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Negative electronic compressibility in charge islands in twisted bilayer graphene
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We report on the observation of negative electronic compressibility in twisted bilayer graphene for Fermi
energies close to insulating states. To observe this negative compressibility, we take advantage of naturally
occurring twist-angle domains that emerge during the fabrication of the samples, leading to the formation of
charge islands. We accurately measure their capacitance using Coulomb oscillations, from which we infer the
compressibility of the electron gas. Notably, we not only observe the negative electronic compressibility near
correlated insulating states at integer filling, but also prominently near the band insulating state at full filling,
located at the edges of both the flat and remote bands. Furthermore, the individual twist-angle domains yield
a well-defined carrier density, enabling us to quantify the strength of electronic interactions and verify the
theoretical prediction that the inverse negative capacitance contribution is proportional to the average distance
between the charge carriers. A detailed analysis of our findings suggests that Wigner crystallization is the most
likely explanation for the observed negative electronic compressibility.
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I. INTRODUCTION

Twisting two layers of graphene creates a moiré supercell
with enlarged periodicity [1–4], leading to band insulating
states at full filling (ν = ±4, where ν represents the filling fac-
tor denoting the number of charge carriers per supercell) [5]
and flattening of the electronic bands [2,4]. Near the so-called
magic angle of ≈1.1◦, the ratio of Coulomb repulsion to ki-
netic energy becomes maximized [6], giving rise to correlated
insulating states at fractional fillings and integer values of
ν [7–10]. When the carrier density is slightly tuned away
from these integer filling factors, strongly interacting itinerant
charge carriers emerge. The interaction strength of charge
carriers is characterized by a dimensionless parameter known
as the Wigner-Seitz radius rs [11,12], given by

rs = 1√
π

a

aB
= am∗e2

4π3/2ε0ε′
r h̄2 . (1)

Here, a = 1/
√

n is the average distance between charge carri-
ers, n the charge-carrier density, aB the (effective) Bohr radius,
ε0 the vacuum permittivity, ε′

r the effective relative dielec-
tric constant of the material, h̄ the reduced Planck constant,
m∗ the charge-carrier effective mass, and e the elementary
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charge. Near an energy gap, the low carrier density (and
large a) together with a large m∗ of itinerant charge car-
riers results in a large value of rs. This high rs is likely
crucial for the formation of strongly correlated electronic
phases in twisted bilayer graphene (tBLG), such as the su-
perconducting phases adjacent to the correlated insulating
states, the origin of which remains not fully understood [8,13–
18]. However, precise measurements near these gaps pose
challenges due to variations in the twist angle across the
sample, which have been identified as a significant source of
disorder in tBLG [6,9,14,19–21]. These variations give rise
to twist-angle domains within the sample, characterized by
relatively uniform twist angles but abrupt transitions at the
boundaries [22,23]. Since the twist angle dictates the position
of moiré-induced energy gaps, their locations vary within the
sample, complicating efforts to maintain a uniform itinerant
charge-carrier density and rs across the sample geometry.

In this study we capitalize on the twist-angle variations to
isolate single twist-angle domains, accurately quantify their
charging energy, and extract the interaction strength between
itinerant charge carriers. To achieve this we utilize tBLG het-
erostructures with varying sizes and geometries, as described
in Sec. II. We demonstrate that the inherent twist-angle vari-
ations induce electrostatic confinement near the insulating
states of tBLG (Sec. III). These confined regions function
as charge islands, and we precisely measure their capaci-
tance using Coulomb oscillations. An in-depth analysis of this
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FIG. 1. (a) Schematic cross section of a tBLG device, including an illustration of the moiré lattice forming between the two graphene
layers (bottom left) and the resulting stacking order (bottom right). Here, θ denotes the twist angle between the layers and λ the moiré
wavelength. (b) Illustration of the constricted Hall-bar device D1, with the width of the constrictions labeled. (c) Optical microscopy image of
device D1. (d) Four-point resistance as a function of gate voltage Vg and bulk filling factor ν at two temperatures (T ), highlighting the fragile
superconducting region (SC). (e) Four-point resistance as a function of gate voltage Vg and temperature of the 750-nm-wide constriction,
measured with the contacts highlighted by arrows in panel (c). Band insulators (BIs), correlated insulators (CIs), and a fragile superconducting
dome (SC) are visible.

capacitance reveals a negative electronic compressibility near
both the band insulating states in the remote and flat bands, as
well as near the correlated insulating states (Sec. IV). By fit-
ting a model to the data, we find that the negative capacitance
contribution is proportional to the square root of the charge-
carrier density, consistent with expectations for correlated
carriers. Furthermore, as the compressibility of the charge
island remains unaffected by magnetic fields and is consistent
among different bands, we propose that the observed negative
compressibility is best explained by the formation of a Wigner
crystal (Sec. V). Thus our technique provides insights into the
intriguing properties of itinerant charge carriers in tBLG when
the Fermi energy approaches the moiré-induced energy gaps.

II. SAMPLES AND SETUP

This study includes a total of six tBLG devices with differ-
ent twist angles and geometries. The tBLG is created using
either the “tear-and-stack” [5] or the “cut-and-stack” tech-
nique [24], generating a moiré pattern with periodicity λ, as
illustrated in Fig. 1(a). The tBLG is encapsulated in hexago-
nal boron nitride (hBN), which serves as an atomically flat
protective layer with electrical insulation [25]. To maintain
a uniform electric field and minimize electrostatic potential

disorder, we utilize a graphite gate, promoting atomically
flat interfaces [26,27]. For low-resistance one-dimensional
contacts, we employ selective reactive-ion-etching and met-
allization techniques [28–30]. The resulting device structure
is depicted in Fig. 1(a), and an example device is shown in
Figs. 1(b) and 1(c). Further details on the fabrication process
and devices are available in Appendix D.

In the main part of this work, we mainly show exemplary
results from a specific device labeled D1, which incorporates
a Hall-bar structure with constrictions, as shown in Figs. 1(b)
and 1(c). These constrictions allow us to differentiate be-
tween edge and bulk confinement (see Supplemental Material
S2 [31]). Within this device, we have implemented constric-
tions of varying widths: 750 nm, 500 nm, 350 nm, and 200 nm,
denoted as C1, C2, C3, and C4, respectively.

To confirm the nature of the 750-nm-wide constriction
C1 (Device D1) as tBLG, we analyze the temperature de-
pendence of the resistance shown in Figs. 1(d) and 1(e). In
this measurement, we can distinctly identify the band insu-
lators (BI) positioned around the filling factor ν = ±4. By
pinpointing their precise locations in gate voltage and utiliz-
ing the gate lever arm, we can approximate the twist angle
as θ ≈ 1.02◦ (see Appendix D). Moreover, in the vicinity
of integer fillings of the partially occupied flat bands, we
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FIG. 2. Two-point conductance G as a function of gate voltage
Vg over the entire gate voltage range. Zoom-ins close to the band
insulating states reveal high-frequency conductance oscillations.

observe resistance peaks corresponding to fractional fillings
ν = −2, 1, 2, 3. These resistive features align with expecta-
tions for correlated insulating (CI) states [8,32]. Close to ν =
−2.7, the resistance exhibits a significant reduction with de-
creasing temperature, although it remains finite. This behavior
indicates the presence of a fragile superconducting state [33]
in the sample, as evidenced in the Supplemental Material
S1 [31]. Furthermore, magnetotransport measurements (Sup-
plemental Material S1 [31]) uncover the existence of Chern
insulators featuring identical topological invariants to those
reported in other studies of tBLG near the magic angle [24,34–
38]. Consequently, we can conclude that our tBLG sample
distinctly exhibits correlated phases akin to those observed in
prior investigations near the magic angle [8,15–18,32].

III. CHARGE ISLANDS REVEALED
BY COULOMB OSCILLATIONS

Each experiment which now follows consists of two-point
conductance measurements where we increment the gate
voltage in small steps to reveal high-frequency conductance
oscillations. In Fig. 2 we show a conductance (G) trace
obtained with 0.1-mV gate voltage steps measured across
constriction C1. The charge neutrality point (CNP) at a filling
factor of ν = 0, and band insulators (BI) near full filling at
ν = ±4 are prominently visible within the trace. A zoom-
in of the traces reveals regular high-frequency conductance
oscillations at the transition towards the insulating states of
our tBLG samples. These oscillations are observed in all our
tBLG samples that show moiré-induced energy gaps (see Sup-
plemental Material S2, S4, S5, S7 [31]).

FIG. 3. (a) Exemplary two-point conductance (G) trace close to
the band insulators or constriction C1. (b) Conductance as a function
of gate voltage and bias voltage Vb in a small gate voltage range.

A. Dependence on bias voltage

To identify the origin of the conductance oscillations, we
perform gate-dependent bias spectroscopy measurements, as
illustrated in Fig. 3. The combined influence of bias and
gate voltage forms a diamond-shaped region where the con-
ductance is suppressed [Fig. 3(b)], a clear manifestation of
the Coulomb blockade effect [39]. In the Coulomb blockade
regime, transport is impeded by electrostatic repulsion within
a region that confines charge carriers. If the bias potential
eVb is larger than the charging energy Ec = e2/C� , where C�

is the total capacitance of the charge island, the Coulomb
blockade is lifted [40]. Due to the similarity in magnitude
between the AC lock-in excitation (100 µV root mean square)
and the step size in bias and gate voltage, the sharp features
of the Coulomb diamonds appear blurred. Nevertheless, we
can extract the bias voltage (Vb) required to lift the blockade,
which is eVb ≈ ±0.31 meV, as indicated by the dashed lines
in Fig. 3(b).

The spacing between two Coulomb resonances on the
gate-voltage axis is determined by two energy scales: the elec-
trostatic charging energy and the quantum level spacing. The
remarkable regularity of the measured Coulomb oscillations
(Fig. 2) suggests that the charging energy dominates over the
quantum level spacing. Therefore, the distance �Vg between
the Coulomb resonances is given by �Vg = e/C, where C
represents the capacitance between the charge island and the
graphite back gate [40,41]. From Fig. 3 we extract a period-
icity of the oscillations e�Vg ≈ 0.61 meV. From this analysis
we can conclude that C ≈ C�/2, suggesting that half of the
total capacitance of the charge island arises from coupling to
charge carriers in the source/drain leads.

B. Magnetic field dependence of the oscillations

Next we explore the behavior of the Coulomb oscillations
under a perpendicular magnetic field B. We conduct mea-
surements by sweeping the gate voltage in a narrow window
while incrementally increasing the magnetic field. We observe
a significant shift in Coulomb resonance positions [Fig. 4(a)],
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FIG. 4. Magnetic field dependence of the oscillations. (a) Gra-
dient of the voltage drop (measured in the four-point configuration)
as a function of gate voltage and magnetic field. (b) Power spectral
density of the oscillations in panel (a) as a function of magnetic field.

while the spacing between them appears unaffected by the
magnetic field. A fast Fourier transform (FFT) at each mag-
netic field reveals two distinct primary frequency components,
with higher harmonics arising from the nonsinusoidal shape
of the Coulomb resonance [Fig. 4(b)]. The power spectra’s
evolution with magnetic field displays a pronounced change
in peak amplitude: the frequency component near 1600 V−1

decreases, and the component near 1100 V−1 becomes more
prominent. As neither component fully disappears (which is
evidenced by the phase coherence of both frequency compo-
nents in the full magnetic field range, see Appendix A), they
must originate from two distinct confined regions within the
sample. The constant spacing further confirms that the charg-
ing energy dominates over the quantum level spacing in the
Coulomb blockade effect. If the quantum level spacing were
more significant, the single-particle energies would evolve
differently due to the lifting of spin- and valley degeneracy
with the magnetic field [42,43].

The position of the oscillations in Fig. 4(a) exhibits period-
icity in 1/B. This behavior, recently demonstrated in bilayer
graphene quantum dots [44], can be explained by a classi-

cal electrostatic shift induced by density-of-states oscillations
near the confined region. When the Fermi energy matches a
Landau level, the density of states in the surrounding area
increases, exerting a classical electrostatic force that shifts the
energy levels inside the confined regions. Since an extremum
in Fig. 4(a) signifies a constant electron density inside the
confined region, the change in charge density must occur
outside the confined region. Therefore these measurements
provide valuable information about the Fermi surface of the
carriers in the source/drain leads that couple to the charge
island [44], further discussed in Appendix A.

C. Origin of the Coulomb oscillations

The presence of Coulomb oscillations requires an energy
gap for charge confinement, such as a band gap, and spatial
variations in the position of this gap relative to the Fermi
level to create a confining potential for charge carriers. In
Supplemental Material S2 [31], we investigate the Coulomb
oscillations as a function of constriction width on device D1,
finding a clear trend of Coulomb oscillations vanishing with
decreasing sample width. This suggests that their origin lies
in bulk characteristics rather than edge effects. Furthermore,
the encapsulation of tBLG with hBN and the use of graphite
gating should strongly suppress the effects of charge impuri-
ties and other potential disorder [27]. Therefore we propose
that the confinements arise due to variations in the twist angle
across the sample geometry [6,9,14,19–21], leading to the
formation of twist-angle domains over the sample [22,23],
as illustrated in Fig. 5(a). Local variations in the twist angle
result in local changes in the energy gap offset relative to the
Fermi level (see the potential landscape on the right-hand side
of Fig. 5). Therefore, as the Fermi level approaches the band
gap, certain domains become insulating earlier than others
[Fig. 5(b)]. Close to the insulating state, individual domains
may remain conducting while the surrounding area has al-
ready become insulating [Fig. 5(c)]. This scenario leads to
individual charge islands and the observation of conductance
oscillations as a function of gate voltage.

However, this leaves the question of how these charge
islands are accessible in the transport experiment. An in-depth
analysis of the quantum oscillation frequency in Appendix A
reveals that the carriers tunneling in and out of the confine-
ment exhibit a complete absence of moiré-induced energy
gaps. This observation points toward an important role of the
boundaries between twist-angle domains. Within these bound-
aries, strong disorder may be present on the length scale of the
moiré superlattice. Consequently, locally, the moiré-induced
gap may vanish, leaving charge carriers which tunnel in and
out of the confinement. Since these boundaries are expected
to appear over the entire sample geometry, we propose that
they form a network that allows one to probe the local charge
confinement in electronic transport experiments.

IV. NEGATIVE ELECTRONIC COMPRESSIBILITY

Next, we study the spacing of the Coulomb oscillations
�Vg to determine the capacitance of the charge islands. Since
�Vg = e/C, the oscillation frequency fg can be expressed as
fg = C/e, directly proportional to the back-gate capacitance
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FIG. 5. Schematic illustration of twist-angle variations and
resulting band structure variations over the sample geometry. (a) Il-
lustration of the formation of twist-angle domains over the sample
geometry, where the local variation of the band structure is drawn on
the right-hand side. (b) The Fermi level increases, and in this example
the areas with a small twist angle will become insulating since the
Fermi level is in their band gap, while other areas remain conducting.
(c) Further increasing the Fermi level results in the formation of
confinements, where the energy levels are quantized.

of the charge island. To facilitate the analysis, we convert
conductance traces to the frequency domain by calculating
power spectra Pω = |F{dG/dVg}|2, where F represents the
Fourier transform (for more details, see Appendix D). The
resulting gate-voltage-dependent power spectra, presented in
Fig. 6(a) for device C1, reveal multiple distinct frequency
components near the insulating states (labeled as C1.1–C1.4),
each corresponding to a single charge island. While the oscil-
lation period remains regular within small gate voltage ranges
(<10 mV), a continuous frequency tuning is evident on larger
voltage scales. Across all tBLG devices in this study, we con-
sistently observe an increase in frequency (and capacitance)
as the Fermi level approaches the moiré-induced energy gap,
representing a central result of our work (additional examples
are presented in Supplemental Material S2, S4, S5, S7 [31]).

To elucidate the observed change in capacitance, we first
consider the geometric capacitance Cg of the charge is-
land within a parallel-plate capacitor model, given by Cg =
ε0εrA/d , where A is the area of the island, and d is the
distance between the tBLG and the graphite gate. Based on
the twist-angle domain model outlined in Sec. III C and Fig. 5,
we anticipate that A and Cg should remain constant as a func-
tion of gate voltage if the charge island consists of a single
domain. However, if the charge island comprises multiple
domains, we expect to observe a stepwise reduction of A
and the capacitance. Alternatively, if the confinement arises
from other types of potential disorder [45], we anticipate a

continuous reduction of the area A, as more of the surrounding
area should become insulating when the Fermi level enters the
band gap in the surrounding bulk. Given that these scenarios
are inconsistent with our observations, we can conclude that
the observed increase in capacitance is indicative of a negative
compressibility of the charge carriers.

A. Models for the negative capacitance contribution

To investigate the negative compressibility contributing to
the observed increase in capacitance, we consider two sce-
narios where negative compressibility can arise. First, we
consider the exchange interaction in an electron gas, where
the reduced likelihood of finding charge carriers with the same
spin at the same position creates an “exchange hole” due
to the opposite background charge [12,46,47]. The resulting
negative interaction energy Ei,X is given by

Ei,X = − e2An3/2

3
√

2π3/2ε0ε′
r

[(1 + ξ )3/2 + (1 − ξ )3/2], (2)

where ξ represents the polarization of magnetic moments,
ranging from 0 (unpolarized) to 1 (fully polarized). Secondly,
we consider the case of a Wigner crystal, where charge carri-
ers minimize their potential energy by forming a solid phase
with a triangular lattice [48]. The resulting negative interac-
tion energy Ei,W is given by [48–53]

Ei,W = −ηT e2An3/2

8πε0ε′
r

, (3)

where ηT = 3.92 is a numerical constant associated with the
triangular lattice.

In both scenarios the negative interaction energy Ei leads
to a negative (thermodynamic) electronic compressibility κ ,
expressed as κ−1 = dμ/dn = (1/A)(d2Ei/dn2), where μ is
the electrochemical potential. The negative compressibil-
ity contributes to a negative capacitance contribution Ci,
where C−1

i = κ−1/(Ae2), increasing the total capacitance C
beyond the geometric contribution Cg according to the rela-
tion [52,54–56]

C−1 = C−1
g + C−1

i = C−1
g + 1

A2e2

d2Ei

dn2
. (4)

Since the carrier density dependence of both interaction ener-
gies is the same [Eqs. (2) and (3)], we can use Eq. (4) to obtain
a general model for the capacitance, including the effect of
correlated itinerant charge carriers:

1

C
= d

ε0εrA
− S

ε0ε′
rA

√|n| , (5)

where the dimensionless parameter S characterizes the
strength of the correlation, which can be experimentally de-
termined through fitting. The expressions and values for S for
the different theoretical scenarios can be found in Table I.
To fit Eq. (5) to our data, we express the carrier density as
|n| = α|Vg − V0|, where Vg is the gate voltage, V0 is the gate
voltage where the itinerant charge-carrier density is zero, and
α is the lever arm. We determine α from the Landau levels
that emerge in magnetotransport (see Supplemental Material
S1 [31]).
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FIG. 6. Observation of negative compressibility and determining the interaction strength S. (a) Power spectrum Pω vs capacitance C and
gate voltage Vg on constriction C1. The conductance trace (right vertical axis) is included for easy comparison. (b) Zoom-in of Pω near the
band insulators at ν = −4. Equation (5) is fit to two frequency components. The inset is scaled vertically by a factor 5 to highlight component
C1.2. (c) Histogram of all the values of S determined from fitting and determining the mean of S.

B. Determining the strength of the interaction

Figure 6(b) shows the power spectrum of constriction C1
close to the band gap at ν = −4. We identify and determine
the maxima of two frequency components and fit Eq. (5) to
extract S. The resulting excellent fit demonstrates that the
n−1/2 dependence in our model provides a good description of
the gate-voltage-dependent frequency observed in the experi-
ments. We perform this analysis on 12 frequency components
from five different samples that are close to the magic angle:
constrictions C1, C2, and C3 on device D1, and devices D2
and D3. The obtained values of S are summarized in Fig. 6(c),
and the complete fitting results are presented in the Supple-
mental Material S3 [31]. The mean value of S is found to be

TABLE I. Expressions for the S in different correlated electron
models compared to the experimental value. The abbreviation WC
denotes the Wigner crystal scenario, while HF denotes the Hartree-
Fock model in the exchange scenario.

S Value

WC
3ηT

32π
0.12

HF, unpolarized
1

2
√

2π 3/2
0.064

HF, polarized
1.414

2
√

2π 3/2
0.090

Experiment − 0.84 ± 0.26

μ(S) = 0.84 with a standard deviation of σ (S) = 0.26. Three
outliers in Fig. 6(c) were excluded from calculating the mean
value due to relatively large uncertainty bounds resulting from
the fitting procedure.

C. Analysis with a fixed strength of the interaction

Next, we refine our model by fixing the parameter S to
the mean value of S = 0.84, i.e., we account for all our data
from devices close to the magic angle (the constrictions C1,
C2, C3 and devices D2, D3) and band-gap transitions using
one single, fixed value of S. This allows us to fit the subset
of frequency components that occur within a narrow gate
voltage range, expanding our dataset to include 18 frequency
components. Note that in this refined model, both the vertical
offset and steepness of the curve are solely determined by the
size of the confinement A, while V0 determines the horizontal
position. The fitting results are presented in Fig. 7, where
the vertical axis represents the inverse capacitance 1/C, and
the horizontal axis represents the average distance between
the charge carriers a = α

√|V − V0|. Each frequency compo-
nent is labeled using the format “xx.y,” where “xx” is the
constriction or device number, and “y” is the number of the
frequency component. According to Eq. (5), the resulting
maxima should fall along the straight line determined by the
fit. Remarkably, using a fixed value of S provides excellent
fits to all the data, regardless of the filling factor or the band
where the frequency component is observed. The remaining
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FIG. 7. Maxima in the power spectrum used to fit Eq. (5), plotted with 1/C on the vertical axes and the average distance between carriers
1/

√
n = a on the horizontal axes such that Eq. (5) becomes a straight line. The fits to each frequency component are made with a fixed value

of S = 0.84. The frequency components are divided into panels such that (a) shows components found near ν = ±4, on the side of the flat
band (see the simplified band structure in the inset), (b) shows components found near ν = ±4, on the side of the remote band, and (c) shows
frequency components which are found near fractional fillings of the superlattice.

plots of the frequency components, including the fits and the
fitted values of A and V0, are presented in the Supplemental
Material S3 [31].

It is noteworthy that we also find periodic Coulomb oscilla-
tions that are well described by Eq. (5) close to the insulating
states that form at fractional superlattice fillings [Fig. 7(c)].
These include components D2.4 found near ν = 2, D3.2 near
ν = −2, and D3.3 near ν = 3. The latter findings clearly
demonstrate that a single-particle band gap is not necessary
for confined regions to arise in the sample; instead, the charge
gap arising from the correlated insulating states is sufficient.
The fact that they are well described by Eq. (5), assuming a
zero itinerant charge-carrier density at V0 in the partially filled
band, is also in line with the opening of a correlation-induced
energy gap near the integer fillings of the superlattice.

D. Size and twist angle of the charge islands

Within this section we delve deeper into the results of our
modeling and fitting analysis to evaluate their alignment with
the scenario we proposed in Sec. III involving twist-angle
domains. By comparing V0 to the voltage where we pinpoint
the center of the band gap in the bulk, we can estimate the
deviation of the twist angle. We do this for constriction C1,
and find that components C1.1, C1.2, C1.3, C1.4 deviate
−0.023◦, 0.016◦, 0.011◦, and −0.003◦, respectively, from the

bulk value of 1.022◦. These twist-angle variations are in line
with observations in the literature [23]. This shows that minute
twist-angle variations of only a few percent from the average
bulk value suffice to produce the confinements observed in
this work. Figure 8 displays the empirical cumulative distribu-
tion function (CDF) of the sizes (

√
A) of the 18 charge islands

extracted from our fits on all frequency components. These
sizes are consistent with the dimensions of our samples and
similar to the experimental twist-angle maps obtained by Uri
et al. [23]. A notable difference is that we find no substantially
smaller (

√
A < 125 nm) or larger (

√
A > 425 nm) areas in our

experiments. We note that small areas are usually embedded
into a larger twist-angle domain that exhibits more uniformity,
causing twist-angle boundaries that can couple to the charge
island to be absent [23]. On the other hand, large domains
are less likely to form a detectable charge island, since the
large circumference makes it less probable that the entire
surrounding region is insulating at the same time. Considering
these factors, our size distribution aligns reasonably well with
the literature, validating our model and the obtained value of
S ≈ 0.84.

V. NATURE OF THE CORRELATED STATE

Our work provides compelling evidence for a negative
capacitance contribution within confined regions of tBLG.
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FIG. 8. Empirical cumulative distribution function (CDF) of the
size of the confinements

√
A compared to the sizes of twist-angle

domains estimated from the results of Uri et al. [23]. Insert shows a
schematic of the confinements and the “leads” along the twist-angle
boundaries where transport is thought to occur.

However, the nature of the correlated state remains uncertain.
The analysis has established the 1/

√|n| dependence of the
inverse capacitance, consistent with both an exchange con-
tribution or a Wigner crystal phase. However, the value of
S ≈ 0.84 is significantly larger than the expectation for both
the Wigner and exchange scenarios (Table I). Nevertheless,
several experimental observations may help clarify the nature
of the correlated state:

(1) The observation of regular Coulomb oscillations sug-
gests that the spin- or valley degree of freedom is not
significant for the addition energy in the confined region.

(2) Substantial changes in the polarization of magnetic
moments with magnetic field, including the disappearance of
correlated insulating phases at high magnetic fields (see Sup-
plemental Material S1 [31]), indicate that the Zeeman energy
exceeds the exchange-induced energy gap. At a magnetic field
of 9 T, the Zeeman energy in the order of 1 meV should
dominate over other spin contributions, leading to a fully
polarized electron gas. Consequently, if the electron gas is not
polarized at zero field, the change in polarization between 0
and 9 T would lead to a frequency increase. For example, we
would expect a frequency increase of 72% as ξ → 1 for the
1100 V−1 component in Fig. 4(b). Instead, an indication of a
change in the Coulomb oscillation frequency is observed in
none of our measurements; additional examples are included
in the Supplemental Material S9 [31].

(3) If the charge carriers are fully out-of-plane polarized
at B = 0 T, no change in the Coulomb oscillation frequency
is anticipated in the exchange scenario. However, no mani-
festation of such ferromagnetism such as an anomalous Hall
effect [57] is observed, nor do we observe hysteresis when
sweeping the magnetic field from –9 to 9 T and vice versa
(see Supplemental Material S8 [31]).

(4) The carrier density dependence of the polarization
of magnetic moments in the fluid phase is expected to be

strong [14], potentially leading to significant deviations from
the observed 1/

√
n dependence of the inverse capacitance in

the exchange scenario.
(5) Describing frequency components with the same value

of S regardless of whether they are found near a correlated or
band insulator is unexpected in the case of exchange contri-
butions, according to theoretical simulations [58], because the
spin/valley polarization varies for each energy gap that opens
in tBLG [14].

(6) Theoretical models that take short-range interactions
into account indicate that strong negative contributions to the
capacitance are not anticipated close to the band insulating
states at ν = ±4 [58].

The absence of clear signatures expected in the exchange
scenario and the consistent value of S across different bands
suggests that a Wigner crystal phase may provide a better
explanation for the observed negative compressibility. The
exchange energy in a Wigner crystal follows a scaling law
of the form EX ∝ exp −γ

√
rs [59,60], where γ is of the or-

der 1. As a consequence, the interaction energy of a Wigner
crystal does not rely on the polarization ξ , providing an ex-
planation for the six observations listed above. The higher
value of S than expected for a Wigner crystal may be related
to the average distance a being in the same order to the
moiré wavelength λ, causing a fraction of charge carriers to
obtain even lower energy states within the nonuniform po-
tential landscape provided by the moiré lattice. Importantly,
as shown in Appendix B, this effect also leads to the same
1/C ∝ 1/

√
n dependence, consistent with the experimental

findings. Further investigations, considering additional factors
and refinements to the model, may provide a more detailed
understanding of the presently observed correlated state in
tBLG.

VI. CONCLUSIONS

This study demonstrates a negative electronic compress-
ibility in confined regions of tBLG. The observed dependence
of the inverse capacitance on the charge-carrier density,
characterized by 1/C ∝ 1/

√
n, aligns with the presence of

strongly correlated itinerant charge carriers. The magnetic
field dependence and the similarity of the correlation strength
parameter S across different bands suggest a limited role
of exchange contributions, pointing towards Wigner crystal-
lization as a likely explanation for the observed negative
compressibility. These findings highlight the role of natu-
rally occurring electrostatic confinements in tBLG that enable
precise investigation of the ground-state energy of correlated
states in this material.

Our research reveals two distinct phenomena rooted in
the moiré physics of tBLG. The first phenomenon involves
electrostatic confinements arising from variations in the twist
angle. This effect hinges solely on the presence of moiré-
induced energy gaps, while the flatness of the band is not
important. Therefore, this phenomenon is not exclusive to
samples near the magic angle, as evidenced in tBLG samples
far from this angle (Supplemental Material S4, S6 [31]). The
second phenomenon is the manifestation of negative com-
pressibility within these confinements. In this case, the band
flattening in tBLG plays a crucial role, since rs is required
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to be large. This gains support from control experiments,
particularly one conducted on a sample where the twisted bi-
layer has relaxed. In this case we observe the absence of moiré
minigaps, while the charging spectrum of a confinement in
this sample shows no negative compressibility (Supplemental
Material S6 [31]). Furthermore, we extend our investigation
to samples with twist angles significantly deviating from the
magic angle (θ ∼ 0.65◦ in Supplemental Material S5 and
θ > 1.29◦ in Supplemental Material S7 [31]). While these
samples do exhibit an increase in frequency as the Fermi level
approaches an energy gap, their evolution with gate voltage
deviates from the trend specified in Eq. (5). In these instances,
the parameter rs may not be sufficiently large to induce neg-
ative compressibility in the full gate voltage range where the
confinement is formed, a factor that can be attributed to the
reduced band flattening compared to the magic angle.

While it is commonly believed that correlated effects are
not significant in the remote bands due to the absence of
correlated insulating states [61], our observation of nega-
tive compressibility in these bands [Fig. 7(b)] challenges
this notion. An analysis of the band structure, including a
Hartree-Fock correction, suggests that the observed negative
compressibility may be attributed to a significant correlation-
induced flattening of the band when the filling factor exceeds
|ν| = 4 (see Appendix C).

The size of a typical charge island, as illustrated in Fig. 8,
is notably larger than the moiré wavelength (λ = 13.8 nm
for a 1.02◦ twist angle). This suggests that the periodicity
of the moiré potential remains a crucial factor within the
charge island, and the negative compressibility is not solely
a consequence of electrostatic confinement. Our experimental
evidence strongly supports this idea, revealing a significant
suppression of the kinetic energies of carriers within the con-
finement compared to single-layer or Bernal-stacked bilayer
graphene. In essence, we have demonstrated how moiré-
induced confinement can offer quantitative insights into the
interaction energies of correlated effects in tBLG by ac-
curately measuring the local charging energy. This is the
principal achievement of our work and has significant impli-
cations for understanding and manipulating correlated phases
in moiré materials.

The source data and MATLAB code underlying this paper
are available at Ref. [62] upon publication of this manuscript.
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APPENDIX A: FERMI SURFACE AREA EXTRACTED
FROM THE QUANTUM OSCILLATIONS

The electrostatically induced shifts in the position of the
Coulomb resonances provide important clues about the trans-
port characteristics between the metal leads and the confined
regions. We plot the phase of the Coulomb oscillations (which
is proportional to the Coulomb resonance position) obtained
from the FFT analysis of the two prominent frequency com-
ponents [Fig. 4(b)] in Fig. 9(a). This reveals a quantum
oscillation that is periodic in 1/B, and the quantum oscillation
frequency can be extracted from an additional FFT analysis
of the phase [inset of Fig. 9(a)]. By monitoring the phase of
the oscillations at different gate voltages, we can extract the
quantum oscillation frequency and plot these as red squares
in Figs. 9(b) and 9(c). Since these quantum oscillations have
the same microscopic origin as the Shubnikov–de Haas (SdH)
oscillations observed in the sample’s bulk magnetoresistance
(see Supplemental Material S1 [31]), we also add the SdH fre-
quency as a comparison [blue dots in Fig. 9(b)]. The quantum
oscillation frequencies obtained from the Coulomb oscilla-
tions form a straight line that intersects the charge neutrality
point at zero magnetic field in Fig. 9(c). In contrast, the SdH
frequency intersects with fractional superlattice fillings at zero
magnetic field due to the Dirac revival effect in tBLG, which
reconstructs the Fermi surface area at fractional fillings [14].
We observe the same disparity in a second device, labeled D4,
which is presented in the Supplemental Material S7 [31]. At
higher gate voltages, we note that the lever arm of the gate
decreases, which explains why the quantum oscillation fre-
quency from the Coulomb oscillations exhibits a more gradual
slope [red dashed lines in Figs. 9(b) and 9(c)] compared to the
SdH frequency component emerging from the charge neutral-
ity point [blue lines in Fig. 9(b)].

The Onsager relation establishes a direct proportional-
ity between the frequency of quantum oscillations and the
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FIG. 9. (a) Phase of two prominent frequency components extracted from the fast Fourier transform in Fig. 4(b). (b) Quantum oscillation
frequency of the magnetoresistance oscillations (see Supplemental Material S1 [31]), compared to the quantum oscillations in the phase of the
Coulomb oscillations, as a function of gate voltage. (c) Zoom-in of the quantum oscillation frequency in the case of the Coulomb oscillation.

extremal Fermi surface area in momentum space [64]. In prox-
imity to an energy gap, it logically follows that both the Fermi
surface area should approach 0 nm−2 and the frequency of
quantum oscillations approaches 0 T. Therefore, the fact that
the quantum oscillation frequency forms a linear relationship
emanating from the charge neutrality point (CNP) is evidence
for the absence of moiré-induced energy gaps for the charge
carriers that are involved in the tunneling processes in and out
of the charge islands.

APPENDIX B: GROUND-STATE ENERGY OF A WIGNER
CRYSTAL IN A MOIRÉ SUPERLATTICE

In this Appendix we show that a periodic moiré poten-
tial may lead to a lowering of the ground-state energy of a
Wigner crystal. Due to the periodic moiré potential, a frac-
tion of charge carriers in the triangular Wigner lattice can
obtain an even lower energy within the potential, lowering the
ground-state energy even further than compared to a uniform
background. If we assume a potential with minima �E , we
can write this additional interaction energy contribution as

Emoiré = −An�ER, (B1)

where R represents the effective fraction of charge carriers
that are in the optimal position to profit from the moiré po-
tential. For simplicity, we assume that R = amoiré/a (where
amoiré is the size of the moiré supercell) such that R = 1 if
amoiré = a. Since 1/a = √

n, the moiré energy contribution
becomes

Emoiré = −An3/2�Eamoiré, (B2)

which leads to an additional capacitance contribution,

1

Cmoiré
= −3�Eamoiré

4e2A
√

n
, (B3)

with the same dependency on area and density as the interac-
tion energy for a uniform background.

To estimate how much the ground-state energy is low-
ered, we compare to a tight-binding model of the moiré
superstructure [65]. For small twist angles, the local rota-
tion between unit cells in the top and bottom layers can be

neglected in favor of only considering a rigid displacement
vector d(r) between the unrotated top and bottom layer. In
the small angle approximation, d(r) can then be explicitly
written as d(r) ≈ −θ ẑ × r. All displacements d(r) lie within
the unit cell of the pristine lattice. Consequently, one can
map each local configuration at a point r of the moiré su-
percell to a rigid displacement d(r) in so-called configuration
space mapped on the unit cell of the pristine lattice. Fol-
lowing the model we have outlined in [65], we map out
tight-binding parametrizations in configuration space using
a 10 × 10 grid in configuration space. We use a continuum
elasticity model first suggested by Nam and Koshino [66] to
calculate the effects of lattice reconstruction in tBLG. From
our parametrization we extract the variations in on-site poten-
tial at a twist angle of ≈1 degrees, yielding �E ≈ 14 meV
and amoiré = 14 nm. From this analysis we find that the new
correlation strength parameter S = 0.16, or an increase of
33% compared to the Wigner crystal with a uniform charge
background. This result gives an idea of the order of mag-
nitude of the correction but is likely an underestimation of
the correction for two reasons. First, the interaction with the
positive background is not included and will also result in
an additional contribution due to the nonuniform charges of
the underlying lattice. Second, we do not include effects of
elasticity in the Wigner crystal; the Wigner lattice will likely
deform to ensure a higher fraction is in the optimal position.

APPENDIX C: SUPPRESSION OF KINETIC ENERGY IN
REMOTE BANDS

The atomic and electronic structure of tBLG is captured
within an atomistic modeling approach [3,67,68] that relies
on commensurate moiré unit cells with twist angle

cos θ = n2 + 4nm + m2

2(n2 + nm + m2)
, (C1)

where m, n ∈ N. For the simulations, we use (n, m) =
(32, 33), corresponding to a twist angle of θ = 1.018◦ with
N = 12 676 carbon atoms per moiré unit cell. The positions
of the carbon atoms are relaxed using classical force fields
as outlined in Ref. [69]. The electronic structure is modeled
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FIG. 10. Band structure of 1.018◦ tBLG in the presence of long-
ranged electron-electron interactions. Hartree corrections render the
band structure of tBLG filling dependent, which leads to a pinning of
the van Hove singularity to the Fermi energy EF and additional band
flattening at the tip of the remote valence and conduction bands.

by a Slater-Koster tight-binding model of the carbon pz or-
bitals using the parametrization adopted in Ref. [67]. Near the
magic angle, long-ranged Coulomb interactions were shown
to significantly renormalize the single-particle flat bands of
tBLG [70–73] if the system is filled with electrons (holes),
which can be captured within a self-consistent Hartree theory.
Reference [71] demonstrated that within atomistic modeling
approaches, the Hartree potential can effectively be parame-
terized by an on-site term of the form

V H (r) = V0ν
∑

j

cos(G j · r), (C2)

where ν denotes the electronic filling ν = −4 . . . 4 of the flat
bands with respect to charge neutrality (ν = 0), and G j are the
three nonequivalent moiré reciprocal lattice vectors that differ
by rotations around 120◦. The value of the Hartree potential
V0 was found to be V0 = 5 meV for the unscreened Coulomb
interaction [71,74].

The (filling-dependent) band structure of 1.018◦ tBLG
along the high-symmetry path K − � − M − K ′ is shown
in Fig. 10. At half-filling, the systems feature a set of flat
bands that are well separated from the remote valence and
conduction bands by a well-defined energy gap. Filling the
flat bands of tBLG with electrons (upper panel) or holes
(lower panel) shifts the energies at the K, K ′ points to higher
(lower) energies due to the Hartree potential. Therefore the
flattest sections of the bands follow the Fermi energy EF ,

TABLE II. Thicknesses of the flakes used in each sample. Each
thickness was determined by measuring the step height at the edge
of the flake after fabrication in an atomic force microscope. The
uncertainty on each thickness is 1 nm.

Sample Bottom hBN (nm) Top hBN (nm) Graphite (nm)

D1 29 32 8
D2 32 24 5
D3 32 26 4
D4 35 37 10
D5 31 22 2
D6 22 22 3

which leads to a pinning of the van Hove singularities [73].
Furthermore, the Hartree potential affects the flatness of the
tip of the valence (conduction) band manifold as indicated by
the dashed line at filling factor ν = ±4.1. This effect reduces
the kinetic energy of charge carriers at the edge of the remote
band, which may account for the prominent observation of a
negative compressibility in this regime.

APPENDIX D: METHODS

1. Samples

Exfoliation: The flakes used for fabrication were me-
chanically exfoliated onto a silicon wafer with 90-nm-
thick, thermally grown silicon dioxide [75]. Graphite flakes
(“graphenium”) where obtained from NGS Naturgraphit
GmbH.

Stacking: Device D1 was fabricated using the stack-and-
tear method [5]. For device D1 we used polyvinyl alcohol
(PVA) and polydimethylsiloxane (PDMS), and the stacking
of the flakes was performed using the parameters described
in Ref. [21]. For samples D2, D3, D5, and D6 we used a
polybisphenol A carbonate (PC) stamp on top of a PDMS
stamp [28]. In addition, the single-layer graphene flakes of
these devices were precut using a laser. Device D4 was pro-
duced using a PC stamp on PDMS [28]. For each sample,
the thicknesses of the flakes are measured in tapping-mode
atomic force microscopy (AFM), and the results are shown in
Table II.

Laser cutting: Laser cutting was performed using a focused
supercontinuum laser coupled into an optical microscope
setup. The output of the laser was spectrally filtered to contain
wavelengths of 400–550 nm, which maximizes the ratio of
absorption in graphene compared to the absorption in Si for
the used oxide thickness of 90 nm. The pulse duration on
the sample is estimated to be few tens of picoseconds. The
laser has a maximum repetition rate of 20 kHz but is typically
operated at 4 kHz. The power can be varied using absorption
filters, with a higher power increasing the width of the cut.
Typical pulse energies used for laser cutting are 4 nJ, focused
down to a submicrometer spot size, equivalent to a maximum
intensity of approximately 2 × 1010 W/cm2.

Fabrication: For fabrication we used a 50K/950K poly-
methyl methacrylate (PMMA) double layer as our resist
system (Allresist 631.09 and 679.04 both spin-coated at
4000 rpm and baked at 150◦ for 3 min per layer, with
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a mixture of 3 parts isopropylalcohol and 1 part water as
a developer) and e-beam lithography (Vistec EBPG5200+,
100 keV, clearance dose of 500 µC/cm2). The Hall-bar device
was fabricated by first patterning holes into the top hBN layer.
These holes were etched in a reactive ion etcher by first using
a short oxygen plasma step (Oxford PL 100 / ICP at 20 W
RF power, 40 sccm, as low pressure as possible ∼8 µbar for
∼5 s) to remove contamination, followed by a CF4 plasma
etch (10 W, 40 sccm, low pressure), which significantly slows
down at the graphene layer [29]. The duration of the CF4

plasma step was adjusted to the top hBN thickness to prevent
overetching into the bottom hBN layer. This was followed by
another brief oxygen plasma step to remove the graphene,
after which chrome and gold were deposited using e-beam
evaporation, followed by a liftoff in warm acetone (without
sonication). This results in a clean, one-dimensional edge con-
tact to the tBLG [28]. Subsequently, the Cr/Au metal contacts
and bond pads were patterned and evaporated using the same
lift-off process.

For device D4 the fabrication was performed using a two-
step process, where first the device geometry was structured
using the CF4 plasma and the electrodes were deposited in the
second step. The contact resistances in this process are signif-
icantly higher than in the other devices, and this fabrication
approach was was not pursued further.

2. Twist-angle determination

Device D1: To determine the twist angle in the 750-nm
constriction (C1), we extract the superlattice filling ns =
2.43 × 1012 ± 1012 cm−2 from the Landau fan (Supplemental
Material S1 [31]) and use the equation ns = 8θ2/

√
3a2

l [8]
(where al = 0.246 nm is the lattice constant of graphene) to
find the twist angle in θ = 1.022◦. For the remaining constric-
tions, we used the position of the band insulating features to
determine the twist angle and find twist angles of 1.07◦, 0.97◦,
and 0.91◦ for constrictions C2, C3, and C4, respectively.

Device D2: A 1 µm-wide Hall-bar geometry with a twist
angle estimated from the Landau fan to be 0.97◦ comprise
device D2. Additionally, we found an additional alignment
between one of the graphene layers and the hBN, with a
twist angle of ∼0.7◦. We found no effects from this addi-
tional alignment on the charging spectra studied in this work.
An optical image of this device, the conductance traces, and
power spectra of this device are presented in the Supplemental
Material S4 [31].

Device D3: A similar 1-µm-wide Hall-bar geometry with-
out constrictions, device D3 broke down during the Landau
fan measurement. Therefore we could only extract the lever
arm of the back gate but not the position of the additional
Landau fan. From the position of the insulating states, we
are nevertheless able to estimate the twist angle to be 1.14◦.
An optical image of this device, the conductance traces, and
power spectra of this device are also presented in the Supple-
mental Material S4 [31].

Device D4: Due to high contact resistances, it was not
possible to extract the lever arm or the twist angle from
magnetotransport experiments. Therefore, the twist angle was
estimated using a parallel-plate capacitor model and the po-
sition of the insulating states. We estimate the twist angle to

vary between 1.29◦ and 1.45◦ on this sample. Sample imaging
and measurement results are presented in the Supplemental
Material S7 [31].

Device D5: On this device we did not obtain a clear ad-
ditional Landau fan, but the lever arm could be estimated
from the charge neutrality point. The twist angle was es-
timated from the position of high-resistance features found
in transport measurements, which occur at ν = ±8 in the
low-twist-angle regime of this device [8]. We find a twist
angle of 0.65◦, and the results on this device are presented
in Supplemental Material S5 [31].

Device D6: This device incorporated an additional WSe2

(HQ graphene) into the stack which was picked up after
picking up the tBLG. The tBLG graphene was relaxed back
to near-Bernal stacking, since no evidence of moiré-induced
satellite peaks was found. This device serves as a control sam-
ple, which is presented in the Supplemental Material S6 [31].

3. Experimental setup

Electrical characterization of all samples was performed
in a 3He / 4He wet dilution refrigerator (Oxford Kelvi-
noxMX400) with a base temperature of 32.5 mK. All
electrical wiring was directly connected to the sample with
only a 1 k� preresistor in the BNC connector box used to
connect to the instruments. The homebuilt amplifiers and IV
converters were each placed in a shielded box outside the
refrigerator. The total resistance between the BNC connector
box to the sample holder was 1.24 k� for each line at room
temperature. An out-of-plane magnetic field was applied with
a superconducting magnet mounted in the liquid helium bath.
We located the sample inside the coil of the magnet while
avoiding magnetic materials in the insert to ensure a uniform
magnetic field.

4. Data aquisition and analysis

Measurement of temperature-dependent resistance. The
temperature-dependent resistance in Figs. 1(d) and 1(e) was
measured using a homebuilt IV converter with a gain of
10 × 106 connected to two side contacts. This IV converter
also applied a symmetric AC bias voltage to these contacts
with an amplitude of 100 µV (rms) through a 1/10 000 voltage
divider. The excitation signal was supplied by a Stanford
SR830 lock-in amplifier operating at 69.6 Hz, and this appa-
ratus also detected the signal from the IV converter. On the
opposite side-contact pair, a differential amplifier with a gain
of 1000 is connected to measure the voltage drop, and this
signal is measured with a second lock-in amplifier. A voltage
source (Yokogawa 7651) was connected to the gate through a
1-M� resistor. The measurement was performed during the
condensing of the mixture, circulating of the mixture and
cooldown to base temperature of the dilution refrigerator.
During this procedure, the gate voltage was constantly swept,
and at each data point the temperature on the mixing chamber
plate is recorded. During the cooldown procedure, the mixing
chamber rapidly cools once the condensed mixture enters;
therefore reliable measurements of the temperature between
∼2.5 K and ∼4.5 K were not possible. The resulting data is
plotted on a meshed grid with interpolation using the MATLAB

“pcolor” function.
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Two-point conductance measurements. The conductance
traces used to construct the power spectra are obtained by a
two-point measurement of the conductance using the home-
built IV converter and an AC bias of 100 µV rms at a frequency
of 69.6 Hz. The voltage source for the gate (Yokogawa 7651)
was set to a range of 10 V, giving a resolution of 100 µV, and
this is supplied to the system through a twisted-shielded cable
with a low-pass filter with a cut-off frequency of 1.6 kHz
to reduce output noise. The resolution of 100 µV is also the
step size at which the gate voltage is swept, resulting in a
Nyquist frequency of 5000 V−1. For the bias spectroscopy
data in Fig. 3, an additional voltage source was used to apply
a symmetric DC bias.

Determination of the power spectra. To calculate the power
spectra Pω, we first perform a windowed autocorrelation on
the gradient of the conductance with the MATLAB function
“corrgram” [76]. We use a window of 200 samples, with
an maximum lag of 200 points and overlap between the
windows of 90%. Note that with this window we can only
resolve frequency components fg > 50 V−1. We then cal-
culate the Fourier transform of the autocorrelation function
using the MATLABimplementation “ezfft” [77]. By the con-
volution theorem, this approach is equivalent to calculating
|F{dG/dVg}|2.

Fitting to the power spectra. To fit Eq. (5) to our data, we
find the maxima in the power spectra at each gate voltage. Due
to the limited frequency resolution, this can lead to multiple

gate voltage values having the same capacitance in Fig. 7,
but this is not a problem for the least-squares fitting proce-
dure. We then load this into the curve-fitting tool “cftool” in
MATLAB. We then manually select the correct maxima that
belong to a single frequency component, and fit Eq. (5). cftool
automatically calculates the 95% confidence interval, which
defines the error in the fitting results presented in this work.
We find the hBN thickness d from AFM scanning the stack
before fabrication; their values are shown in Table II under the
column: “bottom hBN.” The lever arm α is extracted during
the extraction of the twist angle, as described above.

Magnetic field dependence. For Fig. 4(b) the fast Fourier
transform was calculated at each magnetic field using the
standard FFT implementation in MATLAB. This fast Fourier
transform gives a complex number with which the angle can
be calculated to obtain the phase. The resulting phase was
unwrapped to obtain the continuous signal shown in Fig. 9(a).
To find the frequency of the phase in 1/B as shown in the
insert of Fig. 9(a), the phase signal was interpolated using a
spline interpolation on a grid that is equally spaced in 1/B.
After this the FFT can be calculated to find the quantum
oscillation frequency. The resulting frequencies are shown as
red squares in Figs. 9(b) and 9(c). The same interpolation
approach is taken on the magnetoresistance data (presented in
Supplemental Material S1 [31]). After this, we find the max-
ima at each B field and manually select the correct frequency
components, which are shown as blue dots in Fig. 9(b).
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