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In-plane magnetic field driven conductance modulations in topological insulator kinks
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We present low-temperature magnetoconductance measurements on Bi1.5Sb0.5Te1.8Se1.2 kinks with ribbon-
shaped legs. The conductance displays a clear dependence on the in-plane magnetic field orientation. The
conductance modulation is consistent with orbital effect-driven trapping of the topological surface states on
different side facets of the legs of the kink, which affects their transmission across the kink. This magnetic
field driven trapping and conductance pattern can be explained with a semiclassical picture and is supported by
quantum transport simulations. The interpretation is corroborated by varying the angle of the kink and analyzing
the temperature dependence of the observed magnetoconductance pattern, indicating the importance of phase
coherence along the cross-section perimeter of the kink legs.
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I. INTRODUCTION

Three-dimensional topological insulators (3D TIs) are a
class of materials in which strong spin-orbit coupling leads
to a band inversion in the bulk electronic band structure [1,2].
This in turn causes the appearance of gapless surface states
protected by time-reversal symmetry. Topological insulators
are particularly interesting for applications in topological
quantum computer architectures [3–7]. These circuits typi-
cally consist of networks of topological insulator nanoribbons
combined with superconducting electrodes [8–14]. In this
context, the electronic transport behavior of nanoribbons as
well as more complex structures such as kinks and junctions
of nanoribbons is of high interest.

In nanoribbon structures, the existence of topological
surface states is revealed by magnetotransport measure-
ments [15–22]. Here, regular Aharonov-Bohm oscillations
are observed when an axial magnetic field is applied, due
to the presence of closed-loop surface states. The appear-
ance of Aharonov-Bohm oscillations also confirms that the
transport in the surface states is phase coherent with a phase-
coherence length of the order of a few-hundred nanometers
[17,18,21,22]. For three-dimensional topological insulators,
the surface transport is often accompanied by a transport
channel carried by bulk carriers due to intrinsic doping effects
[23,24]. In this respect, nanostructures offer a unique advan-
tage as their surface-to-volume ratio increases and the bulk
and surface conductance contributions can be disentangled
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in transport experiments. In 3D TI nanoribbon-based three-
terminal junctions, it has been experimentally shown that the
conductance can be steered by applying an in-plane magnetic
field [25]. This steering effect is attributed to the interplay
between the phase-coherent transport in topological surface
states and an orbital effect on the side facets of the nanoribbon.
This causes electrons in the surface states to be trapped on
the upper or lower surface of a nanoribbon, depending on the
relative orientation of each nanoribbon leg with respect to the
in-plane magnetic field.

Analogously to the effect of the in-plane field on the con-
ductance in three-terminal junctions, the theoretical models
also predict a π -periodic change in the conductance of a
3D TI nanoribbon-based kink under rotation of an in-plane
magnetic field [26]. To address this issue, we have studied the
low-temperature magnetotransport properties of quadternary
Bi1.5Sb0.5Te1.8Se1.2 kinks with different angles between the
input and output terminal. Quadternary materials have been
show to suppress the bulk conductivity in previous studies
[27–29]. The devices were fabricated using a selective-area
molecular beam epitaxy (MBE) approach. The modulation
of the conductance was then measured as a function of the
angle of the applied in-plane magnetic field with respect to
the orientation of the device. The experimental results are
interpreted on the basis of a semiclassical theoretical model
and corresponding simulations [25].

II. METHODS

The Bi1.5Sb0.5Te1.8Se1.2 layer was grown by molecular
beam epitaxy; a selective-area growth (SAE) approach was
employed to yield the desired structures [20,30,31]. The sam-
ples are prepared in a three-step process. First, the substrate is
prepared with a 5-nm-thick thermal SiO2 layer and a 20-nm-
thick plasma-enhanced chemical vapor deposition (PECVD)
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FIG. 1. (a) Schematic of the 90◦ kink. The red arrow indicates
the orientation of the magnetic field with respect to the kink struc-
ture. The magnetic field angle θB is set to θB = 3π/4, which is the
position for minimum transmission in the kink structure. The green
surfaces on the legs of the kink indicate the trapping on opposite
sides (reducing the transmission) of the surface-state channels due
to the orbital effect of the external magnetic field. (b) Scanning
electron micrograph of the 90◦ kink devices. Note that the spare
electrodes (in gray) were kept as open contacts in order to avoid any
interference. The red annotations indicate the measurement setup.
(c) Corresponding schematic of the 120◦ kink, with the red arrow
indicating the magnetic field angle of θB = 5π/6. (d) Scanning elec-
tron micrograph of the 120◦ kink devices.

Si3N4 layer to form the selective-area growth mask. The
shape of the SAE trench is defined using reactive ion etching
(CHF3/O2) and hydrofluoric acid wet etching after an electron
beam lithography step. This is done in order to reveal the
Si(111) surface as well as to passivate it before the growth. To
prevent oxidation, the film is capped using a 5-nm-thick AlOx

layer. The kink structure is contacted with 70 nm Ti contacts
via ex situ electron beam evaporation. Structures with a kink
angle of 90 ◦ and 120 ◦ are investigated, which are part of
a cross and symmetric three-terminal structure, respectively.
Figures 1(a) and 1(c) show the corresponding schematic il-
lustration of the kink structures, together with the definitions
of the kink θK and magnetic field angles θB, respectively. In
Figs. 1(b) and 1(d), scanning electron beam micrographs of
the 90 ◦ and the 120 ◦ kink structure are shown.

From Hall measurements at 1.5 K, we determined a car-
rier concentration of 2.3 × 1013 cm−2 and a mobility of
155 cm2/V s (see Supplementary Note 1 of Ref. [32]). These
properties are attributed to the coexistence of diffusive bulk-
and quasiballistic surface states in the material [33]. Transport
in the micrometer-sized Hall devices is dominated by the
diffusive bulk states. The Ohmic contacts are formed by a
70-nm-thick Ti layer. Before deposition of the metal layer,
the AlOx capping in the contact areas was removed by wet
chemical etching and argon sputtering.

The measurements were carried out in a variable tempera-
ture insert with a base temperature of 1.5 K. The conductance
of the device was measured using a standard four-probe lock-
in setup [cf. Figs. 1(b) and 1(d)]. The rotation of the in-plane

magnetic field with respect to the kink structure was realized
by employing a mechanically rotatable sample rod, where the
sample was rotated by π in 19 steps. After each step, the
magnetic field was swept from −12 T to 12 T in order to
realize an effective rotation of the magnetic field of 2π .

The simulations of the conductance in the kink struc-
tures are based on a semiclassical theoretical model that is
explained in detail in Ref. [25]. We consider a subband-
quantized Dirac surface-state spectrum that is appropriate for
the cross-section geometry of the 3D TI kink legs and a Dirac
point that is separated from the Fermi level by 0.1 eV.

III. MAGNETOCONDUCTANCE

Figure 2(a) shows the measured conductance in units of
G0 of the 90 ◦ kink as a function of magnetic field, with
G0 = 2e2/h, where e is the electron charge and h is Planck’s
constant. The measurements were taken at a temperature of
1.5 K. Each color-coded line represents a single measurement
between −12 T and 12 T for a different in-plane magnetic
field angle ranging from 0 to π . The definition of the in-plane
magnetic field angle θB with respect to the sample is given in
Fig. 1(a).

All of the magnetoconductance traces shown in Fig. 2(a)
exhibit several prominent features. The conductance peak at
zero magnetic field can be attributed to the weak antilocal-
ization effect [34]. This peak structure has previously been
observed in topological insulator nanoribbon structures [20].
It is due to electron interference after scattering on impurities
in combination with the strong spin-orbit coupling of the
material. The small fluctuations of the conductance over larger
magnetic field intervals represent universal conductance fluc-
tuations [35]. These are caused by the interference of a finite
number of trajectories due to the small dimensions of the
sample. Apart from these two features observed in each curve,
the color-coded magnetic field sweeps also reveal a change in
resistance with a change in the magnetic field angle θB. In or-
der to analyzed the dependence of the magnetoconductance on
the magnetic field orientation in detail, the data are plotted in
the style of a color map as a function of the absolute magnetic
field |B| and the magnetic field angle θB. Here, we consider
only the effective conductance change �G/G0 defined by

�G/G0 = [
G(B, θB) − 〈G(B, θB)〉θB

]
/G0, (1)

which is the normalized difference between the conductance
at a certain magnetic field and in-plane field angle, G(B, θB),
and the average conductance at constant magnetic field av-
eraged over all angles, 〈G(B, θB)〉θB . Figure 2(b) shows the
effective conductance for the 90 ◦ kink. A clear π -periodic
variation of the conductance with a variation of the in-plane
magnetic field angle is visible. The areas of maximum and
minimum conductance are centered around the values of
−π/4, 3π/4 and π/4, −3π/4, respectively. The θB = 3π/4
field orientation for the minimum conductance case is indi-
cated in Fig. 1(a). In order to demonstrate that the change
in magnetoconductance is not a result of an angular de-
pendence of universal conductance fluctuations (UCFs), a
detailed analysis of the root-mean-square value of the con-
ductance fluctuations, δGRMS , is provided in the Supplemental
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FIG. 2. Conductance of the 90 ◦ and 120 ◦ kink structures at 1.5 K. (a) Conductance of the 90 ◦ kink in units of G0 = 2e2/h as a function
of the in-plane magnetic field. The single lines are color coded, where the color represents the angle under which the magnetic field is applied
with respect to the device. (b) Color map of the effective conductance �G/G0 [see Eq. (1)] of the 90 ◦ kink as a function of magnetic field angle
θB and absolute magnetic field |B|. (c) Calculated normalized transmission T/Tmax as a function of absolute magnetic field |B| and magnetic
field angle θB. (d)–(f) Corresponding plots for the 120 ◦ kink.

Material [36]. We refer the reader to Ref. [25] for an analysis
of the angle dependence of UCFs in a similar material system.

In the following, a kink with a larger angle between the
input and output terminals, i.e., a 120 ◦ kink, is analyzed. The
corresponding normalized magnetoconductance as a function
of magnetic field for in-plane angles between 0 and π is shown
in Fig. 2(d). Similar to the conductance of the 90 ◦ kink, a
clear modulation of the conductance with the variation of
the in-plane field angle can be seen. Analogous to the first
device, these data are converted to the effective conductance
change using Eq. (1). Figure 2(e) shows the effective mag-
netoconductance of the 120 ◦ kink. A shift of the position of
the minimum and maximum conductance compared to mea-
surements shown in Fig. 2(b) for the 90 ◦ kink is observed.
The experimentally observed modulations match well with the
theoretically expected positions for maximum and minimum
conductance, i.e., −π/6, 5π/6 and −2π/3, π/3, respectively.
The positions are derived from trivial geometrical considera-
tions regarding the aligned and transverse orientation of the
magnetic field with respect to the kink angle.

To explain the origin of the angle-modulated conductance
pattern, we consider the impact of the orbital effect on the
topological surface states in a semiclassical picture [25], anal-
ogous to the treatment of the steering effect in a topological
insulator-based T junction in Ref. [26]. On the top and bottom
facets of the ribbon, the Lorentz force points perpendicular
to the surface and can be neglected for surface-state motion
that is bound to the surface of the ribbon. On the side facets
(assumed to be perpendicular to the plane here), however, the
Lorentz force induces a circular motion of the charge carriers
[see Figs. 1(a) and 1(c)]. Depending on the transverse velocity
of the surface state, the carriers will or will not be able to

traverse the side facet from bottom to top (or vice versa).
Thus, when the transverse extent is smaller than the height
of the ribbon, the carriers cannot traverse the side facet. For
surface states that wrap phase-coherently around the perimeter
of the ribbon cross section, it follows that the top or bottom
surface effectively gets depleted or, equivalently, carriers are
trapped on the opposite surface. When the carriers on the
two legs of the kink are trapped on opposite facets of the
ribbon, the transmission across the kink is suppressed, as
illustrated in Figs. 1(a) and 1(c). This is also demonstrated by
quantum transport simulations in the Supplemental Material
of Ref. [25]. In Figs. 2(c) and 2(f), the calculated normalized
transmission T/Tmax as a function of magnetic field angle θB

and absolute magnetic field |B| is given for the 90 ◦ kink and
120 ◦ kink structures, respectively (see Supplemental Material
[36] for details). By comparing Figs. 2(b) and 2(e), one finds
that the experimental results nicely follow the transmission
pattern that results from the semiclassical picture. Comparing
the simulations as well as the effective conductance color
maps in Figs. 2(b) and 2(e), it is clear that the range of
angles with reduced conductance becomes narrower for an
increased kink angle. This is consistent with the picture based
on the Lorentz force inducing a trapping effect via the side
facets. The window of angles for which the Lorentz force has
opposite sign on the side facets of the two legs of the kink
(yielding an opposite trapping effect in each leg and a reduced
transmission probability across the kink) naturally narrows
down when the legs become more aligned. The relevant angle
window corresponds to θB ∈ [π/2, π ] + nπ for the 90◦ kink,
and to θB ∈ [3π/2, π ] + nπ for the 120◦ kink.

Compared to our previous study [25], the high magnetic
field ranges of the experiment allow for the sample to get into
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a regime where the gyroradius is of the order of the ribbon
height (approximately 20 nm). This drastically increases the
effective conductance change between the default and sup-
pressed transport regimes to about 8 % (increased by more
than an order of magnitude).

In the Supplemental Material of Ref. [25], it was also
shown that the steering effect is only expected for states that
are located on the surface, and that the robustness of the effect
against disorder is highly enhanced by spin-momentum lock-
ing, which suppresses scattering processes with a significant
change in momentum. The observed magnetoconductance
pattern is therefore not likely to originate from trivial
bulk states or trivial surface states without spin-momentum
locking. Hence, in-plane magnetic field dependence of the
conductance across the kink structures provides a robust trans-
port signature of topological surface states.

For a more detailed comparison of the angle-dependent
conductance pattern between the experimental results and the
simulations, we take linecuts at certain magnetic fields. Fig-
ure 3 displays linecuts of the effective conductance change
�G/G0 in comparison to linecuts of the normalized transmis-
sion at magnetic fields ranging from 2 to 10 T, respectively,
as a function of in-plane magnetic field angle. Note that
the normalized transmission is rescaled and shifted to fit the
scale of the conductance changes in order to compare the
angle-dependent π -periodic pattern. At the linecuts above 2 T,
simulation and experiment are in very good agreement. For
magnetic field strengths of 2 T and less, no periodic behavior
of the effective conductance can be seen [cf. Fig. 2(c)].

Figure 4 shows the temperature-dependent effective con-
ductance of the 90 ◦ kink for four different temperatures,
ranging from 1 to 20 K. The color scheme for all temperatures
is normalized to that of the 1 K measurement. From previous
work performed on similar devices, it was found that charge
carriers are located phase-coherently around the perimeter of
a ribbon of similar height up to temperatures of about 20 K
[37]. Therefore, the temperature range allows us to probe
the proposed effect in the transition of the phase-coherent
regime to a regime where an increased amount of inelastic
scattering events occur. The temperature dependence of the
effect matches the expected behavior for an effect that relies
on phase coherence around the perimeter of the ribbon. A
vanishing periodic conductance change is visible, with the
pattern completely disappearing at temperatures above 20 K.
The impact of the in-plane magnetic field on the conductance
due to trapping of the surface states on certain side facets of
the nanoribbon is only expected to occur when the surface
states are phase coherent around the perimeter of the ribbon,
i.e., at sufficiently low temperatures. At elevated temperatures,
the phase-coherence length reduces so that the surface states
on the different side facets are effectively becoming indepen-
dent and there can be no depletion of surface states on either
top or bottom surface of the ribbon through a Lorentz force
acting on the side facets.

To emphasize that the trapping effect can be associated
with the phase coherence of the surface states, we plot the
average conductance Gav (over all magnetic field strengths
and angles) of the device as a function of temperature and
compare it with the peak-to-valley difference of conductance
over different in-plane magnetic field angles [see Fig. 4(e)].

(a)

(b)

FIG. 3. Linecuts of the effective conductance change �G/G0

(dotted lines) and of the normalized transmission T − |T |B=const

(dashed lines) as a function of θB at magnetic fields ranging from 2
to 10 T in steps of 2 T for the (a) 90 ◦ and (b) 120 ◦ kink (taken from
Fig. 2). Note that the individual curves are offset for better clarity.

The peak-to-valley difference �GθB is obtained by taking
the difference between the conductance averaged over θB ∈
[0, π/2] + nπ (peak) and over θB ∈ [π/2, π ] + nπ (valley)
for all magnetic field strengths B > 4 T. While the average
conductance of the sample is barely affected by temperature
(and phase coherence around the perimeter), the peak-to-
valley difference decreases exponentially with temperature
towards zero. This is similar to the temperature dependence of
Aharonov-Bohm oscillations, for example, ∝ exp[−P/lφ (T )],
with perimeter P and temperature-dependent phase-coherence
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FIG. 4. (a)–(d) Effective normalized conductance �G/G0 of the
90 ◦ kink as a function of θB and B at (a) 1, (b) 5, (c) 10, and (d) 20 K.
The periodic pattern as a function of in-plane magnetic field angle is
clearly vanishing with increasing temperature. (e) The peak-to-valley
difference �GθB averaged over all magnetic fields in comparison to
the average conductance Gav of the sample averaged over all angles
and magnetic fields. These values are displayed as a function of
temperature. It is clearly visible that the average conductance of the
sample is rather constant with increasing temperature, whereas the
peak-to-valley difference exponentially drops to zero.

length lφ (T ), which also naturally depend on the phase coher-
ence around the perimeter [33].

Note that an out-of-plane component of the magnetic field,
due to a small misalignment between the plane of rotation
of the magnetic field and the plane of the kink structure,
for example, is unlikely to be responsible for the observed
conductance pattern for the following reasons. First, our setup
ensures good alignment between the kink structure and the
external magnetic field (a misalignment of, at most, 2 de-
grees). Second, such misalignment would yield a sinusoidal
dependence on θB for the out-of-plane component, with no
qualitative difference for different kink angles (unlike the
measured patterns). Furthermore, the observed minima and
maxima of the conductance would only match the expected
angles (based on the trapping effect) coincidentally. Third,

a conventional magnetoresistance related to an out-of-plane
magnetic field component would not have a strong tem-
perature dependence that indicates a connection with phase
coherence of the surface states around the perimeter of the
legs of the kink.

IV. CONCLUSION

In conclusion, for 3D topological nanoribbon-based 90◦
and 120◦ kink structures, we observed pronounced modula-
tions in the conductance upon varying the in-plane magnetic
field orientation. From the decrease of the modulation pattern
with increasing temperature, we deduced that the effect is
based on phase-coherent carriers. In a semiclassical picture,
the modulations can be explained by an orbital effect trapping
electrons in the topological surface states either on the upper
or lower surface of the nanoribbon legs, which affects their
transmission probability across the kink. Our experimental
results are in good agreement with the theoretically expected
transport behavior and consistent with the differences ex-
pected for different kink angles. The transport properties of TI
nanoribbon-based kinks with an in-plane magnetic field offer
interesting perspectives for the design of topological quan-
tum circuits. The orbital effect could be exploited to drive a
kink-shaped TI Josephson junction into the topological regime
with Majorana states, while also offering a tuning knob for
the Josephson energy through modulation of the surface-state
transparency.
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