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Many-body interactions such as exciton-exciton interactions significantly affect the optical response of
semiconductor nanostructures. These interactions can be rigorously modeled through microscopic calculations.
However, these calculations can be computationally intensive and often lack physical insights. An alternative is
to use phenomenological many-body-interaction models such as the modified optical Bloch equations and the an-
harmonic oscillator model. While both these models have separately been used to interpret experimental data, to
the best of our knowledge, an explicit and direct correspondence between these models has not been established.
Here, we show the empirical equivalence between these two complimentary models through two-dimensional
coherent spectroscopy simulations. A quantitative correspondence between the parameters used to incorporate
the exciton-exciton interactions in these two models are obtained. We also perform a quantitative comparison of
these phenomenological models with experiments, which highlights their usefulness in interpreting experimental
results.

DOI: 10.1103/PhysRevB.109.155423

I. INTRODUCTION

The bound state of an electron-hole pair, known as exciton,
dominates the near-band-gap optical response of semicon-
ductor nanostructures. The Coulomb interactions that bind
the electron-hole pair also influence other excitons, result-
ing in strong many-body interactions (MBIs). These MBIs
in quantum wells (QWs) have previously been demonstrated
by excitation-density-dependent optical measurements [1,2].
More recently, similar phenomena have been observed in
other two-dimensional (2D) nanomaterials, including per-
ovskite nanoplatelets [3,4], transition-metal dichalcogenides
(TMDCs) [5–8], and Rydberg excitons in solids [9,10].
MBIs play a key role in explaining the origin of electronic
coherent coupling in quantum-dot states [11,12], quantum
wells [13–16], and TMDCs [17,18]. The MBIs also influence
interlayer coherence of indirect excitons in coupled QWs
and TMDCs heterostructures [19–22], which is important to
achieve superfluidity and Bose-Einstein condensation (BEC)
of excitons [23–31]. While these novel materials are of in-
terest for quantum information processing, manipulating and
controlling these MBIs will be critical for scalable appli-
cations. Furthermore, a recently reported result shows these
interactions also significantly affect the enhancement of pho-
tocatalytic efficiency [32]. Thus, quantifying these MBIs can
help to optimize the performance of optoelectronic devices.

The effects of the MBIs are manifested in the coherence de-
cay dynamics of excitons. Typically, nonlinear techniques like
four-wave mixing (FWM) [33] and two-dimensional coherent
spectroscopy (2DCS) [34–36] are used to study the coherent
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dynamics of these nanomaterials’ optical response [37–39].
Experimental observation of these many-body signatures can
be interpreted through various formalisms such as local-
field correction (LFC) [40–42], excitation-induced dephasing
(EID) [43–45], excitation-induced shift (EIS) [46,47], and
biexciton formation [48,49].

In general, the MBIs can be attributed to various in-
teractions including, but not limited to, exciton-exciton,
exciton-free carrier, and exciton-phonon interactions. A rig-
orous method to incorporate these MBIs is through a
comprehensive many-body treatment, referred to as the mi-
croscopic model [50]. These models explicitly incorporate
the various interaction terms and are often used to com-
pare the effect of these different interactions. For example,
microscopic calculations of exciton wave functions in mo-
mentum space were used to compare the exciton-exciton
and exciton free-carrier interactions in QWs and TMDC het-
erostructures [51,52]. The microscopic model can, however,
be computationally challenging due to the explicit consider-
ation of various microscopic interactions. Furthermore, these
calculations often provide limited physical insight into the un-
derlying phenomena [52,53]. To overcome these limitations,
phenomenological models were developed as much simpler
and physically intuitive alternatives. A key difference from the
microscopic calculations is the introduction of phenomeno-
logical parameters to model and interpret the experimental
observations.

One of the phenomenological few-level models is the mod-
ified optical Bloch equations (MOBEs) [54]. The excitons
are primarily treated as a two-level system (fermions) and
the OBEs are used to describe their interaction with light.
The MOBEs are obtained by incorporating the MBIs as
three excitation-dependent modifications to the OBEs. These
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additional terms include two terms corresponding to change
in the resonance energy (EIS) and dephasing rate or ho-
mogeneous linewidth (EID) with the excitation density. A
third additional term is the LFC that incorporates changes
in the effective optical electric field due to macroscopic po-
larization. The EIS and EID effects were measured as a
change in the exciton resonance energy [55–57] and dephas-
ing rate [43,44], respectively, with an increase in the excitation
density whereas the LFC was primarily invoked to explain
the origin of the so-called negative-delay signal in two-pulse
FWM experiments [40–42]. The MOBEs provide a good
qualitative explanation for the experimental signatures arising
from MBIs. However, MOBEs need to be solved numeri-
cally [47], which inhibits their use for quantitative analysis
of data.

An alternative phenomenological framework to understand
the nonlinear optical response of the excitons in the presence
of MBIs is the anharmonic oscillator (AO) model [58–61].
Here, MBIs between excitons, which are composite bosons,
are introduced in the form of anharmonic corrections to the
harmonic potential of noninteracting excitons. While an ideal
bosonic system is perfectly linear and cannot be saturated, the
anharmonicity results in a nonlinear response of the excitons.
Changes in the energy spacing, dephasing rate, and transition
dipole moment of higher excited states account for EIS, EID,
and phase-space filling (PSF), respectively, in this model. A
significant advantage of the AO model is that we can ana-
lytically calculate the nonlinear optical response by solving
the relevant OBEs perturbatively. Quantification of the MBIs
by fitting the experimental data with the AO model has been
demonstrated previously [62].

Both the aforementioned phenomenological models have
been separately used to explain and interpret the effects of
MBIs in experiments [37,58,62]. While these models are
based on microscopic descriptions and can be understood
through fermionic (MOBE) [63] and bosonic (AO) [59]
frameworks of interacting excitons, one would expect the con-
vergence of these two in the limit of a large ensemble and at
low excitation density. However, to the best of our knowledge,
a direct correspondence between these two complimentary
models has not been established. For instance, it is not known
if the parameters used to quantify MBIs in the two models are
equivalent. Thus, a quantitative comparison of the two models
is essential for gaining a comprehensive understanding of
the MBIs and their effect on the nonlinear-optical response.
Specifically, these findings will enable us to compare the
relative strength of MBI in different nanomaterials.

In this work, we have established an empirical equivalence
between these two complimentary MBI models through 2DCS
simulations. In Sec. II we have simulated 2D spectra for a
range of excitation densities using the MOBEs. Slices from
the simulated spectra are fit to those obtained from calcu-
lations for the AO model in Sec. III. We find an excellent
match between the peak lineshape in 2D spectra from both ap-
proaches for a range of excitation densities and MBI strengths,
which demonstrates their equivalence. Furthermore, we dis-
cuss the correspondence between the MBI parameters used in
the two approaches. In Sec. IV, we use both the MBI models
to quantitatively reproduce the excitation-density dependence
of lineshapes in 2DCS experiments which were performed on

FIG. 1. (a) Exciton as a two-level system used for the MOBE
calculations with excitation-density-dependent dephasing rate γ and
resonance frequency ω. |0〉 and |1〉 represent the ground and excited
states, respectively. (b) Energy level scheme for anharmonic exciton
ladder is illustrated. |0〉 : ground state, |1〉 : single-exciton state, |2〉:
two-exciton state, γ01: dephasing rate of the |0〉 ↔ |1〉 transition,
ξ : excitation-induced dephasing (EID), �: excitation-induced shift
(EIS).

GaAs QWs. We provide a summary and outlook of our work
in Sec. V.

II. MODIFIED OPTICAL BLOCH
EQUATIONS SIMULATION

Figure 1(a) shows the exciton as a two-level system. The
ground and excited states are denoted as |0〉 and |1〉, respec-
tively. The MOBEs incorporate EID and EIS through a linear
dependence of dephasing rate γ and resonance frequency ω

with excitation density

γ = γ0 + γ ′Nρ11, (1a)

ω = ω0 + ω′Nρ11. (1b)

Here, the dephasing rate γ and the resonance frequency
ω comprise the excitation-independent terms (γ0, ω0) and
the excitation-dependent terms (γ ′Nρ11, ω′Nρ11). Nρ11 is
the excited-state population density with density of states
N and the density matrix element ρ11 corresponding to the
occupation probability of |1〉. The parameters γ ′ and ω′ quan-
tify the strength of EID and EIS, respectively. The MOBEs
are obtained from the OBEs after incorporating the above-
mentioned excitation-density-dependent terms:

ρ̇11 = −�1ρ11 + i

h̄
(μE )(ρ01 − ρ10), (2a)

ρ̇01 = −(γ0 + γ ′Nρ11)ρ01 + i(ω0 + ω′Nρ11)ρ01

+ i

h̄
(μE )(ρ11 − ρ00), (2b)

where ρ jk are the density-matrix elements, in which j = k
and j �= k correspond to population and coherence terms,
respectively, �1 is the population decay rate of the exciton,
and μ is the transition dipole moment of |0〉 ↔ |1〉 transition.
The electric field of the excitation light is

E (r, t ) = E (t )

2
[ei(ωLt−k·r) + c.c.], (3)

where E (t ) is time-dependent electric-field amplitude, ωL is
the frequency of the excitation light, k is the wavevector and r
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is position. Here, we have not included the LFC term since its
primary effect is to produce the negative time-delay transient
four-wave mixing signal (TFWM), which is analogous to two
quantum coherence signals in 2DCS; this signal is not relevant
for the current work.

We have solved the MOBEs numerically to obtain the
two-pulse TFWM signal [54,64]. A pair of excitation pulses
with wavevectors k1 and k2 are considered. The time delay
between the pulses is τ with the k1 wavevector pulse ar-
riving first. The FWM signal is emitted during time t after
the arrival of the second pulse. The homogeneous TFWM
signal Shom(ω, τ, t ) for resonance frequency ω is obtained
by extracting the third-order coherence term ρ

(3)
01 (τ, t ) in the

phase-matching direction 2k2 − k1. The total TFWM signal
for the inhomogeneous distribution is obtained by taking
the sum of the signal from all the frequency components
Sinhom(τ, t ) = ∑

i piShom(ωi, τ, t ), where pi is the normalized
probability of having an oscillator with resonance frequency
ωi. We consider a Gaussian distribution with standard devi-
ation σ for the inhomogeneity. The MOBEs are solved for
transform-limited excitation pulses with a Gaussian envelope
and 100 fs full-width half-maximum (FWHM). The intensities
of both the excitation pulses are kept equal to each other.
We quantify the pulse intensity in terms of square of the
pulse area 
 = 1

h̄

∫ ∞
−∞ μE (t )dt [65]. Simulated 2D spectra

Sinhom(ωτ , ωt ) are obtained by taking a Fourier transform of
the time-domain FWM signal Sinhom(τ, t ) along the axes τ

and t . Figures 2(a) and 2(b) show the absolute and real part,
respectively, of the 2D spectra obtained for 
 = 3 × 10−3π .
Assuming a noninteracting two-level system, the widths of the
peak along the diagonal and cross-diagonal directions indicate
inhomogeneous (σ ) and homogeneous (γ ) linewidths, respec-
tively [66]. The parameters corresponding to inhomogeneous
(σ ) and excitation-independent homogeneous linewidth (γ0)
used in the simulations are 0.5 meV and 0.1 meV, respectively.
We have taken Nγ ′ = 100 meV and Nω′ = 50 meV. The dis-
persive lineshape of the real part of 2D spectrum in Fig. 2(b)
is attributed to EIS [37].

We performed MOBEs-based simulations for a range of
pulse areas within the χ (3) regime (

∫ |Sinhom(τ, t )|2 dt ∝ 
6)
to measure the excitation-density dependence of 2D spectra.
An increase in the width of the cross-diagonal slices of the
absolute 2D spectra, as shown in Fig. 3, highlights the effect of
EID [39,43]. In addition to the broadening, the cross-diagonal
slices show a slight blue shift and asymmetric lineshape at
higher pulse areas, which can be attributed to EIS [55,57].
Figure 3 also shows that FWM signal decay rate in the pres-
ence of MBI is slower than in the case of no interaction; this
apparent anomaly will be discussed later. While it is straight-
forward to qualitatively reproduce the experimental effects of
EID and EIS through the MOBEs, it is difficult to quantify
this effect since these numerical calculations take significant
computational time.

III. ANHARMONIC MODEL FITS

An alternative approach is to treat excitons as interacting
bosons. Interaction terms are added to the perfectly harmonic
oscillator Hamiltonian, which results in the anharmonic lad-
der of states [59] as shown in Fig. 1(b) with ground |0〉,
one-exciton |1〉, and two-exciton |2〉 states. μ01 and μ02 =

FIG. 2. The (a) absolute and (b) real part of the simulated 2D
spectra using MOBEs for a pulse area of 3 × 10−3π , Nγ ′ = 100 meV
and Nω′ = 50 meV. The (c) absolute and (d) real part of the sim-
ulated 2D spectra using the best-fit parameters for the AO model.
Dashed diagonal line indicates equal excitation and emission energy
amplitudes. The cross-diagonal (X-Diag) and Diagonal (Diag) direc-
tions are indicated by arrows in (a). The dashed contours in (b) and
(d) show the zero level.

√
2μ01 are the transition dipole moments for transitions |0〉 ↔

|1〉 and |1〉 ↔ |2〉, respectively. The anharmonic ladder is
truncated to the two-exciton state in Fig. 1(b) since only
these states contribute to the FWM signal in the χ (3) regime.
The anharmonic terms introduce an asymmetry between the
|0〉 ↔ |1〉 and |1〉 ↔ |2〉 transitions. This asymmetry can be
quantified by the phenomenological terms � and ξ , which
are similar to the EIS and EID effects discussed above and
produces a nonzero optical nonlinear FWM signal. We have
ignored the phase-space-filling effect here, since it was previ-
ously shown to be insignificant [62]. The analytical solution
of the FWM signal in the perturbative regime, considering
δ-function excitation pulses, is

SAO(τ, t ) = Ae−iω01(τ−t )−γ01(τ+t )− σ2

2 (τ−t )2
[1 − e(i�−ξ )t ], (4)

where A is the FWM-signal amplitude, ω01, γ01, and σ are
the resonance frequency, dephasing rate, or homogeneous
line width, and inhomogeneous line width, respectively, of
the |0〉 ↔ |1〉 transition. We have considered equal inhomo-
geneity for both |0〉 ↔ |1〉 and |1〉 ↔ |2〉 transitions. This
analytical calculation can be used to quantify these effects
through a nonlinear fitting procedure [62].

We explore the correspondence between the two models
by fitting multiple slices of the absolute and real part of
2D spectrum obtained from MOBE simulations with those
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FIG. 3. Pulse-area-dependent cross-diagonal slices of absolute
value 2D spectra obtained from MOBE model are shown. Excitation-
induced dephasing (EID) causes a broadening of the cross-diagonal
slices with increasing pulse area. A slight blue shift in the peak of the
cross-diagonal slices and asymmetric lineshape indicates excitation-
induced shift (EIS). The black arrows indicate increasing pulse area.
The dashed line shows the cross-diagonal slice in the absence of
MBIs.

obtained from the AO model. The fitting procedure is repeated
for a series of excitation densities and various values of Nγ ′
and Nω′. As an example, Fig. 4 shows the slices from the
2D spectra in Figs. 2(a) and 2(b) (dashed line) along with

TABLE I. Symmetry-breaking fit parameters in the AO model.

Nγ ′ Nω′ ξ �
ξ

�(meV) (meV) (μeV) (μeV)

100 100 2.65 ± 0.01 2.70 ± 0.01 0.981 ± 0.005
50 100 1.000 ± 0.003 1.978 ± 0.007 0.506 ± 0.002
100 50 3.72 ± 0.03 1.86 ± 0.01 2.00 ± 0.02

the fits obtained from the AO model (solid line). We find an
excellent match between the simulated and fit slices. There
are slight variations in the obtained values of the fit param-
eters depending on the energy range chosen for the fitting
procedure. In order to avoid this bias and estimate the uncer-
tainty in the fit parameters, we repeat the fitting procedure for
several energy ranges from 10 to 20 meV. Subsequently we
will report the mean and standard deviation of the parame-
ters obtained for these different energy ranges as the best-fit
parameters when fitting MOBE simulation results with the
AO model. We obtain the following best-fit parameters for
the current case: γ01 = 102.70 ± 0.05 µeV, σ = 499.7± 0.2
µeV, � = 1.82 ± 0.05 µeV, ξ = 3.73 ± 0.09 µeV. Simulated
absolute and real-part spectra of AO model using these best-fit
parameters are shown in Figs. 2(c) and 2(d), respectively.

The symmetry-breaking fit parameters ξ and � of the AO
model are shown in Figs. 5(a) and 5(b), respectively. These
parameters don’t exhibit any clear dependence on the excita-
tion density; this behavior is observed for other combinations
of Nγ ′ and Nω′, too. Because of the random variation with
excitation density, we quantify the values of � and ξ by taking
a weighted average of the results for all excitation densities;
these are summarized in Table I. These values change with the

FIG. 4. Slices obtained from MOBE simulations (green dashed line) and the corresponding fits using the AO model (solid red line) are
shown. Slices for the MOBE simulation are taken from the absolute value [Fig. 2(a)] and real part [Fig. 2(b)] 2D spectra, respectively. The
particular slice is indicated by the label above each plot.
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FIG. 5. The symmetry-breaking fit parameters in the AO
model—EID (ξ ) in (a) and EIS (�) in (b) measured as a function
of excitation densities for different values of Nγ ′ and Nω′. The error
bars are standard deviation in parameters value obtained by fitting
2D spectra in multiple energy ranges.

values of Nγ ′ and Nω′ used in the MOBE simulation. We find
that both � and ξ vary when either Nγ ′ or Nω′ is changed.
While these variations seem random, we note that the ratio ξ

�

matches perfectly with the value of γ ′
ω′ . We thus conclude that

although the parameters ξ and � are not perfectly separable,
the fitting procedure gives a good estimate of the relative
strength of EID and EIS.

The excitation-independent parameters ξ and � do not
affect the overall width and position of the peak and, con-
sequently, cannot model the broadening and shift of the
cross-diagonal slices shown in Fig. 3. This goal is achieved
by introducing parameters γ01(Nx ) and ω01(Nx ) that depend
on the excitation density Nx. Figure 6 shows an increase in the
homogeneous linewidth γ01 with the excitation density. We
quantify the excitation-density dependence using the relation

γ01(Nx ) = γ01(0) + γEIDNx, (5)

where γ01(0) is the zero-excitation-density homogeneous
linewidth of the |0〉 ↔ |1〉 transition, and γEID is the rate of
change of homogeneous line width with the excitation density

FIG. 6. Linear variation of homogeneous linewidth with excita-
tion density for different combinations of Nγ ′ and Nω′. Linear fits to
data are shown by the dashed lines.

Nx [43,67]. The fit results are summarized in Table II. We find
that the slope γEID is directly proportional to Nγ ′ and does
not vary significantly with the value of Nω′. Furthermore, the
offset γ01(0) is independent of the MBI parameters used in the
MOBEs and equals the excitation-independent term γ0.

Now let’s shift our focus to an intriguing feature shown in
Fig. 3. The cross-diagonal slice is narrower when the MBIs
are included than without them. This narrowing indicates that
the decay rate of the FWM signal is slower in presence of EID
than in its absence. It is worth noting that a previous obser-
vation also supports this behavior of narrowing homogeneous
linewidth when MBIs are present, specifically in the context of
the bosonic framework of excitons [62]. In that case, the inter-
ference between two different quantum mechanical pathways
results in a narrower linewidth. Since the MOBEs are solved
through numerical methods, we cannot provide an intuitive
explanation for the narrowing in this particular case. However,
the similar behavior further demonstrates the equivalence of
incorporating the MBIs either through the MOBEs or the AO
model. Additionally, we want to emphasize that γ0, is not the
decay rate of the FWM signal at zero-excitation density. The
zero-excitation-density decay rate of the FWM signal can be
determined by extrapolating the excitation-density-dependent
decay rate to zero-excitation density [6,39]. We interpret the
parameter γ0 as the expected decay rate of the FWM signal in

TABLE II. Excitation-density dependence homogeneous line
width (γ01).

Nγ ′ Nω′ γEID γ01(0)
(meV) (meV) (106π−2 meV) (μeV)

100 100 360 ± 2 99.76 ± 0.04
50 100 181.0 ± 1.3 100.26 ± 0.03
100 50 346 ± 5 99.65 ± 0.08
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FIG. 7. Excitation-density dependence of the homogeneous
linewidth γ01 obtained by fitting the experimental data (red circles)
and MOBE simulations (blue diamonds) to the AO model. MOBE
simulations were performed for Nγ ′ = 100 meV, Nω′ = 150 meV.
The linear fits are shown by the blue and red dashed lines and show
an almost perfect overlap with each other.

the hypothetical case where the interexcitonic interactions are
absent.

In this section we have provided a detailed comparison of
the MOBE-based simulations and the AO model. Our quanti-
tative findings can be summarized as

ξ

�
= γ ′

ω′ , (6a)

γ01(0) = γ0, (6b)

γEID ∝ γ ′. (6c)

We have shown that both the models are consistent with each
other. Next, we compare them to the experimental data.

IV. COMPARISON WITH EXPERIMENTS

2DCS experiments were performed on GaAs QWs using
the three-pulse noncollinear geometry [68]. The sample com-
prising four periods of GaAs QWs with a width of 10 nm
and Al0.3Ga0.7As barriers with the same width was kept at
a temperature of 10 K. These experiments were performed in
the cocircular polarization scheme so that biexcitons are not
excited [69]. Excitation densities in the range of ∼1 − 8 ×
1010 cm−2 per QW per excitation pulse were used. The other
experimental details were same as those used previously [62].

We fit the slices obtained from the experimental data with
the AO model to obtain the parameters ξ , �, γ01, and ω01. The
observed dependence of γ01 is shown in Fig. 7 by red circles.
We repeated the experiment thrice at each power; the error
bars for the fits to the experimental data indicate the standard
deviation in the best-fit values. We measure ω01 through the

FIG. 8. Excitation-density dependence of the shift in the res-
onance frequency ω01 in experiments (red circles) and MOBE
simulations (blue diamonds). The data and simulations are the same
as those used in Fig. 7.

overall shift of the peak of the 2D spectra with changing
excitation density; the shifts are shown in Fig. 8. These exper-
imental findings were reproduced by solving the MOBEs for
Nγ ′ = 100 meV and Nω′ = 150 meV. The simulated spec-
tra are also fit with the AO model following the procedure
discussed in Sec. III. The corresponding results are shown in
Figs. 7 and 8 with blue diamonds. We have used an arbitrary
scaling factor between the exciton density and the square of
pulse area to show the correspondence between the fit data
obtained from experiments and the MOBE simulations. Sim-
ilar fit parameters highlight that the lineshapes obtained from
MOBEs are equivalent to the experimental data. We note that
in order to obtain a change in γ01 that is equivalent to the
experiment, we had to go beyond the χ (3) regime.

Analogous to Eq. (5), we can quantify the excitation-
density dependence of the resonance frequency through

ω01(Nx ) = ω01(0) + ωEISNx, (7)

where ω01(0) is the resonance frequency of the |0〉 ↔ |1〉
transition at zero-excitation density and ωEIS is the rate of
change of the resonance frequency with the excitation density.
We did not discuss this phenomenon in Sec. III because the
small shifts in the resonance frequency were partially masked
by the finite resolution of the simulations. The increased pulse
area and the Nω′ term make the shift in resonance frequency
clearly observable now.

Consistent with the earlier results, we did not see any
excitation-density dependence on the symmetry-breaking pa-
rameters ξ and � (data not shown) for either the experimental
data or the simulation results. Taking weighted averages,
as discussed in Sec. III, results in � = 19 ± 3 µeV and
ξ = 6 ± 1 µeV for the experiment with �

ξ
= 3.2 ± 0.7. The
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corresponding values for the MOBE simulations are � =
6.2 ± 0.7 µeV and ξ = 4.3 ± 0.4 µeV, corresponding to �

ξ
=

1.4 ± 0.2; this should ideally be equal to 1.5 based on the ratio
ω′
γ ′ . Although these values are quite different, �

ξ
> 1 suggests

that EIS is more dominant than EID in this sample. Likely
reasons for the quantitative anomaly could be the inability of
the fitting procedure to perfectly separate the effect of EIS and
EID and the large uncertainty ∼16% in the experimentally
obtained values.

V. CONCLUSION

We have presented a comprehensive and quantitative com-
parison of modeling MBIs using the MOBEs and the AO
model. These models introduce interactions to excitons when
they are treated as fermions (for the MOBEs) and bosons
(for the AO model). Interestingly, these complimentary ap-
proaches result in identical lineshape of 2D spectra. We have
also established a direct correspondence between the MBIs
parameters used in the MOBEs and the AO model. These
findings are further strengthened by reproducing experimental
data for GaAs QWs using both the models independently.
This study provides a possible framework to compare the
relative strength of MBIs among different excitonic sys-
tems such as QWs [2,38], layered semiconductors [6–8],
and perovskite nanomaterials [3,4,70]. It can also be rele-
vant for the ongoing efforts to develop flexible semiconductor
quantum dot lasers [71–73] and TMDCs-based valleytronics
devices [74–76], which are affected by MBIs.

Finally, we note that significant theoretical work has been
done to study MBIs in spatially-indirect excitons observed
in coupled QWs and heterostructures of layered semicon-
ductors [23–25,28,77]. These excitons have long (>100 ns)
lifetimes, which is important to achieve exciton BEC in these
materials [25,78]. Furthermore, the minimal overlap of the
electron and hole wave functions implies that these excitons
are weakly interacting [21,27,79], which suggests that the
AO model should be applicable and can be used to quantify
interactions between indirect excitons. While our study has
implicitly focused on direct excitons in QWs where the BEC-
like phenomenon is unexpected [80], a similar quantitative
study of indirect excitons would be worth exploring. Particu-
larly, it might be possible to study the effect of novel-excitonic
phases such as BEC on MBIs.
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