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Microwave spectroscopy of the Schmid transition

Manuel Houzet ,1 Tsuyoshi Yamamoto ,2 and Leonid I. Glazman3

1Univ. Grenoble Alpes, CEA, Grenoble INP, IRIG, PHELIQS, 38000 Grenoble, France
2Faculty of Pure and Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan

3Department of Physics, Yale University, New Haven, Connecticut 06520, USA

(Received 5 September 2023; revised 27 February 2024; accepted 4 March 2024; published 24 April 2024)

Schmid transition was introduced first as a superconductor-insulator transition in the zero-frequency response
of a shunted Josephson junction in equilibrium at zero temperature. As it is typical for a quantum impurity
problem, at finite frequencies the transition is broadened to a crossover. Modern attempts to find Schmid
transition rely on finite-frequency measurements of a quantum circuit. We predict the frequency dependence
of the admittance and reflection phase shift for a high-impedance transmission line terminated by a Josephson
junction for a wide variety of devices, from a charge qubit to a transmon. Our results identify the circuit
parameters needed for the experimental observation of universal scaling of the responses with frequency. On
the insulating side of the transition, the full crossover from weak to strong coupling can only be observed in a
transmon. On the contrary, observation of such crossover on the superconducting side of the transition is possible
only with the charge qubit. The frequency dependence gets weaker and vanishes upon approaching the Schmid
transition from either side.
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I. INTRODUCTION

The Schmid transition predicts that the ground-state
wavefunction associated with a quantum-mechanical particle
placed in a periodic potential is either localized or extended,
depending of the strength of its coupling with a dissipative
environment [1]. The existence of the transition was sup-
ported by a duality transformation between the two phases [1]
and confirmed with renormalization-group (RG) calculations
[2,3]. Furthermore, RG methods allow to argue that the tran-
sition only depends on the properties of the environment, not
on the amplitude of the periodic potential.

The particle in the Schmid transition can be associated with
the phase across a Josephson junction shunted by a resistor.
If its resistance R is smaller than the resistance quantum,
R < h/4e2, then the phase is localized in one of the minima
of the Josephson potential. Conversely, on the other side of
the transition, R > h/4e2, the phase is delocalized and the
junction behaves as an insulator [2,3]. So far, the phase dia-
gram experimentally inferred from the dc response of shunted
Josephson devices [4,5] is far from reproducing the predicted
phase diagram.

Modern attempts to observe the Schmid transition rely on
finite-frequency [6–8] and related heat transport [9] measure-
ments of a superconducting circuit.

As it is typical for a quantum impurity problem, a fi-
nite temperature or frequency broadens the quantum phase
transition into a crossover. The effect of thermal fluctuations
received early attention [10,11]. Much less is known on the
role of a finite frequency that was mostly studied in perturba-
tive regimes [12–16].

In this paper we develop the theory of finite-frequency
response functions needed for a correct interpretation of ex-
perimental data. Our results identify the circuit parameters

allowing for the universal scaling of the responses with the
frequency, and determine the frequency range where scaling
laws apply. We predict the frequency dependence of the re-
flection phase shift for a high-impedance transmission line
terminated by a Josephson junction, see Fig. 1(a), for a wide
variety of devices, from a transmon (EJ � EC) to a charge
qubit (EJ � EC). We relate the phase shift with the admittance
for the circuit in Fig. 1(b). Here EJ is the Josephson energy
and EC = e2/2C, where C is the junction capacitance, is the
charging energy.

II. MODEL

The Hamiltonian that describes a circuit formed of a
Josephson junction in series with a transmission line is

H = EJ (1 − cos ϕ) + 4EC (N − n − N )2 +
∑

q

ωqa†
qaq. (1)

Here N is the charge (in units of 2e) that flows across the
junction and ϕ is the canonically conjugate superconducting
phase difference. The charge displaced from the transmission
line to the junction,

n = 1

π

∑
q

√
K�

ωq
(aq + a†

q), (2)

is related with the boson annihilation operator aq for a mode
with energy ωq = (q + 1

2 )� (q positive integer) in the trans-
mission line when it is shorted on the junction side and open
on the opposite side. Here � = πv/L is the mean level spac-
ing in a transmission line of finite length L, characterized by
velocity v and line impedance R = π h̄/4e2K (such that the
Schmid transition occurs at K = 1

2 ). To describe the circuit of
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FIG. 1. Two equivalent circuits. (a) A transmission line termi-
nated by a Josephson junction and (b) a voltage driven Josephson
junction in series with a resistor.

Fig. 1(b), we take the limit L → ∞ and introduce the voltage
bias V = 2eṄR with the drive variable N .

The coupling between the junction and the line modifies
the scattering properties of bosons incident from the line. In
general, bosons scatter inelastically off the junction due to its
nonlinearity. Still, the elastic part of the scattering matrix can
be related with the circuit admittance Y (ω) at frequency ω. In
the one-port setup that we consider, this part reduces to the
reflection amplitude r(ω) = e2iδ(ω), with complex scattering
phase δ(ω) = δ′(ω) + iδ′′(ω). Indeed, in linear response we
find

Y (ω) ≡ I (ω)

V (ω)
= 1

2R
(1 − e2iδ(ω) ), (3)

where I = (V − VJ )/R is the current flowing through the
junction and VJ is the voltage at the junction, see de-
tails in Appendix A. Using the classical formula for adding
impedances in series, 1/Y = R + 1/YJ , we define the effec-
tive junction admittance,

YJ (ω) ≡ I (ω)

VJ (ω)
= (−i/R) tan δ(ω). (4)

Note that δ(ω) is defined modulo π ; for convenience we
fix it such that 0 < δ′(ω) < π . Equation (4) shows that the
reflection is elastic [δ(ω) is real] when YJ (ω) is purely reac-
tive, while the inelastic cross section, σin(ω) = 1 − |r(ω)|2, is
finite if Y ′

J (ω) �= 0.
The microwave spectroscopy of a finite-length transmis-

sion line that is open on one side, such that Vin(ω) =
e2iωL/vVout (ω), and closed by a Josephson junction on the
other side, provides a direct way of measuring δ(ω). In-
deed, from the closure condition e−2iωL/v = e2iδ(ω) we find
that, when inelastic scattering is small, the frequency shift
of the standing modes is δωn = �[1/2 − δ′(ωn)/π ], while
σin(ω) yields an internal contribution to the mode’s quality
factor, Q(ωn) = 2πωn/�σin(ωn). This method has been im-
plemented in a variety of experiments aiming at studying
many-body physics with microwave photons in Josephson-
junction arrays [7,8,17–22].

Based on these relations, one expects [8] that, in the
zero-frequency limit, the Schmid transition between the super-
conducting phase (K > 1

2 ) and the insulating phase (K < 1
2 )

manifests itself by a π/2 phase shift in the amplitude of wave
reflection off the junction. Indeed, in the superconducting
phase, the low-frequency response of the junction is inductive,
such that r = −1 and Y = 1/R; in the insulating phase, the
low-frequency response of the junction is capacitive, such that
r = 1 and Y = 0.

Clearly, the zero-frequency limit is of little use for the
interpretation of microwave experiments. On the other hand,
not so much is known about the response at finite frequencies.
Below we make specific predictions, focusing mostly on the
scaling (universal) regimes. First, we recall two simple limits,
K � 1 and K � 1, respectively. Their analysis will help us
determine the domain of parameters where one may expect
large variations of the phase shift with the frequency.

We first consider the classical limit, K � 1. Here YJ (ω) =
i/ωLJ with Josephson inductance LJ = 1/4e2EJ at any ω up
to the plasma frequency, ω0 = √

8EJEC , except in a narrow
vicinity of ω0 on the order of the plasma resonance linewidth,
2� ≡ 1/RC. Thus δ(ω) ≈ π/2 hardly depends on ω in a
transmon. On the other, in a charge qubit δ(ω) varies by
∼π/2, increasing with ω from π/2 to π in the frequency
range ω � �. The increase by π/2 occurs on the scale ω ∼
R/LJ � �.

Then we consider the opposite limit of an almost discon-
nected Josephson junction, K � 1. Here the low-frequency
response is determined by an effective capacitance C	,
YJ (ω) = −iωC	, where C	 is fixed by the sensitivity of the
ground-state energy to an external gate voltage in a dis-
connected device, K = 0 [23] (see also Appendix B 1). In
particular, in a charge qubit, such low-frequency response
holds with C	 ≈ C at ω � EC . As a result, δ(ω) ≈ 0 hardly
depends on the frequency if ω � �. On the other hand, the
capacitive response of a transmon holds with C	 = e2/π2λ if
ω � √

λEJ , see details in Appendix B 2. Here

λ ≈ 8√
π

(
8E3

J EC
)1/4

e−√
8EJ /EC � ω0 (5)

is the phase slip amplitude. As a result, δ(ω) largely devi-
ates from 0 in a frequency range � ω0. It actually increases
by π/2 as the frequency crosses over the scale Kλ. Let us
emphasize that this crossover is a purely single-particle, al-
beit nonlinear, effect and has nothing to do with many-body
physics.

Overall, the above results show that the variation of the
phase by π/2 occurs in opposite limits (K � 1 and K � 1)
for the charge qubit and transmon. Away from these limits,
many-body effects modify this crossover and result in a uni-
versal scaling behavior for the reflection phases. Below we
will argue that the variation of δ(ω) by π/2 in a charge qubit
at K > 1/2 is described by a complex, K-dependent scaling
function,

δ(ω) = fqb(ω/�	, K ), (6)

as the frequency crosses over a characteristic frequency �	.
Correspondingly, we will determine the complex scaling func-
tion for the variation of reflection phase

δ(ω) = ftr (ω/ω	, K ) (7)

in a transmon at K < 1/2 with another characteristic
frequency ω	.

III. FINITE-FREQUENCY RESPONSE OF A CIRCUIT
TERMINATED BY A TRANSMON

Let us start with the transmon coupled to a transmis-
sion line. Starting from Eq. (1), we find that the low-energy
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properties of the circuit are described by a boundary sine-
Gordon Hamiltonian

H = H0 − λ cos (2θ (0) + 2πN ),

H0 =
∫ ∞

0
dx

[
vK

2π
(∂xϕ)2 + v

2πK
(∂xθ )2

]
, (8)

defined in a bandwidth of the order of ω0 (its precise value is
beyond the accuracy of our considerations, see Appendix B 3
for details). The Hamiltonian H0, which appears as the last
term in Eq. (1) in the eigenmode representation, is written
here in terms of the canonically conjugate phase [ϕ(x)] and
charge [ 1

π
∂θ (x)] variables, [ϕ(x), 1

π
∂xθ (x′)] = iδ(x − x′). The

charge displaced to the transmon, which determines the cur-
rent operator, is 2e(n + N ) with n = 1

π
θ (0). The second term

in Eq. (8) describes the phase slips at the Josephson junction.
Using linear response and the equations of motion derived
from Eq. (8), see Appendix C 1, we find

Y (ω) = 1

R
[1 − 4πKG(ω)] (9)

with

G(ω) = λ2

−iω
[Gsin 2πn,sin 2πn(ω) − Gsin 2πn,sin 2πn(ω = 0)].

(10)

Here we introduced retarded Green’s functions GA,B(t ) =
−iθ (t )〈[A(t ), B]〉 for operators A, B, and the last term in
Eq. (10) arises from the relation [14]

〈cos 2πn〉 = −λGsin 2πn,sin 2πn(ω = 0). (11)

Equations (10) and (11) are valid at any λ.
At K > 1/2 the second term in H of Eq. (8) is irrelevant.

It is easy to show that δ(ω) remains small at any ω by using
Eq. (3) and treating λ perturbatively in Eq. (9) [24].

At K < 1
2 , the perturbative-in-λ result can be cast in the

form (see Appendix C 2 for details)

δ(ω) = π

2
+ [tan 2πK + i]

(
ω	

ω

)2−4K

. (12)

The frequency-dependent correction remains small only at
large frequencies, ω � ω	. Here we introduced the crossover
frequency

ω	 = ω0

⎛
⎝

√
2K

�(4K )

πλ

ω0

⎞
⎠

1/(1−2K )

, (13)

below which the RG flow points towards the strong-coupling
regime of the boundary sine-Gordon model [3]. The negative
sign of δ′(ω) − π

2 ∝ tan 2πK in Eq. (12) corresponds to a
capacitive response with an effective ω-dependent capaci-
tance. A finite value of δ′′(ω) corresponds to a finite inelastic
cross section. Its frequency dependence reflects a quasielastic
process similar to the one displayed by quasiresonant photons
[25,26], see Appendix B 4 for details at K � 1.

In order to go beyond perturbation theory and address the
low-frequency response, ω � ω	, we use a Hamiltonian dual
to Eq. (8),

H = H0 − λ̃ cos ϕ(0) − Ṅϕ(0). (14)

To motivate it, we note that the failure of perturbation theory at
low frequency could be ascribed to the effective pinning of the
charge θ (0) to multiples of π (in absence of drive). The term
∝ λ̃ in Eq. (14) accounts for the slips induced by quantum
fluctuations between those different pinned states. The precise
relation of λ̃ to λ,

πλ̃

ω0
= �(1/2K )

2K

(
1

2K�(2K )

πλ

ω0

)−1/2K

, (15)

was found in Ref. [27]. Overall, Eq. (14) takes the same form
as the Hamiltonian for a driven Josephson junction in series
with a resistor. Using linear response and the equations of
motion derived from Eq. (14), we may find a relation between
the admittance and ϕ(0)-correlation functions valid at any λ̃.
As the Josephson term in Eq. (14) is irrelevant at K < 1

2 , a
perturbative-in-λ̃ expansion of the admittance will be valid
down to the lowest frequencies. Using Eq. (3) to relate it
with the frequency shift, we may express the result obtained
up to λ̃2 as

δ(ω) = c̃(1/4K )c̃1/2K (K )[tan(π/2K ) + i]

(
ω

ω	

)1/K−2

(16)

with c̃(K ) = 8K3�2(2K )/�(4K ), see details of the derivation
in Appendix C 3. We note that the negative sign of δ′(ω) −
π
2 < 0 still corresponds to a capacitive response.

The power-law frequency scaling in Eqs. (12) and (16) mir-
rors the celebrated bias dependence of nonlinear conductance
in the Kane-Fisher theory [14] of Luttinger liquid transport
across a quantum impurity. It also matches the frequency
dependencies of the conductance, which are given in the
Appendix of Ref. [14] at weak and strong coupling, respec-
tively. In addition, the K-dependent prefactors in Eqs. (12)
and (16) uniquely relate the strong coupling response to the
weak-coupling one (not just the power-law exponents) in the
same device. The inclusion of the nondissipative part [δ′(ω)]
in the response shows the need to modify Eqs. (12) and (16) at
small K .

Indeed, the amplitude of the nondissipative term in Eq. (16)
diverges at K = 1

3 , and δ′(ω) exhibits a “super-capacitive”
response at K < 1

3 : the exponent α = 1/K − 2 of its ω depen-
dence exceeds the value α = 1 of a disconnected transmon. It
indicates that, at K < 1

3 and ω � ω	 the capacitive response
originates from another irrelevant term c2[∂xθ (0)]2, which
needs to be added to the effective low-energy Hamiltonian
(14). It accounts for the quantum fluctuations of the charge
θ (0) in vicinity of a given pinned state. Such term was intro-
duced phenomenologically in [15,16]. The expression for the
coefficient c2 in terms of K, λ, ω0 was found as a part of series
of irrelevant terms

∑∞
n=1 c2n[∂xθ (0)]2n developed in [28,29].

By accounting for the term c2[∂xθ (0)]2 in evaluation [30] of
δ(ω) we find

δ(ω) = ω

β(K )ω	

+ ic̃(1/4K )c̃1/2K (K )

(
ω

ω	

)1/K−2

,

1

β(K )
= 1

2
√

π
�

(
1/2

1 − 2K

)
�

(
1 − 3K

1 − 2K

)(
c̃(K )

4K2

) 1
2(1−2K )

.

(17)
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Note that the effective capacitance here, ∼1/β(K ), depends
nontrivially [31] on K . Remarkably, β(0) = √

2 allowing one
to recover C	 found at ω/ω	 � 1 in the isolated-transmon
(K � 1) limit, see Eq. (5).

Next we notice that the nondissipative term in Eq. (12)
diverges at K = 1

4 , and δ′(ω) exhibits a “super-capacitive” re-
sponse at K < 1

4 . The leading 1/ω asymptote of δ′(ω) comes,
instead, from the second term in Eq. (10),

δ(ω) = π

2
− α(K )ω	

ω
+ i

(
ω	

ω

)2−4K

(18)

with α(K )ω	 = 4πKλ〈cos 2πn〉. We find the precise
dependence

α(K ) = 2√
π

�

(
1
2 − 2K

1 − 2K

)
�

(
1 − K

1 − 2K

)(
4K2

c̃(K )

) 1
2(1−2K )

(19)

by using the exact result for 〈cos 2πn〉 for the boundary sine-
Gordon model at K < 1

4 [33]. Reassuringly, α(0) = √
2, so

that C	 of an almost-isolated transmon is also recovered at
ω/ω	 � 1 and K → 0.

Inspecting the capacitive terms in Eqs. (12) and (18), we
find with the help of Eq. (19) that the amplitude of δ′(ω) di-
verges at K − 1

4 → ±0. The special point K = 1
4 corresponds

to the Toulouse limit [14,34], which provides an exact result
covering the crossover at ω	 [8] (see also Appendix C 4),

e2iδ(ω) + 1

2
= 2ω	

iπω
ln

(
1 − iπω

2ω	

)
, ω	 = π2λ2

2ω0
. (20)

Its low-frequency asymptote matches Eq. (17). In the
high-frequency limit, Eq. (20) replaces the divergence ∝
1/ω|K − 1

4 | of the δ′(ω) terms in Eq. (12) and (18) with a
nonanalytical factor ∝ (ln ω)/ω.

In general, the description of the full crossover between the
low- and high-frequency asymptotes of the scaling function is
a difficult problem. It can, however, be provided for the vicin-
ity of the Schmid transition, K = 1

2 . Right at the transition,
the Hamiltonian (8) can be mapped onto a tunnel Hamiltonian
for free fermions [3]. In that case, the admittance is purely
real and the frequency shift is purely imaginary, both being
frequency independent. A small deviation from that point,
0 < 1

2 − K � 1, corresponds to the case of weakly repulsive
fermions in the leads [35]. Extending the theory developed in
that reference to evaluate the interaction-induced corrections
to the admittance and using its relation with the phase shift,
we find

tan δ(ω) = (i − 2πδK )

(
ω

ω	

)−4δK

, δK = K − 1

2
, (21)

at any ω (see details of the derivation in Appendix C 5). As
expected, Eq. (21) matches the previously found asymptotes,
Eqs. (12) and (16).

From the asymptotes and exact results given above, we
deduce that inelastic scattering, captured by δ′′(ω), becomes
significant at ω near ω	. Scattering is fully inelastic at the
critical point, K = 1

2 − 0, in accordance with the exact results
[36–38] treated in the scaling limit (see Appendix C 5). The
appearance of a structure in δ(ω) upon deviation of K from
the critical point is given by Eq. (21). The observability of

FIG. 2. High- and low-frequency asymptotes of δ′(ω) and
σin (ω) = 1 − e−4δ′′ (ω) in the scaling regime. For a transmon on the in-
sulating side of the Schmid transition, K < 1

2 , the results are obtained
from Eqs. (12), (16)–(18), and footnote [30]. The asymptotes for a
charge qubit on the superconducting side of the transition, K > 1

2 , are
obtained from these equations by the duality relation, see Eqs. (22),
(6), and (7).

the scaling regime in the entire range K < 1
2 requires that

ω	 � √
λEJ . As λ varies exponentially with EJ/EC , the ob-

servation of a scaling behavior in a broad dynamical range
may pose a challenge for experiments.

IV. FINITE-FREQUENCY RESPONSE OF A CIRCUIT
TERMINATED BY A CHARGE QUBIT

Let us now turn to the opposite regime of the charge qubit.
Starting from Hamiltonian (1) at EJ � EC , we observe that its
properties at frequencies below the cutoff � can be described
by the same Hamiltonian (14) provided that one substitutes λ̃

with EJ in it. From that duality relation, we deduce that the
scaling functions in Eqs. (6) and (7) are related,

fqb(ν, K ) = π

2
+ ftr

(
ν,

1

4K

)
, K >

1

2
, (22)

provided that one uses the proper characteristic frequency
scale for the charge qubit,

�	 = 2eγ �

(
1√

2K�(1/K )

πEJ

2eγ �

)2K/(2K−1)

, K >
1

2
.

(23)

Here γ ≈ 0.58 is Euler’s constant [39]. To observe the entire
crossover, one needs �	 � �, equivalent to (2K )2EC/EJ �1,
in the entire interval K > 1/2. Overall, the constraint on �	

is experimentally less challenging than the respective one for
the transmon.

V. DISCUSSION

In conclusion, we developed a comprehensive theory of
the dynamic response of a small Josephson junction in a
high-impedance environment. The response is uniquely char-
acterized by the complex-valued reflection phase δ(ω). Its
frequency dependence exhibits a nontrivial crossover with
a functional form determined solely by the environmental
impedance π h̄/4e2K . The low- and high-frequency asymp-
totes of δ(ω) are summarized in Fig. 2. Depending on K ,
the low-frequency asymptote shows a capacitive or inductive
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response, characteristic for an insulator or superconductor,
respectively. The change between these two types of response
occurs at K = 1

2 (the Schmid transition point), irrespective of
the values of the Josephson and charging energies (EJ and EC)
of the small junction. The ratio EJ/EC , however, is important
for the ability to observe the entire crossover function δ(ω),
see Fig. 2.

Short of observing the entire crossover in δ(ω), the ves-
tiges of the transition can be seen even in its high-frequency
asymptote. This, to some extent was done in Ref. [8] by
monitoring the real part δ′(ω) of the reflection phase. The
same experiment yielded the data for the dissipative part of
the response δ′′(ω), too. The comparison of δ′′(ω) with our
predictions is still outstanding [40].

Our paper also clearly shows that the data of Ref. [6]
for a shunted SQUID are consistent with the existence of
the Schmid transition. As one sees from our results, the flux
tunability of the response is present even on the insulating side
of the transition through the flux dependence of the crossover
parameter ω	. In the theoretical consideration presented in
[6], the authors make a conceptual error by replacing the
asymptotic behavior of the response function by an average
value of cos ϕ, which, being a quantity local in time, does not
exhibit a quantum phase transition due to the low dimension-
ality of the system. The “average-cos ϕ” consideration is also
one of the erroneous arguments against the Schmid transition
presented in the numerical study [41]. The conclusions of
this paper are at odds with the quantum Monte Carlo [42,43]
and numerical RG [44] results. Other, technical errors of that
paper were uncovered in [45]. We note here that Ref. [41] fails
to reproduce even the simplest limit of an isolated transmon
(K → 0). We believe our paper helps to clarify the existing
confusion regarding the Schmid transition and pave the way
for experiments unambiguously demonstrating it.

Note added. Recently, we learned about a study [46] of the
charge qubit limit, which was performed independently from
our paper. The results of our two studies agree with each other,
wherever comparable.
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APPENDIX A: RELATION BETWEEN SCATTERING
PHASE AND CIRCUIT ADMITTANCE

Using the harmonic theory for a transmission line, we
decompose the voltage and current nearby the junction in
the circuit of Fig. 1 in terms of incoming and outgo-
ing waves, VJ (ω) = Vin(ω) + Vout (ω) and I (ω) = [Vin(ω) −
Vout (ω)]/R, respectively. The transmission line realizes
an ohmic impedance, such that I (ω) = [V (ω) − VJ (ω)]/R.
Defining the circuit admittance as Y (ω) = I (ω)/V (ω), we can

relate it to the scattering phase δ(ω) off the junction, such that
Vout (ω) = e2iδ(ω)Vin(ω). As a result we get Eq. (3).

APPENDIX B: ADMITTANCE OF AN ALMOST
ISOLATED TRANSMON, K → 0

In this Appendix we show that the admittance of an isolated
transmon is dominated at low frequency by the contribution of
the quantum capacitance associated with it. Then, we deter-
mine the frequency shift of the modes in a transmission line
weakly connected to the transmon, K � 1. Finally, we intro-
duce a boundary sine-Gordon model that allows determining
the response functions of the transmon’s electromagnetic en-
vironment at any K . We use these results to discuss the
structure of inelastic processes.

1. Quantum capacitance of an isolated Josephson junction

At K = 0, the junction is disconnected from the transmis-
sion line. The Hamiltonian (1) reduces to

H = EJ (1 − cos ϕ) + 4EC (N − N )2. (B1)

Here N is related with the current bias, I = 2eṄ . The inverse
admittance Y −1

K=0 is then defined as the ratio between the volt-
age VJ = 〈ϕ̇〉/2e and I . Using the equation of motion derived
from Eq. (B1), ϕ̇ = 8EC (N − N ), and linear response, we
find

Y −1
K=0(ω) = 1

−iωC
[1 + 8ECGN,N (ω)], (B2)

where GN,N (ω) is the Fourier transform of the retarded
Green’s function GN,N (t ) = −iθ (t )〈[N (t ), N]〉 evaluated at
N = 0. (Here we assume that an eventual static offset charge
is screened by the junction’s environment.) Using the trans-
mon’s eigenbasis of states |s〉 with energy εs, such that εs < εs′

for 0 � s < s′, we express Eq. (B2) as

Y −1
K=0(ω) = 1

−4e2iω

[
8Ec −

∑
s>0

|W0s|2 2εs0

ε2
s0 − ω2

]
(B3)

with εss′ = εs − εs′ and Wss′ = 8EC〈s|N |s′〉. We now use an
identity obtained by evaluating perturbatively N -dependent
corrections to εs [25],

2e2

C	

≡ 1

2

∂2ε0

∂N 2
= 4EC −

∑
s>0

|W0s|2
εs0

, (B4)

to find

Y −1
K=0(ω) = 1

−iωC	

− iω

4e2

∑
s>0

2|W0s|2
εs0

(
ε2

s0 − ω2
) . (B5)

The most striking feature of Eq. (B5) is that the low-frequency
response is dominated by the contribution of the quantum
capacitance C	 at any ratio EJ/EC . It illustrates the insulating
behavior the junction at ω → 0, in accordance with Schmid’s
prediction.

In particular, in a transmon, EJ � EC , W0s ≈
−i8EC (EJ/32EC )1/4δs,1 and ε10 ≈ ω0 = √

8EJEC . Thus
the second term in Eq. (B5) reduces to the classical result
for an inductance LJ = 1/4e2EJ in parallel with C. It is
effectively inductive at ω < ω0. According to Eq. (B5), the
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quantum capacitance C	 appears in series with that effective
inductance. Using

ε0 = 1
2ω0 − λ cos(2πN ) (B6)

with phase-slip amplitude λ given in Eq. (5), we find C	 =
e2/π2λ. (Here we evaluated C	 assuming again that an
eventual offset charge is screened by a weakly coupled en-
vironment, see [47].)

The low-frequency response is also dominated by the ca-
pacitive term in a charge qubit, EJ � EC , where C	 ≈ C and
the capacitive response extends in a wide frequency range of
order EC .

2. Frequency shift at K � 1

At K � 1, we find that YJ ≈ YK=0 can be used to evaluate
the mode frequency shift of the q mode in a transmission line
weakly connected to a Josephson junction. Indeed, expressing
Eq. (1) at N = 0 [47] in the transmon eigenbasis,

H =
∑

s

εs|s〉〈s| +
∑

q

ωqa†
qaq + 4Ecn2 − n

∑
ss′

Wss′ |s〉〈s′|,

(B7)

and using perturbation theory up to order K , we find
that δωq/� = 1/iπRYK=0(ωq) in a wide frequency range
1/RC	 � ωq � ε10 where δωq/� � 1. In particular, the cor-
rection δωq is dominated by the capacitive response, δωq/� ≈
1/πRC	ωq, in the frequency range 1/RC	 � ωq � 1/

√
LJC	

in a transmon (EJ � EC), and 1/RC	 � ωq � EC in a charge
qubit (EJ � EC). These results match Eq. (4) at large R (small
K), when π/2 − δ(ω) � 1.

In the main text, we extrapolated the results to lower fre-
quency, ωq � 1/RC	, using

tan δ(ω) = ωRC	. (B8)

Equation (B8) is, however, beyond perturbation theory in K .
In the next subsection, we motivate the introduction of the

boundary sine-Gordon model, Eq. (8), which allows extending
the results at any K and ω.

3. Boundary sine-Gordon model

Further insight is obtained by evaluating the ground-state
energy associated with the Hamiltonian (B7) perturbatively in
K ,

Eg = ε0 +
∑

q

K�

π2ωq

[
4EC −

∑
s

|W0s|2
εs0 + ωq

]
. (B9)

Here the second term yields an N -dependent correction to
Eg. Focussing on the transmon regime, we evaluate this
term in logarithmic approximation after substracting Eq. (B4)
to the factor between brakets. As a result, we find that
the N -dependent correction to Eg can be accounted by the
substitution

λ → λ[1 − 2K ln(ω0/ωmin)] (B10)

in the expression for ε0, cf. Eq. (B6). Here we used ωmin to
cutoff an IR divergency, while ω0 appeared as the natural
cutoff for the UV divergency.

This motivates us for describing the low-frequency re-
sponse of a transmon at any K with a boundary sine-Gordon
model [equivalent to Eq. (8)],

HsG = −λ cos 2π (n + N ) +
∑

q

ωqa†
qaq, (B11)

where ω0 sets the bandwidth for the boson modes (up to a nu-
merical prefactor beyond the accuracy of our considerations).
Indeed, at N = 0 this model yields a renormalization of the
phase slip amplitude due to the environmental modes,

λeff = λ(ω0/ωmin)−2K , (B12)

in agreement the substitution rule (B10) at K � 1. The pres-
ence of ωmin in that correction points to the fact that the
term ∝ λ in Eq. (B11) is a relevant (irrelevant) perturbation
at K < 1

2 (K > 1
2 ), see the main text.

4. Inelastic cross section

Following Ref. [25] we also evaluate the partial inelastic
cross section for a photon with frequency ω � ε10 to be
converted into three photons with frequencies ω1, ω2, ω3, such
that ω = ω1 + ω2 + ω3,

γ (ω1, ω2, ω3|ω) = 4π2

3!

K4

π8ωω1ω2ω3

(
∂4ε0

∂N 4

)2

. (B13)

Here we used another identity similar to Eq. (B4),

1

4!

∂4ε0

∂N 4
=

∑
s,t>0

|W0s|2
εs0

|W0t |2
ε2

t0

−
∑

s,r,t>0

W0sWsrWrtWt0

εs0εr0εt0
, (B14)

to simplify an equation derived from Eq. (7) in [25] at
ω,ω1, ω2, ω3 � ε10. The contribution of the three-photon
processes to the inelastic cross section is then estimated as

γ (3)(ω) =
∫

dω1

∫
dω2γ (ω1, ω2, ω − ω1 − ω2|ω)

≈ 4π2

2!

28K4λ2

ω2
ln2 ω

ωmin
. (B15)

Here we evaluated the integrals in logarithmic approximation.
Evaluating similarly all processes where an incident photon
is converted into 2m + 1 photons, we find the corresponding
cross section,

γ (2m+1)(ω) ≈ 4π2

(2m)!

(4K )2m+2λ2

ω2
ln2m ω

ωmin
. (B16)

The sum of all these processes yield the inelastic cross section,

σin(ω) =
∞∑

m=1

γ (2m+1)(ω)

≈ 64π2K2λ2

ω2

[
cosh

(
4K ln

ω

ωmin

)
− 1

]

≈ 32π2K2λ2

ω2

(
ω

ωmin

)4K

(B17)

at K ln(ω/ωmin) � 1. Taking into account the renormalization
of λ given by Eq. (B12) and expression (13) for the crossover
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frequency at K � 1, we finally get

δ′′(ω) = σin(ω)

4
=

(
ω	

ω

)2−4K

, (B18)

in agreement with Eq. (12).
Similar to the resonance fluorescence studied in Ref. [25],

the logarithmic factors in the partial inelastic cross sections,
Eq. (B16), illustrate that an incident photon with frequency
ω � ω	 is quasielastically scattered into another photon with
slightly smaller frequency, as well an even number of low-
frequency photons.

APPENDIX C: ADMITTANCE OF A TRANSMON WITHIN
THE BOUNDARY SINE-GORDON MODEL

In this section we provide details on the derivation of the
circuit admittance in the transmon regime.

1. Exact formula for the admittance

The Hamiltonian (B11) [Eq. (8)] is conveniently expressed
as

HsG =
∑

q

ωq

2

(
X 2

q + P2
q

) − λ cos 2π (n + N ), (C1)

n = 1

π

∑
q

√
2K�

ωq
Xq. (C2)

Here we introduced the canonically conjugate variables
Xq = (aq + a†

q)/
√

2 and Pq = (aq − a†
q)/i

√
2. Using linear re-

sponse of the current, I = 2e(ṅ + Ṅ ), to the applied bias,
V = 2eRṄ , we express the admittance as

Y (ω) = 1

R
[1 + 2πλGn,sin 2πn(ω)], (C3)

where the Green’s function is evaluated with Hamiltonian
(C1) at N = 0, and we used Gṅ,sin 2πn(ω) = −iωGn,sin 2πn(ω).
Then we derive equivalent formulas for Y (ω) by using iden-
tities between various Green’s functions. Indeed, using the
equations of motion

Ẋq = ωqPq, Ṗq = −ωqXq − 2λ

√
2K�

ωq
sin 2πn, (C4)

we find

GXq,B(ω) =
√

2K�ωq

ω2 − ω2
q

[
1

π

〈
∂B

∂n

〉
+ 2λGsin 2πn,B(ω)

]
(C5)

for an arbitrary operator B expressed as a function of n only.
Summing Green’s functions with weights given by Eq. (C2)
we find

Gn,B(ω) = K

iω

[
1

π

〈
∂B

∂n

〉
+ 2λGsin 2πn,B(ω)

]
, (C6)

where we evaluated
∑

q 2K�/(ω2 − ω2
q ) = πK/iω in the

limit � → 0. (Recall that we consider retarded Green’s
functions, such that ω contains a small, positive imaginary
part.) Using B = n and Gn,sin 2πn = Gsin 2πn,n, and inserting

the corresponding Eq. (C6) into Eq. (C3), we find Y (ω) =
−4e2Gṅ,n(ω). Using B = sin 2πn, we also find

Y (ω) = 1

R
[1 − 4πKG(ω)], (C7)

G(ω) = λ2

−iω
[Gsin 2πn,sin 2πn(ω) − Gsin 2πn,sin 2πn(ω = 0)],

(C8)

in agreement with Eqs. (9) and (10). Here we used the relation

〈cos 2πn〉 = −λGsin 2πn,sin 2πn(ω = 0), (C9)

which can be derived by evaluating perturbatively the re-
sponse of 〈sin 2π (n + N )〉, averaged over Eq. (B11), to a
static N in two different ways: either we expand the operator
to be quantum-averaged in N , or we gauge out N form the
operator into the Hamiltonian and, then, use linear response.
Let us emphasize that Eq. (C7) is valid at any λ.

Equation (C7) allows establishing a relation between the
admittance of the boundary sine-Gordon model and the con-
ductance across an impurity in a Luttinger liquid [14,35].
Indeed, the first term in Hamiltonian (C1) may alternatively
describe one-dimensional interacting fermionic leads. In that
context, the parameter K characterizes whether the interac-
tions between fermions are repulsive (at K < 1

2 ) or attractive
(at K > 1

2 ). Using linear response, we then find that e2G(ω)
in Eq. (C7) can be interpreted as the dynamical conduc-
tance of an electronic junction with tunnel current operator
I = eλ sin 2π (n + N ) under voltage bias V = 2πṄ /e.

2. Perturbation theory in λ at K > 1
2

It is straightforward to evaluate the admittance up to order
λ2 with Eq. (C7). For this we just need to insert in it the low-
frequency result for the Green’s function Gsin 2πn,sin 2πn(ω)
evaluated at λ = 0,

Gsin 2πn,sin 2πn(ω) = −iπe−i2πK

2�(4K ) cos(2πK )

ω4K−1

ω4K
0

, ω � ω0.

(C10)

In particular, at K > 1
2 , Gsin 2πn,sin 2πn(ω = 0) = 0. The cor-

rection to Y ′(ω) = 1/R remains small at any frequency
[13,14]. It was noticed in a related context [13] that Y ′′(ω) is
positive (inductive-like) at 1

2 < K < 3
4 and diverges at K = 3

4 .
The divergence signals an insufficiency of the low-energy
model (B11). Indeed, at K > 3

4 the power law in the ω depen-
dence associated with the quantum response exceeds 1. This
signals that the quantum response is superseded by the clas-
sical one [not accounted for in Eq. (B11)], Y ′′(ω) � ωL/R,
which also remains small up to a narrow vicinity of ω0.
Overall, the correction to δ(ω) = π/2 remains small at any
frequency up to ω0, as announced in the main text.

Let us remind here that perturbation theory is also fruitful
to discuss the high-frequency regime at K < 1

2 , see the main
text.

3. Dual model near the IR fixed point

At K < 1
2 , the boundary condition of the free bosonic

field at the position of the impurity (the junction) changes
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from ∂xθ (0) = 0 to ∂xϕ(0) = 0 (i.e., from von Neumann to
Dirichlet condition as far as the θ field is concerned) between
the UV fixed point corresponding to λ = 0 in Eq. (8), and
the IR fixed point corresponding to λ̃ = 0 in Eq. (14). To
address the vicinity of the IR fixed point, it is convenient to
introduce another set of bosonic annihilation/creation opera-
tors, bq = (xq + ipq)/

√
2 and b†

q = (xq − ipq)/
√

2, such that
Eq. (14) reads

Hdual =
∑

q

ωq

2

(
x2

q + p2
q

) − λ̃ cos ϕ − ϕṄ ,

ϕ =
∑

q

√
2�

Kωq
pq. (C11)

By linear response, the admittance is

Y (ω) = 1

R

[
1 + K

π
Gϕ̇,ϕ (ω)

]
, (C12)

where the Green’s function Gϕ̇,ϕ (ω) is evaluated with
Eq. (C11) at N = 0. Similar to Appendix C 1, by using the
equations of motion for xq, pq we find various identities be-
tween Green’s functions and equivalent expressions for the
admittance,

Y (ω) = − λ̃

R
Gϕ,sin ϕ (ω) = 4e2G̃(ω), (C13)

G̃(ω) = λ̃2

−iω
[Gsin ϕ,sin ϕ (ω) − Gsin ϕ,sin ϕ (ω = 0)]. (C14)

Here we used 〈cos ϕ〉 = −λ̃Gsin ϕ,sin ϕ (ω = 0). Let us empha-
size that all relations above are valid at any λ̃.

The term ∝ λ̃ is an irrelevant perturbation near the IR fixed
point. Therefore we may use the expression for Gsin ϕ,sin ϕ (ω)
evaluated at λ̃ = 0 to evaluate the admittance up to order λ̃2

down to the lowest frequencies. Noting that Gsin ϕ,sin ϕ (ω) can
be read off the right-hand side of Eq. (C10) after the substitu-
tion K → 1/4K , and using Eq. (3) to convert the admittance
into scattering phase shift, we readily find the low-frequency
asymptote, Eq. (16).

Actually, as discussed in the main text, a series of addi-
tional perturbations,

V =
∑
n>0

c2n(∂xθ (0))2n, ∂xθ (0) =
∑

q

√
K�ωq

v
(bq + b†

q),

(C15)

need to be added to the dual Hamiltonian (C11),

HsG = Hdual + V, (C16)

in order to address the low-frequency response functions at
K < 1

3 . The leading term ∝ c2 is quadratic in the θ field.
Therefore it only contributes to elastic scattering. It yields a
perturbative-in-c2 contribution to the boson T matrix, Tqq′ =
c2K�

√
ωqω′

q/v
2 and, consequently, a linear-in-ω contribu-

tion to the elastic phase shift, δ(ω) = −πc2Kω/v2 � 1 with
c2 < 0. This contribution with πc2K/v2 = −1/β(K )ω	 cor-
responds to the first term in the right-hand side of Eq. (17). To
find the dependence of c2 on the circuit parameters, we note
that such a linear-in-ω phase shift corresponds to an additive

contribution to the boson density of states,

δν = 1

π

dδ(ω)

dω
= c2K/v2. (C17)

Therefore the boundary induces an additive correction to the
specific heat, which takes a simple form in one dimension,
δC/T = (π2/3)δν = π/3β(K )ω	. We benefited from an ex-
act result for δC/T given in Eq. (5.23) of Ref. [28] to find
the expression for β(K ) at K < 1

3 , which appears in Eq. (17).
Alternatively we might have used the expression for c2 given
in Eq. (3.21) of Ref. [29]. (From the comparison with [28],
we suspect that the exponent of the factor 2 sin πg is actually
twice larger than indicated there.)

The quartic term ∝ c4 contributes to the inelastic scattering
cross section,

σin(ω) = 4π2

3!

c2
4K4

v8

∫ ω

0
dω1

∫ ω−ω1

0
dω2ωω1ω2(ω − ω1 − ω2)

= π2

180

c2
4K4ω6

v8
. (C18)

This inelastic contribution becomes dominant at K < 1
8 , as

stated in [30]. Taking into account an aforementioned mod-
ification of Eq. (3.21) in Ref. [29], we find

δ′′(ω) = σin(ω)

4
= η(K )

(
ω

ω	

)6

, (C19)

where, in particular, η(K ) ∝ K2 at K � 1.

4. Toulouse point, K = 1
4

At K = 1
4 (Toulouse point), we use the mapping to a

fermionic field,

ψ (x) =
√

ω0

2πv
γ e2iπn(x) = 1√

2L

∑
k

ψkeikx, (C20)

where γ is a Majorana fermion (γ 2 = 1) and ω0 is a band-
width that is of the order of the initial cutoff, to express the
Hamiltonian (C1) at N = 0 as [14,34]

HsG =
∑

k

vkψ
†
k ψk + λ

2

√
2πv

ω0
[ψ (0) − ψ†(0)]γ . (C21)

As the Hamiltonian is quadratic, the dynamical conductance
e2G(ω) associated with it is easily obtained. Inserting the
result in Eq. (C7), one obtains

RY (ω) = 1 + 2ω	

iπω
ln

(
1 − iπω

2ω	

)
, ω	 = π2λ2

2ω0
. (C22)

Equation (20) is readily obtained from this result using the
relation between the admittance and scattering phase given in
Eq. (3).

5. Weakly interacting fermions, 1
2 − K � 1

Another mapping is possible at the free-fermion point,
K = 1

2 [3], by introducing two fermionic fields, ψR and ψL,
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FIG. 3. Frequency dependence of δ′(ω) and σin (ω) = 1 −
e−4δ′′ (ω) for a transmon with λ/ω0 = 0.2 and various values of the en-
vironment impedance, using the classical result at K = 0.1, Eq. (20)
at the Toulouse point, K = 0.25, and Eq. (21) at K = 0.4 and 0.45.
(Upper panel) δ′(ω) varies between 0 and π/2, and is plotted in
log-log scale; (lower panel) σin (ω) varies between 0 and 1, and is
plotted in linear-log scale.

as in Eq. (C20). Then, Eq. (C1) at N = 0 transforms into a
conventional tunnel Hamiltonian,

HsG =
∑

k,σ=L,R

vkψ
†
kσ

ψkσ + πvλ

ω0
[ψ†

L (0)ψR(0) + H.c.].

(C23)

The ω dependence of the tunnel conductance vanishes,

G = 1

2π
T , T = 4(πλ/2ω0)2

[1 + (πλ/2ω0)2]2
. (C24)

Thus RY (ω) = 1 − T ≡ R along the critical line K = 1
2 :

the real part of the scattering phase vanishes and σin =
4T (1 − T ).

The mapping of Eq. (C23) can be extended to arbitrary
K by considering that the fermions in the leads are inter-
acting. In particular, we may use the renormalization of the
transmission amplitude found at weakly repulsive interaction,
0 < 1

2 − K � 1, in Ref. [35] to find

RY (ω) = 1

1 + (1 − i2πδK )(ω/ω	)4δK
, δK = K − 1

2
.

(C25)

Here ω	 = ω0(πλ/ω0)1/(1−2K ), in agreement with Eq. (13)
at K → 1

2 . Note that the vanishing imaginary part in

FIG. 4. Variation of δ′ (upper panel) and σin (lower panel) as a
function of K varying around the Schmid transition point, K = 1

2 ,
using Eq. (C25), for a set of fixed frequencies ω < ω0, in a transmon
with λ/ω0 = 0.2.

Eq. (C25) is found from the matching of δ(ω) given in
Eq. (21) [and obtained from Eq. (C25) and Eq. (3)], with
its high- and low-frequency asymptotes, Eqs. (12) and (16),
respectively.

From Eq. (C25) we find that Y (ω) → 1/2R at ω = ω	 and
K → 1

2 − 0. Thus σin(ω) → 1: scattering is fully inelastic.
This result matches Eq. (C23) found at K = 1

2 when one
considers the scaling limit, ω0 → ∞ with fixed ω	, such that
λ/ω0 � (ω	/ω0)−2δK → 1 and T ,R → 1

2 .
The results for the insulating side of the transition,

K < 1/2, are illustrated by Fig. 3. Its upper panel shows
the variation of the scattering phase by π/2 as the frequency
ω passes the crossover value ω	. The lower panel demon-
strates a maximum of the inelastic photon scattering cross
section at ω ∼ ω	.

With the help of Eq. (C25), we illustrate also the evolution
of the scattering phase shift across the Schmid transition in
Fig. 4. The upper panel shows the variation of δ′ as a function
of K varying around K = 1/2 for a set of fixed frequencies
ω < ω0. The lower panel shows the variation of the inelas-
tic scattering cross section σin = 1 − exp(−4δ′′), which is a
proxy for the dissipative part of the scattering phase shift, for
the same range of K around K = 1/2 and for the same set of
fixed frequencies. In each panel, all the curves representing
different frequencies intersect at K = 1/2, indicating the tran-
sition point, see Eq. (C25). Another representative feature in
the δ′ vs K dependence at a fixed low frequency, is the increase
of δ′ by ∼π/2 with K increasing across the transition point.
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