system will change under the chiral operator. The cause of
this “symmetry breaking” resides in the fact that T̂ and �̂

typically transform gaining states into loss states. Therefore,
time-reversal symmetry and chiral symmetry in the Hamilto-
nian represent a constraint between the many-body states with
different eigenvalues, while the presence of the above symme-
try in the effective Hamiltonian implies certain constraints on
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the ground state itself. These are not the same requirement,
hence the conclusion that time-reversal symmetry and chiral
symmetry cannot be mapped between the effective Hamilto-
nian and the system Hamiltonian.

To take into account time-reversal symmetry and chiral
symmetry, we define the linearized time-reversal symmetry
and the linearized chiral symmetry.

A system is said to possess linearized time-reversal sym-
metry (or linearized chiral symmetry) if its Hamiltonian
satisfies

SĜA
L
(ĤNH) = ĤNH, (24)

with

SĜA
L
(ĤNH) ≡ (ĜA){|n〉R}ĤNH(ĜA)−1

{|n〉R},

where ĜA is time-reversal operator T̂ (or chiral operator �̂),
and (ĜA){|n〉R} ≡ ∑

n(ĜA|n〉R)〈n|L with {|n〉R}, {|n〉L} is the set
of biorthogonal left and right eigenstates of the Hamiltonian
ĤNH. When acting on the effective Hamiltonian corresponding
to the steady-state ensemble ρ of the system with Hamiltonian
ĤNH, we have

(ĜA){|n〉R}e−Ĥeff [(ĜA){|n〉R}]† = ĜAe−Ĥeff (ĜA)−1. (25)

Here, we utilize the anti-unitarity of ĜA along with the fact
that e−Ĥeff is a Hermitian matrix. Since (ĜA){|n〉R} is a linear
operator, Theorem 1 can be applied. Combining on Eqs. (24)
and (25), we obtain the following:

Theorem 2: The effective Hamiltonian of a non-Hermitian
system has time-reversal symmetry (or chiral symmetry) if
and only if the system’s Hamiltonian has linearized time-
reversal symmetry (or linearized chiral symmetry).

We emphasize that in Theorem 2, the linearized time-
reversal symmetry (or linearized chiral symmetry) that the
system’s Hamiltonian satisfies specifically refers to the one
constructed based on the time-reversal symmetry (or chiral
symmetry) that the system’s effective Hamiltonian satisfies.

The conditions for a single-body Hamiltonian to satisfy
linearized time-reversal symmetry and linearized chiral sym-
metry are (see the details in Appendix C)

T HNHT −1 = [C(HNH)]∗,

�HNH�−1 = −[C(HNH)]†, (26)

where T , � represent the part of the unitary operators of
the first-quantized operator of the ordinary time-reversal op-
erator T̂ and the chiral operator �̂, and C(HNH) is defined
as the operator sharing the same eigenstates with HNH, but
with eigenvalues corresponding to the complex conjugation
of HNH’s eigenvalues. When the Hamiltonian has a real
spectrum, we can note that the linearized symmetry is equiva-
lent to the original symmetry. This means that the system’s
Hamiltonian and its effective Hamiltonian share the same
AZ symmetries under real spectrum scenarios, which ensures
consistency with the Hermitian case.

The above discussion has already addressed the second
key point—the chiral symmetry of the effective Hamilto-
nian corresponds to the linearized chiral symmetry of the
system Hamiltonian. To address the third key point, we de-
fine the square of the first-quantized linearized time-reversal

TABLE II. Classification of the quantum state of non-Hermitian
topological insulators and superconductors in one to three spatial
dimensions. LTRS, PHS, and LCS, respectively, denote linearized
time-reversal symmetry, particle-hole symmetry, and linearized chi-
ral symmetry.

Class LTRS PHS LCS d = 1 d = 2 d = 3

A 0 0 0 0 Z 0
AI∗ +1 0 0 0 0 0
AII∗ −1 0 0 0 Z2 Z2

AIII∗ 0 0 1 Z 0 Z
BDI∗ +1 +1 1 Z 0 0
CII∗ −1 −1 1 Z 0 Z2

D 0 +1 0 Z2 Z 0
C 0 −1 0 0 Z 0
DIII∗ −1 +1 1 Z2 Z2 Z
CI∗ +1 −1 1 0 0 Z

operator T 2
L as T T ∗. Combining with Theorem 2, it can be

discerned that if the Hamiltonian of the non-Hermitian system
possesses a linearized time-reversal symmetry, T 2

L ≡ T T ∗ is
also equated to the square of the first-quantized time-reversal
operator pertinent to the time-reversal symmetry of the effec-
tive Hamiltonian. Therefore, we have addressed the third key
point.

It is noteworthy that in the conventional topological
classification of non-Hermitian systems, there exist certain
extended symmetries, manifest in non-Hermitian Hamiltoni-
ans such as the sublattice symmetry ŜĤ Ŝ−1 = Ĥ†, which are
not reflected in the effective Hamiltonian. We would like to
emphasize that the symmetry expressed as ŜĤ Ŝ−1 = Ĥ† will
not impose constraints on the symmetry of the steady state. An
example has already been discussed at the end of the previous
section. In this case, the effect of Ŝ is approximately that of
Ŝ|m〉R ∼ |m〉L (|m〉R/|m〉L is the right/left many-body eigen-
state), mapping the density matrix to ρ ∼ ∑

m Pm|m〉L〈m|L,
which is inconsistent with the original density matrix. This
result suggests that the extended symmetries in non-Hermitian
systems are superfluous for the classification of quantum
states, although these symmetries can be reduced to AZ sym-
metries of quantum states in the Hermitian limit, safeguarding
the presence of gapless states within the effective Hamil-
tonian. However, upon the introduction of non-Hermiticity,
these AZ symmetries will be broken, leading to the gapping of
the original gapless states. Consequently, the non-Hermitian
systems with and without these extended symmetries are topo-
logically indistinguishable from a quantum state perspective.

Based on the above discussions, we have obtained the
topological classification for non-Hermitian systems; see
Table II. In columns 2,3,4, similar to Table I, 0 signifies that
the system’s Hamiltonian lacks the corresponding symmetry.
The presence of 1 or ±1 indicates that the system possesses
this symmetry. +1 (−1) denotes not only the existence of
this symmetry in the system, but also that the square of the
respective first-quantized symmetry operator equals +1 (−1).

The topological invariants for Table II can be derived. For
classes A, D, C the topological invariant is merely that defined
in the AZ symmetry class, only the Hamiltonian needs to
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be replaced with the (single-body) effective Hamiltonian. For
other classes that are marked as X∗, the topological invariant
is substituting the effective Hamiltonian into the topological
invariant of the corresponding AZ symmetry class X. If the
topological invariant involves time-reversal and chiral opera-
tors, they are precisely the T and � defined in the expression
of linearized time-reversal symmetry and linearized chiral
symmetry, respectively.

For systems with Hamiltonians within a given symmetry
class, quantum states with identical topological invariants can
be continuously connected by tuning the Hamiltonian. Differ-
ing invariants necessitate a quantum phase transition, tied to
the effective Hamiltonian’s gap closing, but not necessarily to
that of the Hamiltonian itself.

It is worth noting that there are systems with the non-
Hermitian skin effect [49–58]. The effective Hamiltonian of
those systems does not have translational symmetry under
open boundary conditions—topology cannot be well defined
for such an effective Hamiltonian [39]. Therefore, the quan-
tum state’s topology of the systems with a significant skin
effect is not well-defined.

V. CONCLUSIONS

In this paper, we find that in many-body non-Hermitian
systems, a quantum state’s topological phase transitions can
occur at points where the gap does not close. This indicates
that the topology of many-body quantum states and energy
bands should be considered independently, with previous
works having focused solely on the topology of energy bands.
We discover that the topology of states is described by a
topological invariant determined by the system Hamiltonian’s
particle-hole symmetry, linearized time-reversal symmetry,
and linearized chiral symmetry. Our research uncovers a
distinctive facet of non-Hermitian topological systems, es-
tablishing a basis for the examination of quantum states in
non-Hermitian topological insulators and superconductors—
the framework put forth in this study enables explorations into
quantum states in high-dimensional topological insulators and
superconductors, paving the way for future progress within
this research domain. Furthermore, our research methodology
is extendable to the investigation of higher-order topological
systems, weak topological systems, and Floquet topological
systems. Beyond this, our study also cracks open the door
for delving into the phenomena of interacting many-body
topological systems.

ACKNOWLEDGMENTS

This work was supported by the Natural Science Founda-
tion of China (Grant No. 12174030) and National Key R&D
Program of China (Grant No. 2023YFA1406704). We are
grateful to S.-Q. Zhao for helpful discussions.

APPENDIX A: STEADY-STATE DENSITY MATRIX
OF THE NON-HERMITIAN MODEL

In our setup, the system comprises two parts: the non-
Hermitian system and the heat bath. Therefore, the non-
Hermitian system can be viewed as an open non-Hermitian
system. Customarily, the time evolution of an open quantum

system S is depicted by the quantum master equation. Fol-
lowing a derivation similar to that in the Hermitian case, we
obtain [59]

d

dt
ρI

S(t ) =
∑
a,b

∑
ω

{�ab(ω)[Âb(ω)ρI
S(t )Â†

a(ω)

− Âa(−ω)Âb(ω)ρI
S(t )} + H.c.]. (A1)

Here

Âa(ω) =
∑

m

|m〉R〈m|LλaĈa|m + ω〉R〈m + ω|L (A2)

with

�ab(ω) =
∫ ∞

0
dteiωt trB(B̂†

a(t )B̂b(0)ρI
B) (A3)

is the reservoir correlation function. In the above, |m〉R and
|m〉L represent the bi-orthonormal right and left eigenstates of
ĤNH, respectively, both associated with eigenvalue Em. Fur-
ther, |m + ω〉R/L denotes the biorthonormal right/left eigen-
state characterized by eigenvalue Em + ω. a = 1, 2, . . . , 2L.
λa = λ1

a, Ĉa = a†
aaa for a = 1, 2, . . . , L; λa = λ2

a−L, Ĉa =
b†

a−Lba−L for a = L + 1, . . . , 2L. ρI
S and ρI

B are the (unnor-
malized) density matrices of the system and the thermal bath
in the interaction picture.

Next, we solve the time evolution equation of the non-
Hermitian system to get the steady-state solution. Notice that
|m〉R/|m〉L in Eq. (A2) can be expressed as

|m〉R = Ŝ|m〉0, (A4)

|m〉L = (Ŝ−1)†|m〉0, (A5)

where Ŝ = e
1
4 ln J+γ

J−γ

∑
i ψ

†
i σzψi and |m〉0 is the eigenstate of a

Hermitian Hamiltonian Ĥ0 = Ŝ−1ĤHNŜ . This expression can
be verified to hold for models with both periodic bound-
ary conditions and open boundary conditions. According to
N̂ |m〉R/L = N |m〉R/L and L〈m|m〉R = 1, |m〉0 satisfy N̂ |m〉0 =
N |m〉0 and 0〈m|m〉0 = 1.

Substituting Eqs. (A4) and (A5) into Eq. (A2), and using
Eq. (A1), we obtain

d

dt
ρI

S(t ) =
∑
a,b

∑
ω

{
�ab(ω)

[
ŜÂ0,b(ω)Ŝ−1ρI

S(t )(Ŝ−1)†Â†
0,a

× (ω)Ŝ† − ŜÂ0,a(−ω)Â0,b(ω)Ŝ−1ρI
S(t )

] +H.c.
}
,

(A6)

where

Â0,a(ω) =
∑

m

|m〉0〈m|0λaĈa|m + ω〉0〈m + ω|0.

Here a, b = 1, 2, . . . , 2L. Multiplying both sides of the equals
sign of Eq. (A6) by Ŝ−1 to the left and (Ŝ−1)† to the right, we
get

d

dt
Ŝ−1ρI

S(t )(Ŝ−1)†

=
∑
a,b

∑
ω

{
�ab(ω)

[
Â0,b(ω)Ŝ−1ρI

S(t )(Ŝ−1)†Â†
0,a(ω)

− Â0,a(−ω)Â0,b(ω)Ŝ−1ρI
S(t )(Ŝ−1)†

] + H.c.
}
. (A7)
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Now, Ŝ−1ρI
S(t )(Ŝ−1)† obeys the master equation of the Her-

mitian system with Hamiltonian Ĥ0. In the steady state, the
density matrix under the energy representation has only diag-
onal terms. Using Eq. (A7), the diagonal terms of the density
matrix defined as P(n, t ) = 〈n|0Ŝ−1ρI

S(t )(Ŝ−1)†|n〉0 satisfy

d

dt
P(n, t ) =

∑
m

[W (n|m)P(m, t ) − W (m|n)P(n, t )], (A8)

where

W (n|m) =
∑
a,b

γab(Em − En)〈m|0λaĈa|n〉0〈n|0λbĈb|m〉0

(A9)

with

γab(ω) =
∫ ∞

−∞
dteiωt trB

(
B̂†

a(t )B̂b(0)ρI
B

)

≡
∫ ∞

−∞
dteiωt 〈B̂†

a(t )B̂b(0)〉 (A10)

is the real part of 2�ab.
Using the Kubo-Martin-Schwinger condition 〈B̂†

a(t )
B̂b(0)〉 = 〈B̂b(0)B̂†

a(t + i 1
T )〉, we derive the temperature-

dependent behavior of γab, i.e.,

γab(−ω) = e−ω/T γba(ω). (A11)

When d
dt P(n, t ) = 0, Eq. (A8) and the relations Eq. (A11)

give W (n|m)e−βEm = W (m|n)e−βEn , which lead to

P(n) = const × e−βEn (A12)

at the steady state. Then we have

Ŝ−1ρI
T (Ŝ−1)† =

∑
m

|m〉0e−βEm〈m|0 (A13)

or

ρI
T =

∑
m

Ŝ|m〉0e−βEm〈m|0Ŝ†, (A14)

where ρI
T is the state at temperature T in the interaction

picture, which is also the steady state

ρT =
∑

m

Ŝ|m〉0e−βEm〈m|0Ŝ† (A15)

in the Schrödinger picture. Therefore, we have

ρT = Ŝe−βĤ0 Ŝ† = e−βĤNHTc, (A16)

where Tc = e
1
2 ln J+γ

J−γ

∑
i ψ

†
i σzψi .

APPENDIX B: PROOF OF THEOREM 1

First, we prove that if the effective Hamiltonian of a
topological system satisfies |Ĝe−Ĥeff Ĝ†| = |e−Ĥeff |, the Hamil-
tonian of the system satisfies SĜ(ĤNH) = ĤNH. Here Ĝ is an
invertible operator such that SĜ( ) ≡ Ĝ( )Ĝ−1 is linear under
addition and satisfies SĜ(λÂ) = λSĜ(Â), where λ is a complex
number and Â is an operator in the form of a free many-body
system Hamiltonian.

In the Appendixes, we always treat the exceptional points
case as a limiting case for systems without exceptional points,

assuming that non-Hermitian Hamiltonians can always be
diagonalized. We consider the Hilbert space to be finite-
dimensional.

According to the definition of the effective Hamiltonian,
e−Ĥeff is merely the density matrix of the formal system ρ.
Without loss of generality, the system’s steady-state density
matrix can be written as

ρ =
∑

m

Pm|m〉R〈m|R, (B1)

where |m〉R is the self-orthogonal right many-body eigenstate
of the non-Hermitian Hamiltonian ĤNH, and Pm is a real num-
ber that represents the probability of the system being in state
|m〉R.

To ensure the stability of topological systems, we assume
that small changes in temperature do not affect the symme-
try of the density matrix. Such changes can trigger a minor
change in the occupancy of states. That is, we require that
if ρ1 = ∑

m Pm|m〉R〈m|R is a density matrix that possesses
the symmetry Ĝ (|Ĝρ1Ĝ†| = |ρ1|), then the density matrix
at another temperature ρ2 = ∑

m P′
m|m〉R〈m|R possesses the

same symmetry Ĝ (|Ĝρ2Ĝ†| = |ρ2|).
We define km = Pm

P′
m

. We tune the temperature as much as
possible to lift the degeneracy of km. However, there may still
be some degeneracy that cannot be lifted under the above con-
ditions, such as two energy levels m, n with the same energy
in the Hermitian limit, where km = kn or Pm

Pn
= 1 always holds.

We remove duplicate k and retain only one k from those
that are degenerate. We renumber k, assuming that there are
N distinct k left. We can define a function as

ε(x) =
N∑

m=1

Em ×

⎛
⎜⎝ N∏

j=1
j �=m

x − k j

km − k j

⎞
⎟⎠. (B2)

This function satisfies ε(km) = Em.
Next, we construct an operator Ĥ as

Ĥ = ε(ρ1ρ
−1
2 ). (B3)

Due to ρ1ρ
−1
2 = ∑

m km|m〉R〈m|L, the operator Ĥ is Ĥ =∑
m Em|m〉R〈m|L.

We assert that ĤNH belongs to Ĥ . The operator ĤNH does
not belong to Ĥ if and only if there exist two energy levels
i, j such that Ei �= Ej and ki = k j , where the degeneracy indi-
cated by ki = k j cannot be lifted by adjusting the temperature.
The existence of degeneracy ki = k j that cannot be lifted by
adjusting the temperature implies that there exist i, j such
that ∂ ( Pi

Pj
)/∂T = 0 for some temperature region. However,

after inspecting the statistical mechanics of non-Hermitian
systems, we found that this case does not exist. For the case
in which ImEi = ImEj , non-Hermitian systems with stable
states have Pi

Pj
∝ e−Re(Ei−Ej )/T . For ImEi not equal to ImEj ,

Pi
Pj

depends on the correlation functions of the heat bath and
also on temperature T [46].

We demonstrate that the operator Ĥ has symmetry Ĝ.
First, we prove that given |Ĝρ1Ĝ†| = |ρ1| and |Ĝρ2Ĝ†| =
|ρ2|, SĜ(ρ1ρ

−1
2 ) = ρ1ρ

−1
2 . We have

ρ1ρ
−1
2 ∝ Ĝρ1Ĝ†(Ĝ†)−1ρ−1

2 Ĝ−1 = SĜ

(
ρ1ρ

−1
2

)
. (B4)
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Since SĜ does not alter the trace of an operator, and the trace
of ρ1ρ

−1
2 is nonzero, we thus have SĜ(ρ1ρ

−1
2 ) = ρ1ρ

−1
2 .

Second, we prove that for each operator Â in the form of
a free many-body system Hamiltonian, g[SĜ(Â)] = SĜ[g(Â)],
where g is an analytic function. The functions of an operator
are defined by Taylor series expansions.

To prove this proposition, we use the Taylor expansion for
g. It can be represented as

g(Â) =
∞∑

n=0

g(n)(a)

n!
(Â − aI )n, (B5)

where g(n)(a) is the nth derivative of g evaluated at point a,
and I is the identity operator.

Utilizing the properties of the operator Ĝ, we have

SĜ[g(Â)] =
∞∑

n=0

g(n)(a)

n!
Ĝ(Â − aI )nĜ−1

=
∞∑

n=0

g(n)(a)

n!
[Ĝ(Â − aI )Ĝ−1]n

= g[SĜ(Â)]. (B6)

Third, we prove that if Â is a function of Â, then similarly
we have g[SĜ(Â)] = SĜ[g(Â)].

Let us assume Â = f (Â). Here f is a function. Defining
the function l (x) = g[ f (x)], we have

SĜ[g(Â)] = SĜ[gf (Â)] = l[SĜ(Â)]

= gf [SĜ(Â)] = g[SĜ(Â)] = g[SĜ(Â)].

Note that ρ1ρ
−1
2 can always be regarded as a function of a

free model many-body Hamiltonian Â, which has the same
eigenstates as ĤNH but without energy degeneracy. Therefore,
by using g[SĜ(Â)] = SĜ[g(Â)], we have

SĜ(Ĥ ) = SĜ[ε(ρ1ρ
−1
2 )] = ε(SĜ(ρ1ρ

−1
2 )) = Ĥ . (B7)

We have proven that the Hamiltonian of the system possesses
Ĝ symmetry.

Next, we prove that if the Hamiltonian of the system
has SĜ(ĤNH) = ĤNH, and the system-environment coupling is
also invariant under the action of SĜ, the effective Hamiltonian
of the system satisfies |Ĝe−Ĥeff Ĝ†| = |e−Ĥeff |.

We have assumed that the time evolution equation of
the density matrix for a non-Hermitian system is given by
Eq. (10). The Hamiltonian of the entire system comprises
three components:

Ĥ = ĤNH ⊗ ÎB + ÎS ⊗ ĤB + ĤBS, (B8)

where ĤNH represents the non-Hermitian Hamiltonian of the
system S, ĤB corresponds to the Hamiltonian of the thermal
bath, and ĤBS denotes the coupling between the system and
the thermal bath.

The steady state is given by

−i(Ĥρs − ρsĤ
†) = max(λ)ρs. (B9)

Here λ = {i[tr(Ĥ† − Ĥ )ρ]} is a real number, with d
dt ρ = 0.

We have trBρs = |e−Ĥeff |. The steady state clearly satisfies
d
dt ρs = 0. However, states that satisfy d

dt ρ = 0 are often not

limited to the steady state alone. We refer to these states as
stationary states. For stationary states other than the steady
state, they possess a λ that is less than the max(λ).

First, we prove that, assuming the Hamiltonian of the
system has SĜ(ĤNH) = ĤNH, and the system-environment
coupling is also invariant under the action of SĜ, if ρs is
the system’s stationary state solution, i.e., Ĥρs − ρsĤ† +
[tr(Ĥ† − Ĥ )ρs]ρs = 0, then ρ ′

s = 1
Z ĜρsĜ† is also the sys-

tem’s stationary state solution, where Z = trĜρsĜ†. For the
sake of notation simplicity, we omitted the identity operator
that is in direct product with Ĝ. Substituting ρ ′

s = 1
Z ĜρsĜ†

into the time evolution equation, and using ĜĤĜ−1 = Ĥ and
Ĥρs − ρsĤ† + [tr(Ĥ† − Ĥ )ρs]ρs = 0, we can obtain

i
d

dt
ρ ′

s = 1

Z
Ĝ{Ĥρs − ρsĤ

† + [tr(Ĥ† − Ĥ )ρs]ρs}Ĝ† = 0.

(B10)

Second, we prove that ρ ′
s is a steady state. Using ĤNH =

Ĝ−1ĤNHĜ, 1
Z Ĝ(Ĥρs − ρsĤ† + [tr(Ĥ† − Ĥ )ρs]ρs)Ĝ† = 0 can

be rewritten as −i(Ĥρ ′
s − ρ ′

sĤ
†) = max(λ)ρ ′

s. Therefore, we
have shown that ρ ′

s is a steady state. As we have assumed that
the steady state is unique, we have ρ ′

s = ρs or |Ĝe−Ĥeff Ĝ†| =
|e−Ĥeff |.

It will be shown later that the the coupling between the
system and the environment does not affect the density matrix
in the zero-temperature limit. Therefore, at zero temperature,
there is no need for the system-environment coupling to re-
main invariant under the action of SĜ.

Now, we have proven Theorem 1 in the main text.
For operators that do not satisfy the condition SĜ(λÂ) =

λSĜ(Â), such as a time-reversal operator, although Eq. (B10)
holds and ρ ′

s remains a steady state, Eq. (B9) becomes
−i(Ĥρ ′

s − ρ ′
sĤ

†) = [−max(λ)]ρ ′
s, indicating that this state is

not a steady state, which cannot lead to |Ĝe−Ĥeff Ĝ†| = |e−Ĥeff |.

APPENDIX C: PROOF OF EQ. (26)

First, we derive the first line of Eq. (26). Expanding the
Hamiltonian of the system in its biorthonormal eigenstates
and utilizing the definition of T̂L, we obtain

T̂LĤNH(T̂L )−1

=
∑

n

(T̂ |n〉R)〈n|L
∑

m

Em|m〉R〈m|L
∑

k

|k〉R(〈k|LT̂ −1)

=
∑

n

∑
m

∑
k

Em(T̂ |n〉R)δmnδmk (〈k|LT̂ −1)

=
∑

m

EmT̂ |m〉R〈m|LT̂ −1

= T̂

( ∑
m

E∗
m|m〉R〈m|L

)
T̂ −1

= T̂C(ĤNH)T̂ −1. (C1)

Therefore, T̂LĤNH(T̂L )−1 = ĤNH is equivalent to
T̂C(ĤNH)T̂ −1 = ĤNH.

By comparing the eigenvalues and eigenstates,
we can observe that C(ĤNH) = ψ†C(HNH)ψ . Here
ψ = (ψ1, ψ2, ψ3, . . . , ψn), (ψi )i=1,2,...,n is a set of fermion
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annihilation operators for a normal system or Nambu spinors
for a superconductor, ĤNH = ψ†HNHψ . Utilizing

T̂ Ĥ T̂ −1 = ψ†[T −1H∗T ]ψ, (C2)

where T is the part of unitary operators of first-quantized T̂ ,
defined by T̂ ψ T̂ −1 = T ψ , we can obtain that

ψ†HNHψ = ψ†T −1[C(H )]∗T ψ (C3)

or

T HNHT −1 = [C(HNH)]∗. (C4)

For the second line of Eq. (26), imitating Eq. (C1), it can
be proven that �̂LĤNH(�̂L )−1 = �̂C(ĤNH)�̂−1, where �̂ is the
chiral operator. Utilizing �̂Ĥ �̂−1 = −ψ†[�−1H†�]ψ , where
� is the part of the unitary operators of first-quantized �̂, we
have

�HNH�−1 = −[C(HNH)]†. (C5)

APPENDIX D: EFFECTIVE HAMILTONIAN OF
NON-HERMITIAN TOPOLOGICAL INSULATOR

AND TOPOLOGICAL SUPERCONDUCTOR

In this Appendix, we present the effective Hamiltonian
of a non-Hermitian topological insulator and a topological
superconductor. Following the Hermitian case, we define
the quantum states of non-Hermitian systems as the half-
filling steady state evolving under the dynamics of many-body
non-Hermitian systems. We consider the finite-temperature
scenario; the zero-temperature scenario can be obtained as the
limit of temperature approaching zero. The finite-temperature
non-Hermitian system is defined as a non-Hermitian sys-
tem weakly interacting with Hermitian thermal baths, as this
approach is better aligned with the practical aspects of ex-
perimental setups. The time evolution equation of the density
matrix for a non-Hermitian system is given by Eq. (10).

It is important to note that, under this definition, an imagi-
nary number can be added to the non-Hermitian Hamiltonian
without affecting the time evolution equation of the density
matrix. Therefore, for simplicity, we always adjust the maxi-
mum imaginary part of the eigenvalue of the non-Hermitian
system to zero. The coupling term, ĤBS, can be generally
expressed as

ĤBS =
∑

a

λaĈa ⊗ B̂a + H.c., (D1)

where λa is the real coupling strength, Ĉa is the operator acting
on the system, and B̂a is the operator acting on the thermal
bath, a = 1, 2, 3, . . . , n. There are often multiple expressions
for the same coupling. We choose the operators Ĉa, Ĉ†

a and
B̂a, B̂†

a, ÎB to be linearly independent.
The steady state of such systems was investigated in

Ref. [46]. The results showed that the stability of such a
non-Hermitian system (for an unstable system, its steady
state is determined by all the details of the heat bath and
the system-environment coupling, and there may not even be
a steady state at all) necessitates the existence of a single
path-dependent conserved quantity Pc(t )Tc, where Pc(t ) ≡
exp(2

∫ t
0 dt〈ϒ̂〉) is a path-dependence factor. 〈ϒ̂〉 is the ex-

pectation value of ϒ̂ for the non-Hermitian system’s density

matrix ρS (t ) at time t , and ϒ̂ is defined as the non-Hermitian
part of the non-Hermitian Hamiltonian, i.e., ϒ̂ ≡ 1

2i (ĤNH −
Ĥ†

NH). Tc is a positive defined Hermitian operator in the
non-Hermitian system. The equilibrium state of thermalizable
quasi-Hermitian systems [with conserved quantity Pc(t )Tc, up
to a normalization factor] at temperature T is

ρNH = e−βT ĤNHTc. (D2)

It is essential to note that the Boltzmann distribution, con-
structed under the assumption that the probability of states
with energy En is Pn ∝ e−βT En , is generally not satisfied. The
probability of states with energy En is PNH

n ∝ e−βT EnWn �=
e−βT En , where Wn = 〈En|LTc|En〉L, with |En〉L the left eigen-
state that is biorthogonal to (self-normalized) |En〉R.

For thermalizable non-Hermitian systems, two sets of data,
namely the system’s Hamiltonian ĤNH and the set of operators
{Ĉa} in the system-environment coupling, can uniquely deter-
mine Tc (up to an irrelevant multiplicative factor that leaves
the expectation values of physical quantities unaffected), sub-
ject to the following two conditions:

(1A) Symmetric condition: the coupling operator Ĉa satis-
fies [Ĉa, Tc] = 0 for all a. Alternatively, in physical terms, the
coupling needs to have symmetry Tc.

(2A) Conjugacy relation: ĤNHTc − TcĤ†
NH = 0.

Systems that strictly possess the path-dependence con-
served quantity are necessarily real-spectrum systems. For
non-Hermitian Hamiltonians possessing complex eigenval-
ues, while the system initially lacks exact conserved quan-
tities, the eigenstates with negative imaginary parts will
disappear (we have adjusted the maximum imaginary part
of the eigenvalue of the non-Hermitian system to zero) and
lead to the rapid appearance of an approximate conserved
quantity PR

c (t )T R
c . During the evolution of time, in the weak-

coupling limit, these states with a negative imaginary part
will decay rapidly on a timescale τloss (compared to the
timescale of nonloss state evolution τnonloss), and hence they
do not significantly impact the dynamics of nonloss states.
In this case, the system can be approximately regarded as a
real-spectrum system, which has an error of approximately
τnonloss/τloss. Consequently, the steady state of the system
can be well described by the Hamiltonian restricted to the
subspace of nondissipative states. Therefore, in the case of
a non-Hermitian system, the original model is reduced to a
subspace consisting of degenerate quantum states that share
the same maximum imaginary part among all eigenvalues.
Specifically, the Hamiltonian of the system and the coupling
between the system and the bath restricted to this subspace
are

ĤR
NH = PĤNHP, (D3)

ĤR
BS =

∑
a

λa[(PĈaP) ⊗ B̂a + (PĈ†
a P) ⊗ B̂†

a], (D4)

where P = ∑
ImEm=Max(ImEn ) |m〉R〈m|L is the projection oper-

ator to the subspace with a maximum imaginary part.
The steady state of the system (ignore the corrections from

lossy states to nonlossy states) is given by the following for-
mula:

ρNH = e−βT ĤR
NHT R

c . (D5)
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T R
c is uniquely determined by the following relation (for

thermalizable non-Hermitian systems):
(1B) The coupling operator Ĉa satisfies PĈaPT R

c −
T R

c P†Ĉ†
a P† = 0 for all a.

(2B) ĤR
NHT R

c − T R
c (ĤR

NH)† = 0.

1. Real spectrum case

Since we focus here on a topological insulator or
a topological superconductor, ĤNH can be expressed as
ĤNH = ψ†HNHψ , where the matrix HNH is a single-
body non-Hermitian Hamiltonian. ψ = (ψ1, ψ2, ψ3, . . . , ψn),
(ψi )i=1,2,...,n is a set of fermion annihilation operators for a
normal system or Nambu spinors for a superconductor.

For the above Hamiltonian, Tc can be written
as

Tc = exp(ψ† ln Tcψ ). (D6)

Here Tc satisfies the following conditions:
(1C) The coupling operator Ĉa satisfies [ψ† ln Tcψ, Ĉa] =

0 for all a.
(2C) HNHTc − TcHNH = 0.
Therefore, the single-body effective Hamiltonian

Heff defined as e−ψ†Heff ψ = ρ can be written as Heff =
− ln(e−βHNH Tc). The corresponding many-body Hamiltonian
is Ĥeff = −ψ† ln e−βHNH Tcψ .

Based on PNH
n ∝ e−βT EnWn, for the zero-temperature case,

the system is always in the state of lowest energy for all Tc,
meeting condition (2C). At zero temperature, the coupling
between the system and the environment does not affect the
steady state of a non-Hermitian system. Therefore, we can ar-
bitrarily choose the Tc that satisfies condition (2C) to calculate
the effective Hamiltonian at zero temperature. (As the temper-
ature tends to zero, the effective Hamiltonian often diverges.
We can introduce a multiplicative factor that keeps the matrix
elements of the effective Hamiltonian from diverging without
altering the topology.)

2. Complex spectrum case

According to ρNH = e−βT ĤR
NHT R

c , the probability of states
|En〉R with energy En is PNH

n = 1
Z BR

nW R
n , where

BR
n =

{
e−βT ReEn ImEn = Max(ImEn)

0 ImEn �= Max(ImEn)
, (D7)

and W R
n = 〈En|LT R

c |En〉L, where |En〉L is the left eigenstate,
which is biorthogonal to self-normalized |En〉R. Because these
eigenstates and eigenvalues are associated with the many-
body Hamiltonian, it makes it difficult to directly solve for the
effective Hamiltonian. To address this difficulty, we provide a
theorem:

Theorem 3: The steady state of the system with Hamil-
tonian Ĥα→∞ and coupling {Ĉa} is the same as the steady
state of the system with Hamiltonian ĤNH and the same
coupling {Ĉa}. In the above, Ĥα is defined as Ĥα ≡ ψ†Hαψ ,
where

Hα = ReHNH − α ImHNH. (D8)

ReHNH is defined as sharing the same eigenstates with
HNH, but with eigenvalues corresponding to the real part of

HNH’s eigenvalues, i.e., if HNH = ∑
m Em|m〉R〈m|L, ReHNH =∑

m Re(Em)|m〉R〈m|L. ImHNH is defined as sharing the same
eigenstates with HNH, but with eigenvalues correspond-
ing to the real part of HNH’s eigenvalues, i.e., if HNH =∑

m Em|m〉R〈m|L, ImHNH = ∑
m Im(Em)|m〉R〈m|L.

This theorem implies that the steady states of a non-
interacting non-Hermitian system with a complex energy
spectrum can be transformed into solving for the steady states
of a non-interacting real spectrum system with single-body
Hamiltonian Hα→∞, and then solved using the method intro-
duced in the Appendix D1.

Proof. Note that Ĥα ≡ ψ†Hαψ and ĤNH have the same set
of eigenstates. Therefore, to prove that the steady state of Ĥα

is also the steady state of ĤNH, we only need to compare the
probability distributions of the eigenstates. For a system with
Hamiltonian Hα → ∞, the probability of the eigenstate |En〉R

with energy En is PNH
n = 1

Z BnWn, where Bn = e−βT ReEα→∞
n and

Wn = 〈En|LTc|En〉L.
First, we verify that the factors Bn of the two systems are

the same.
We have Bn = 1

Z e−βT ReEn eβT α[lmEn−Max(lmEn )] (α → ∞), or

Bn =
{

e−βT ReEn ImEn = Max(ImEn)

0 ImEn �= Max(ImEn)
, (D9)

which is the same as BR
n .

Because Bn for the state ImEn �= Max(ImEn) equals 0,
the condition PR

n = Pn is only necessary to demonstrate that
for states with ImEn = Max(ImEn), W R

n = Wn. Next, we ver-
ify that for states with ImEn = Max(ImEn), W R

n = Wn is the
same.

We prove that T R
c = PTcP† (up to an irrelevant multi-

plicative factor). Since T R
c is unique up to an irrelevant

multiplicative factor, we only need to prove that PTcP† sat-
isfies conditions (1B) and (2B).

According to condition (2A), Tc can be expressed as

Tc =
∑

m

tm|m〉R〈m|R, (D10)

where |m〉R/|m〉L represent the biorthogonality right/left
eigenstates of ĤNH. {tm} is a set of positive real numbers.
By utilizing the definition of P, we can verify that PTc =∑

m,Em=Max(ImEn ) tm|m〉R〈m|R = TcP†.
We prove that T R

c = PTcP† satisfies condition (1B). We
have

PĈaP(PTcP†) − (PTcP†)P†ĈaP†

= PĈaPTcP† − PTcP†ĈaP†

= PĈaTcP† − PTcP†Ĥ†
NHP†

= P[Ĉa, Tc]P† = 0. (D11)

We have used that P2 = P.
According to ĤR

NH = PĤNHP, we verify that T R
c = PTcP†

satisfies condition (2B):

ĤR
NHPTcP† − PTcP†P†

(
ĤR

NH

)†

= PĤNHP(PTcP†) − (PTcP†)P†Ĥ†
NHP†

= PĤNHPTcP† − PTcP†Ĥ†
NHP†
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= PĤNHTcP† − PTcĤ†
NHP†

= P(ĤNHTc − TcĤ†
NH)P† = 0. (D12)

Therefore, PTcP† meets the condition (1B) and (2B), and it
is the T R

c of the system with Hamiltonian ĤNH and coupling
{Ĉa}.

For the state |En〉L with ImEn = Max(ImEn), we have
P†|En〉L = |En〉L. Therefore,

Wn = 〈En|LTc|En〉L = 〈En|LPTcP†|En〉L

= 〈
En|LT R

c |En
〉
L = W R

n (D13)

for ImEn = Max(ImEn).
Therefore, we proved that the two systems have the same

steady state.
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