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Twisted bilayer graphene revisited: Minimal two-band model for low-energy bands
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An accurate description of the low-energy electronic bands in twisted bilayer graphene (tBLG) is of great
interest due to their relation to correlated electron phases such as superconductivity and Mott-insulator behavior
at half-filling. The paradigmatic model of Bistritzer and MacDonald [Proc. Natl. Acad. Sci. USA 108, 12233
(2011)], based on the moiré pattern formed by tBLG, predicts the existence of “magic angles” at which the
Fermi velocity of the low-energy bands goes to zero, and the bands themselves become dispersionless. Here,
we reexamine the low-energy bands of tBLG from the ab initio electronic structure perspective, motivated by
features related to the atomic relaxation in the moiré pattern, namely, circular regions of AA stacking, triangular
regions of AB/BA stacking and domain walls separating the latter. We find that the bands are never perfectly
flat and the Fermi velocity never vanishes, but rather a “magic range” exists where the lower band becomes
extremely flat and the Fermi velocity attains a nonzero minimum value. We propose a simple (2 + 2)-band
model, comprised of two different pairs of orbitals, both on a honeycomb lattice: the first pair represents the
low-energy bands with high localization at the AA sites, while the second pair represents highly dispersive
bands associated with domain-wall states. This model gives an accurate description of the low-energy bands
with few (13) parameters that are physically motivated and vary smoothly in the magic range. In addition, we
derive an effective two-band Hamiltonian which also gives an accurate description of the low-energy bands. This
minimal two-band model affords a connection to a Hubbard-like description of the occupancy of subbands and

can be used a basis for exploring correlated states.

DOI: 10.1103/PhysRevB.109.155422

I. INTRODUCTION

The physics of twisted bilayer graphene (tBLG) has proven
remarkably rich, owing to the complexity of the moiré patterns
formed for small twist angles in the range of 1° or smaller.
The discovery of superconductivity and correlated electron
behavior in this system at the so-called “magic angle” of 1.08°
[1,2], and later in multilayered graphene stacks [3-5], has
attracted much attention. Despite many interesting theoretical
ideas to explain such phenomena, starting with the paradigm-
setting model of Bistritzer and MacDonald (BM) [6], a simple
real-space picture of the behavior of the low-energy electronic
states remains elusive (for recent reviews, see Refs. [7,8]).
Such a picture would be of great usefulness for building
physically plausible theories of many-body effects, including
quantum Hall effect states [9,10], superconductivity [1,11],
and the recent observations of states with fractional charge
[12].

The electronic bands in tBLG are typically described us-
ing theoretical continuum models like the BM model and
the chiral model [13], a special case of the BM model in
which the Hamiltonian has chiral symmetry. Such models
capture the key features of tBLG, but only in an idealized,
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limiting-case sense. For instance, both models produce low-
energy bands that are flat throughout the entire Brillouin Zone
(BZ), perfectly flat in the case of the chiral model, and with
vanishing Fermi velocity at magic angles, which in the BM
model are 6 = 1.05°,0.5°,0.35°,0.24°,0.2°, ... These fea-
tures have been assumed as essential elements in many other
theoretical models which aim to explain the physics of tBLG.

More realistic descriptions of the electronic bands in tBLG
have also been developed, which take into consideration the
atomic relaxation in tBLG moiré structures. These descrip-
tions include explicit first-principles calculations [14—16] and
ab initio tight-binding (TB) models [17-19], based on TB
Hamiltonians with spatially modulated hoppings, as well as
“exact” k - p Hamiltonians [20-25], which perfectly repro-
duce the results from ab initio TB models. In contrast to the
idealized models, the more realistic first-principles models
reveal that the bands are never perfectly flat or particle-hole
symmetric, and that the Fermi velocity never actually reaches
zero [20]. In addition, when lattice relaxation is taken into
consideration, all of the magic angles are removed, except
for the first one at approximately 1°, close to the experimen-
tally observed range of values where superconductivity and
correlated-insulator behavior have been reported [1,2]. The
first-principles-based calculations also suggest that this magic
angle is not a unique value, but rather a range of values in
which the low-energy bands show optimal behavior in three
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respects: the Fermi velocity is minimized, the band width
is minimized, and the band gaps separating the low-energy
bands from the valence and conduction manifolds are maxi-
mized.

One route to a better understanding of exotic physics in
tBLG is the development of models with the smallest possible
number of bands which capture the realistic features of the
low-energy bands. Several minimal phenomenological mod-
els have been developed to capture the low-energy physics
of tBLG at small twist angles [20,26-32]. Some of these are
based on a minimal number of bands derived from effective
Wannier orbitals on the moiré scale [20,29] and give reason-
able agreement with band structures obtained from TB models
and k - p Hamiltonians, using a small number of free param-
eters. However, there is an intrinsic arbitrariness associated
with using such models to describe the low-energy bands in
tBLG: the gauge freedom of the localized Wannier states can
be used to tune the model so that any combination of these
states can represent the low-energy bands. Because of this,
it is impossible to determine the character of the low-energy
bands using these phenomenological models. Moreover, the
number of bands in these models (5, 8, or 10 [28,29]) is still
prohibitively expensive for applications beyond single particle
physics. Requiring the Wannier projection to produce the ab-
solutely minimal set, namely, a four-band model, including a
pair of low-energy bands for each K valley, results in so-called
“fidget spinner” states [26,27,33], which are delocalized over
several moiré cells.

Here, we revisit the properties of tBLG from a first-
principles perspective. First, by examining the electronic
bands and Fermi surface at half-filling over a very fine sam-
pling of twist angles near the magic range, we identify several
important features which can be used to characterize the
magic range and which paint a richer picture of the physics
in this range of twist angles. Second, we propose the simplest
possible real space TB Hamiltonian which captures these
important features. Specifically, we propose a “(2 + 2)”-band
model, with two active low-energy bands and two auxiliary
bands, whose origins are justified on the basis of the main
structural features of the moiré supercell, as derived from
atomistic relaxation calculations. Finally, by projecting out
the auxiliary bands, we derive an effective Hamiltonian for
the low-energy bands alone which, without sacrificing any ac-
curacy in their description, affords a connection to a Hubbard-
like model and describes their occupancy at half-filling.

The rest of the paper is organized as follows. In Sec. II,
we provide a detailed study of the electronic states of tBLG in
the magic range using the exact ab initio TB model developed
in Refs. [20,21]. In Sec. III, we describe the construction of
the “(2 + 2)”-band TB model and the effective Hamiltonian
of the minimal two-band model, as well as its connection
to a Hubbard-like model. Finally, in Sec. IV, we conclude
with remarks on the relation of our minimal model to other
theoretical descriptions of the low-energy bands.

II. ORIGIN AND NATURE OF LOW-ENERGY BANDS
A. Effects of atomic relaxation

The derivation of a minimal model has proven to be a
nontrivial task because of the complexity of the underlying

atomic structure in twisted bilayers with large moiré pe-
riods, that is, at twist angles of less than a few degrees;
the actual atomic structure of tBLG for small angles does
not consist of simply superimposing two pristine graphene
lattices at the equilibrium interlayer separation but includes
significant atomic relaxation driven by energy minimization
[34,35]. Briefly, this is accomplished by defining the in-plane
displacement vectors U¥)(r) and the out-of-plane corrugation
h®(r) = K (r)z at an unrelaxed position r of the supercell,
where the index [/ = ¢, b is the layer index (top and bottom).
The total energy is given by

Et()t [U] — Eintra [U] + Eimer [U], (1)

expressed in terms of the displacement vector, where En"?
is the intralayer (in-plane) contribution, and E™* is the in-
terlayer (out-of-plane) contribution. The first term is obtained
from continuum elasticity theory in the linear approximation:

Eintra[U] — Z [er{g(v . U(l))Z

I=t,b
+ §[<v7 x UD)? 4 (V7 -U‘”)zl}’ @

where V = (9,, dy), vl = (dy, 0x), and G and K are the shear
and bulk modulus of monolayer graphene, respectively (ob-
tained from first-principles calculations as G = 9.0 eV /A2,
and K = 13.2 eV/A?). The second term is obtained by em-
ploying the generalized stacking fault energy (GSFE) concept
[36] and is expressed as

Einter[U] — fdzrVGSFE(s(r) + U(t)(r) _ U(b)(r))’ 3)

where s(r) is the local stacking at atomic position r, de-
fined as the distance from an atom at r in one layer to the
position of the nearest neighbor of the same sublattice in
the other layer [35]. VOSFE(r) is obtained by considering all
possible relative displacements of two layers that span the
entire primitive graphene unit cell and includes optimization
with respect to interlayer separation A(r) = | (r) — h®(r)|.
The values of VO5FE(r) are obtained for a dense grid in real
space and transformed by a Fourier expansion so that the
final expression encompasses all the symmetries of the moiré
supercell (for additional details, see Ref. [21]). The relaxation
is then obtained by minimizing the total energy with respect
to the displacement fields U"), taking into consideration the
symmetries of the system.

Atomic relaxation is known to play a role in many struc-
tural and electronic properties of multilayered materials [37].
For instance, an important consequence of atomic relaxation
in tBLG is that, although several magic angles are predicted
by the BM model in the absence of atomic relaxation, only
one magic angle has been observed experimentally. When
lattice relaxation is taken into account, the other theoretically
predicted magic angles vanish, leaving only one near the ex-
perimentally observed value [20].

For twist angles < 2°, atomic relaxation in tBLG results in
the formation of three types of clearly identifiable domains, la-
beled AA, AB/BA, and DW, see Fig. 1(a). In the energetically
unfavorable AA domain, the atoms in the same sublattices
are vertically aligned. In the energetically favored AB/BA
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FIG. 1. (a) Sketch of the local twisting and untwisting which
occurs around the AA and AB/BA domain centers, respectively. The
orange hexagons correspond to the AA regions, the green triangles to
the AB/BA regions and the purple ellipses correspond to the DWs. a.
is the moiré period. (b) The monolayer BZs, in red and blue, which
are rotated with respect to one another by 6. The high-symmetry
points I', K/K’, and M/M’ are shown. The moiré BZ is the hexagon
whose edges are formed by joining the K and K’ points of the mono-
layers. The magnified diagram shows the k-point paths considered
and their C; rotation symmetries and mirror planes M.

domains (which are equivalent to each other by translation or
rotation), half of the atoms in opposite sublattices are verti-
cally aligned, and the other half are aligned with the centers
of the hexagonal rings of carbon atoms in the other layer. In
the domain wall stacking (DW), which separates the AB/BA
stackings, the atoms in the two layers are offset by half a
diagonal of the graphene primitive unit cell. The definitions of
these three domain types correspond to infinite-size perfectly
ordered regions, but in the moiré superlattice the three types of
domains are connected, so the atomic alignments are close to
those of the infinite regions in the majority of each domain and
transition smoothly from one type to the other at the domain
boundaries.

As a result of relaxation, the AA regions tend to shrink
to reduce their energy cost, while the AB/BA regions tend to
increase in size to benefit the energy balance. The physics of
this intricate atomic-scale reconstruction, which is responsi-
ble for the domains at the moiré scale, has been described
using continuum elasticity by Zhang and Tadmor [38] and
used to explain experimental measurements of the patterns
revealed by scattering [39]. Similar effects have been observed
in other systems of twisted or strained bilayers and mulitlayers
[37,40].

For twist angles smaller than a critical value of 6, ~ 1.2°,
the sizes of the AA and DW domains reach a plateau, and
only the AB/BA domains grow larger as the twist angle de-
creases. Below this critical angle the moiré supercell can be
represented as a combination of three intersecting lattices: a
triangular lattice with sites at the centers of the small AA
domains, an hexagonal (honeycomb) lattice with sites at the
centers of the triangular AB/BA domains, and a kagome lat-
tice with sites at the centers of the DW regions.

For small angles, in addition to changing the domain size,
the local relaxation and strain relief results in an additional
relative twist in the AA regions, AGAA [35]. This results in
a net local twist 0" that is independent of the global twist
6 imposed on the bilayer. At the same time, the AB/BA
regions untwist by AGABBA je  in the opposite sense from
the global twist. These relaxations are shown schematically in
Fig. 1(a). Detailed atomistic-scale calculations predict a value

of 8 ~ 1.9° [38]. From simple geometric considerations, it
is straightforward to show that
—/3pan AOAA

3
&AQAA ~ NIPAATT g @)
\/gpAA — dsc ao

where paa is the radius of the AA region and ay is
the moiré period; the last expression is valid in the limit
paa K as, and includes the relation as. = ap/0, where ag
is the lattice constant of the primitive graphene unit cell.
Using the values paa &~ 23 A and AG* ~ g{* ~ 1.9° from
Ref. [38], for a global twist of & = 1.1° this simple formula
predicts AGAB/BA = —(0.35°, in close agreement with the mul-
tiscale simulations [38]. More generally, Eq. (4) shows that
the AB/BA regions are significantly untwisted for any twist
angle 6 < 6. & 1.2° due to relaxation, and as the last approxi-
mate expression shows the untwisting is proportional to 6 with
a constant of proportionality ~0.53.

We emphasize that the atomic relaxation is crucial in pro-
ducing meaningful definitions for the AA, AB/BA, and DW
domains: without the relaxation, such domains would not
exist, as their extent would be confined to an area of order
a single unit cell of the bilayer graphene, and even then only
approximately, while the transition from one type of region to
another would be smooth and continuous over a length scale
comparable to the moiré scale. This is actually the situation for
larger (=1.2°) twist angles, where atomic relaxation is negli-
gible: moiré-scale domains do not exist, and as a consequence
there is no interesting behavior, specifically no low-energy
bands separated from the rest of the spectrum by band gaps.

Additionally, further bending/rippling of the domain walls
has been proposed, which may lead to interesting effects
such as the doubling of the moiré cell and the opening of
mini-gaps [41-43]. We also note that atomic relaxation is not
confined to tBLG but is important in many bilayer systems.
For instance, it plays a significant role in the vibrational
properties of twisted bilayers [44—47], and it underlies the
appearance of ferroelectricity in bilayers that have a broken
AB sublattice symmetry, such as hexagonal boron nitride
(hBN) and transition metal dichalcogenides (TMDs) [48-51].
In addition, atomic relaxation results in nontrivial topology,
such as topologically protected 1D conduction channels along
the DWs upon gating [39], as well as real space topology from
polarization [52,53] and strain fields [54].

AQAB/BA _

B. Nature of low-energy bands

To examine the nature of the low-energy bands we rely
on the k - p model developed in Refs. [20,21], which is a
more realistic generalization of the BM model and similar
models [6,55,56]. It is comprised of a pair of 2x2 Dirac
Hamiltonians for the individual graphene layers as well as
spatially modulated interlayer interactions due to the change
in stacking configuration. The Hamiltonian is written as a
plane wave expansion about one of the K/K’ valleys, which
are related by exchanging the layers. Additionally, atomic
relaxation effects are taken into account, and are described
by a pseudo-gauge field [57], which is an in-plane correction,
as well as momentum-dependent interlayer scattering terms,
which are needed to capture the particle-hole asymmetry; this
is the first-order correction to the interlayer hoppings being
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FIG. 2. (Top) Low-energy bands of tBLG along the K-I"-M-K (solid) and K’-I"-M’-K’ (dashed) paths, for a selection of twist angles near
the magic angle. The special angles 6} and 6}, which define the magic range, as well as the angle 6;, at which the bands are degenerate at I',
are shown. For the smallest and largest twist angles, the plots are shaded up to the half-filling lines of the lower bands. (Bottom) Fermi surfaces

of the lower bands directly above, at half-filling.

nonlocal [21]. Although cast in a k - p form, this model repro-
duces with excellent numerical accuracy the results of a full
TB calculation with all atomic degrees of freedom, using the
parameters that fit ab initio results, as derived in Refs. [20,21].
Thus, in the following, we refer to this model as the “exact”
k - p model to distinguish it from similar models based on
heuristic arguments.

Using the exact k - p model, we obtain the low-energy
bands of tBLG for a fine sampling of the twist angle 6 close to
the first magic angle of the BM model (1.05°), along the two
different paths in the moiré BZ shown in Fig. 1(b). We note
that the model, being parameterized by first-principles density
functional theory (DFT) calculations, predicts the magic angle
to be slightly lower than the experimentally observed one, al-
though this does not affect the qualitative behavior. For a more
realistic comparison to experimental results, we compensate
for the limitations of DFT calculations by adjusting the twist
angles by a constant shift of Afppr = 0.1°, that is, we report
the results for the values of the twist angle 6* = 6 + Afpgr.
The low-energy bands are shown in Fig. 2 for a few values
of 6* that capture some salient features. We first describe
their behavior qualitatively. The bands resemble those of a
honeycomb lattice, and are equal everywhere along the two
paths except along I'-M/M’, which is not enforced by any of
the symmetries: C3, M or C,7. As the twist angle decreases,
the upper band becomes less dispersive, but never fully flat.
In comparison, the lower band becomes extremely flat and its
curvature about I" changes sign. The bands eventually touch at
I" and then open up again as the twist angle decreases further,
with another sign change in the curvature of the lower band.

For a more quantitative description of the low-energy
bands, in Fig. 3, we show the behavior of the energy eigen-
values at high-symmetry points in the BZ, namely, the values
at I' and M, and the slope at K, i.e., the Fermi velocity vk.
The minimum bandwidth occurs in the lower band near two
values of the twist angle where the eigenvalues at I' and
M become equal, namely, 6; = 1.01°, and 65 = 1.14°. We
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FIG. 3. Magic range from k - p bands. (a) Energy eigenvalues
of the upper (red) and lower (blue) low-energy bands at the I" and
M points as a function of twist angle. The twist angles 6; and 65
at which the I' and M eigenvalues of the lower band are equal
are marked, and the region between them is shaded, indicating the
magic range. The twist angles 6; and 6, at which the eigenvalues
of both bands at I' and M are degenerate, respectively, are also
shown. (b) Fermi velocity vk (0*) of the upper (red) and lower (blue)
low-energy bands as a function of twist angle, as a percentage of
the Fermi velocity of graphene, v = 10° m/s [58]. The absolute
value of the Fermi velocity of both bands reaches a minimum
atoy.
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propose that the range between these angles be referred to
as the “magic range” because both bands remain quite flat
(though still not completely flat) throughout this region, as
shown in Fig. 3(a). We note that the eigenvalues at I' and M
never become degenerate for the top band, consistent with the
fact that this band is always more dispersive (less flat) than the
bottom band.

Within the magic range there are several features of in-
terest. The bands become degenerate at I' for 65 = 1.08°, as
shown in the middle panel of Fig. 2 and by the crossing of
the eigenvalues in Fig. 3(a). Additionally, the bands become
degenerate at M for an angle 6 between 1.00° and 1.10°,
which is the same angle where the magnitude of the Fermi
velocity reaches a minimum. As described earlier, the Fermi
velocity of both bands, which is positive for the top band
and negative for the bottom band, never goes to zero, but
its magnitude reaches a minimum at 6, and increases again
away from this value. The Fermi velocities of the top and
bottom bands are equal in magnitude and opposite in sign
throughout the region shown in Fig. 3, including the entire
magic range. Thus, a natural choice for the “magic angle”
is to identify it with the value of 8 where the magnitude of
the Fermi velocity of both bands acquires its minimum value
and the eigenvalues at M become degenerate. Finally, we note
that the magic angle is within the magic range, 6] < 6 < 65,
although not exactly at its midpoint. Summarizing, the main
features of the low-energy bands are

(i) there is always a pair (not counting K valley and spin
degeneracies) of low-energy bands near charge neutrality,
which are degenerate at the K point of the BZ;

(i) the two low-energy bands are always particle-hole
asymmetric, with the lower band being generally flatter than
the upper band;

(iii) the Fermi velocity at the K point of the BZ never goes
to zero, but reaches a minimum at a special value denoted here
by 05

(iv) the top and bottom bands become degenerate at the M
point of the BZ at 6;;

(v) neither band ever becomes exactly flat, but rather the
curvature of the bottom band at I changes sign and the two
bands become degenerate at I' at an angle 65 close to 6;

(vi) the bottom band has the lowest dispersion (is most
“flat”) when the eigenvalues at I' and M are equal, which
occurs at two values of 6%, defined here as 6}, 65.

We next turn to the qualitative behavior of the band struc-
ture as revealed by the Fermi surface at half-filling of the
low-energy bands. This is important because Mott-insulating
behavior in tBLG is observed experimentally at half-filling
of each of the low-energy bands, and superconductivity is
observed for small doping away from half-filling. In Fig. 2,
we show the Fermi surfaces at half-filling of the lower band
for a few values of twist angle 6*. For 6* = 1.2°, the lower
band forms a threefold surface around I", with pockets around
the K and K’ points. The trigonal warping which results in
the splitting along the '-M/M’ paths in the band structure
plots is clear. The Fermi surface of the top band resembles that
of the lower band, but with the orientation rotated by 7. As
the twist angle decreases and the lower band becomes flatter,
the threefold surface becomes connected between neighboring
BZs, but there still exist pockets around the K and K’ points.

(a) (b) (c)
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FIG. 4. (a) Illustration of the s (red) and p,, p, (blue) orbitals
and (b) their linear combinations into the three sp? hybrid orbitals,
labeled ¢y, ¢, ¢3. (c) The ¢y, ¢, ¢p_ effective orbitals are shown
on the right. For each orbital, the lobes of positive sign are shown in
magenta, and the lobes of negative sign are shown as gray. (d) Wave-
function magnitudes of the AA, DW, and AB/BA states, projected
onto the A and B sublattices from the ten-band model in Ref. [20],
for 6 = 0.9°.
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When the curvature of the bottom band at I' changes sign,
a pocket opens at I'. The bands along I'-M and I'-M’ pass
through one another, and the band along I'-M’ falls below
the half-filling line, causing the surface to rejoin, but with an
orientation rotated by 7. The orientation of the Fermi surface
of the top band also has its orientation reversed as it passes
through the magic range, indicating that the character of the
bands has been exchanged.

III. MODEL CONSTRUCTION

A. Real-space basis of effective orbitals

We define the lattice vectors a; =a,X and
a =k + V39) which describe the moiré pattern,
where as. is the moiré period, and a; = a, — a;, which
is not a linearly independent vector but is introduced for
convenience. We also define the vectors b; = %(al + ay),
b, = 1(ay —2a;), by = 1(a; —2a;), which connect the
centers of adjacent equilateral triangles in the triangular
lattice or, equivalently, the A and B sublattice sites of the
honeycomb lattice; these vectors are helpful in expressing
certain terms in the TB Hamiltonian.

Now we construct effective orbitals on the moiré scale,
observing the following: the usual sp? hybrid orbitals, which
are responsible for the in-plane o bonds in graphene, are
obtained as linear combinations of the conventional atomic s,
Dx, Dy orbitals [59], see Fig. 4(a). These hybrid orbitals have
a pronounced lobe of positive sign pointing in each of the
three directions related by Cs rotations, and a smaller lobe of
negative sign pointing in the opposite direction, see Fig. 4(b).
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FIG. 5. (a) Triangular lattice with the lattice vectors a;, a,, and as (black arrows), and the vectors by, by, and b; (red arrows). A total
of four unit cells of the periodic lattice are shown. The central lattice site is decorated with one ¢, orbital consisting of the three positive
lobes of ¢, ¢, ¢ for the A sublattice (orange), and a second orbital with the lobes rotated by 7 for the B sublattice (light blue). The purple
ellipses represent the DW states. (b) Re-arrangement of the orbitals so that the lobes ¢, ¢, ¢; are located at different lattice sites. The centers
of the orbitals attributed to the A and B sublattices are shown, which form a honeycomb lattice, as indicated by the dashed black lines.
(c) Nearest neighbor hoppings included in the (2 + 2)-band Hamiltonian, Eq. (6). The red arrows indicate the first nearest neighbor hoppings,
between opposite sublattices, connected by vectors b;. The green arrows indicate the second nearest neighbor hoppings, on the same sublattice,
connected by vectors a;. The blue arrows indicate the third nearest neighbor hoppings, between opposite sublattices, connected by vectors

—2b,.

We can consider more general single-lobe hybrid orbitals
as the basis which will generate effective states ¢g, ¢, and
¢_, of s, py, and p, character, but which maintain the di-
rectional features, as shown schematically in Fig. 4(c). In
particular, we will work with two such orbitals of s char-
acter, namely, ¢>§, ¢(])3, which possess prominent directional
features: the first one is as shown in Fig. 4(c) and the second is
rotated by 7, both centered at the AA sites of the moiré lattice.
Considering both states, the wavefunction has f-like character
at the AA sites, echoing the model in Ref. [31], where the
states attributed to the low-energy bands were compared to the
f electrons in heavy fermion superconductors. This is a good
description of the character of the AA sites, as shown from
phenomenological models with a small number of effective
orbitals [20], see Fig. 4(d). The DW states form a kagome
lattice of elongated ellipses, and the AB/BA domains form a
honeycomb lattice with wide triangles of opposite orientation.
The AA and DW states, which describe the low energy bands
[20], are illustrated in Fig. 5(a).

The AA states can also be expressed as

1 3
oY (r) = 5 ;qs,?‘(r +b,—r%), X=A,B, (5

where ¢ (r) are the single-lobe orbitals, in analogy to the sp?
hybrids, with the upper and lower signs corresponding to the
A-type and B-type lobes, respectively. The interesting aspect
of these states is that the three lobes of a single orbital are
located at the three different corners of the triangle whose
center is located at r*. Choosing r* = 2b; and r® = 0 yields
the arrangement of single lobes shown in Fig. 5(b), which,
when repeated periodically on the Bravais lattice defined by
the vectors a;, ap, produces a distribution of ¢-type orbitals
identical to that shown in Fig. 5(a). The states defined in
Eq. (5) form a natural basis of a honeycomb lattice, whose
dominant hopping matrix elements are to the kagome states
located along the DWs of the moiré pattern, that is, on the
lines connecting the sites of the triangular lattice.

B. (2 4+ 2)-band Hamiltonian

Having argued that a natural set of orbitals on a honeycomb
lattice are the ¢ states defined in Eq. (5), we propose a four-
band model with the following structure:

HED = < * Hi?t) ©)
int, AN
Hkt f Hk

This Hamiltonian is comprised of a 2x2 submatrix H;; of ¢
states at the AA sites, described by a honeycomb lattice, a sec-
ond 2 x2 submatrix Hﬁ for the symmetric combinations of the
DW states which mediate the hoppings between the AA states,
which also form a honeycomb lattice, and an off-diagonal
2 x2 interaction matrix HE‘ that connects the two honeycomb
lattices. The AA states describe the low-energy bands, which
is natural as the DOS at charge neutrality is largest around
the AA sites, while the DW states provide complementary (or
auxiliary) bands, which are necessary to ensure the correct
symmetries of tBLG [60]. The first submatrix in ’H]((HZ) for
the AA states is given by

. 1y + 15 f2(K) 11 fi(K) + 15 f3(K) o
k = * * * *
HR®+5HE 5 +5AK
where the diagonal elements represent the hoppings within
each sublattice, up to second nearest neighbors of the hon-
eycomb lattice, and the off-diagonal terms represent the

interactions between sublattices, up to third nearest neighbors,
as shown in Fig. 5(c). The scalar functions f;(k) are given by

3 3
fik) = "exp(ik-b;),  fak) =) cos(k-a,),
j=1

j=1

3
f3() =) exp(=2ik - b)), ®)

j=1

which describe the interactions between first, second, and
third nearest neighbors on the honeycomb lattice. An arbitrary
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FIG. 6. Values of the hopping parameters 7", t,.A, and t,.i"t, i =0, 1, 2, and 3, that appear in H*, H*, and H™, respectively, as determined
by fitting to the k - p low-energy bands, for the range of twist angles 0.95° < 6* < 1.2°. The shaded regions indicate the magic range.

number of further neighbor interactions could be included to
systematically fit to and reproduce the bands from the k - p
Hamiltonian, but we find that the main features of the low-
energy bands are reproduced by including up to third nearest
neighbor interactions. We take the Hamiltonian of the DW
states, ’Hlf , to be of exactly the same form as the low-energy
bands Hamiltonian, #;, only with different parameters,

namely, tiA, i=0, 1, 2, and 3. The Hamiltonian describing

the interaction between the two lattices, ’HL’“, also has the

same form as H; and Hlf , with another set of parameters,
tiim, i=0, 1, 2, and 3, but differs from those two Hamil-
tonians in that the parameter t3i"t is allowed to be complex.
It turns out that a complex phase is required to reproduce the
differences between the bands along the I'-M and I"'-M’ paths.

This model contains a total of 13 independent parameters,
which can be fit to reproduce the low-energy bands of tBLG
obtained from the exact k - p model. We used MATHEMATICA
to determine the hopping parameters by minimizing the sum
of squares of the differences between the low-energy bands
in the k - p model and the (2 4 2)-band model for the range
of twist angles shown in Fig. 3. The auxiliary bands, taken to
be the valence bands directly below the low-energy bands for
each twist angle, were not included in the fitting. The fits could
be improved arbitrarily by including more nearest neighbor
interactions, although this is not pursued here as the goal is to

reproduce the main features of the low-energy bands using a
minimal model.

The parameters obtained from fitting to the k - p bands
are shown in Fig. 6 as a function of 6*, and the resulting
low-energy bands are provided in Ref. [61]. Several conclu-
sions can be drawn about the behavior of the parameters in
the model and their physical meaning. First, we note there
are three separate energy scales in the three different 2x2
block Hamiltonians. The hoppings in 7*, which describe the
low-energy bands, are of order 10 meV, and the hoppings
in H”, are of order 1 eV. Qualitatively, the latter hoppings
determine the position and dispersion of the auxiliary bands.
This does not influence the low-energy bands much outside of
the magic range, but inside the magic range, the parameters in
H, decrease to values of order 1-10 meV, and the distance
between the low-energy and auxiliary bands is minimized,
causing the curvature of the lower band to change. The hop-
pings in H™, describing the interactions between the two
lattices, are of an energy scale between those of H* and H%,
of order 10-100 meV. We note that the imaginary part of té‘“
determines the splitting along the I'-M /M’ paths and hence
the orientation of the Fermi surfaces; there is a change in the
sign of the imaginary part of t;"‘ as 0* spans the magic range.
This sign change is responsible for the change in orientation
of the Fermi surface shown in Fig. 2.
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FIG. 7. Low-energy bands obtained by solving Eq. (10), setting E = 0 in Eq. (11), using the fits to the (2 + 2)-band Hamiltonian in Fig. 6.
The k - p bands are shown in gray. The solid and dashed lines show the bands along the K-I'-M-K and K’-I"-M’-K’ paths, respectively.

C. Towards a Hubbard-like model

An eigenvector of the Hamiltonian Hf”) can be repre-
sented by a four-component spinor, ®, which can be broken in
the components (¢, ¢’), each of them being a two-component
spinor and representing predominantly the low-energy states
(¢) and the highly dispersive states (¢’), although the pres-
ence of the interaction term mixes the two sets:

% int
,Hl((2+2)¢ — E¢ . (HI}IEI:T Z‘%)(g/) = E((f’) (9)

We may consider the dispersive states as a “bath” to which the
low-energy states are coupled, in addition to the hopping ma-
trix elements among themselves. This picture can be taken one
step further by eliminating the dispersive bands to obtain the
effective 2x2 Hamiltonian that couples only the low-energy
states. This effective Hamiltonian is derived formally from
the set of two equations in ¢, ¢, implied by Eq. (9). By
solving the second equation for ¢ in terms of ¢ and substitut-
ing the resulting expression into the first equation we obtain
the energy-dependent effective Hamiltonian equation for ¢ in
terms of H;, Hf, and 7—[{(‘“:

Hy(E)p = E, (10)

where
H(E) = HE — HM(HE —E) 1M D

Given that the scale of the parameters tiA is eV while the scale
of the low-energy bands is meV (see Fig. 6), neglecting the
energy dependence of Hf(ff(E ) may be a reasonable approxi-
mation, as it enters in the effective Hamiltonian only through
the combination (Hlf —FE).

The effective Hamiltonian Hﬁff(E ), even in the approx-
imation mentioned above where its energy dependence is
neglected (equivalent to setting £ = 0 in Eq. (11)), provides
an excellent description of the low-energy bands, as shown
in Fig. 7 and Ref. [61]. However, one disadvantage is that
the k dependence of the effective Hamiltonian is nontrivial,
with the functions f;(k) of Eq. (8) entering nonlinearly in the
second term of ’Hf{” This is in contrast to the case of the full
(2 4+ 2)-band Hamiltonian, where the k dependence of each
term is clear and physically motivated. For some values of k
the problem simplifies, as shown in Ref. [61].

For the creation of a faithful physical Hubbard-type model,
one needs to specify the values of the parameters that enter
in the effective Hamiltonian defined in Eq. (11), as well as
the on-site Coulomb repulsion terms for the various sectors.

These values will also determine the type of model appropri-
ate for the system under consideration (for a recent review
of Hubbard models, see Ref. [62]). As mentioned earlier,
Eq. (11) contains nontrivial k dependence, while the esti-
mation of various Coulomb repulsion terms (U’s) requires
careful treatment of the actual orbitals involved (see, for ex-
ample, Ref. [26]).

While our model reproduces the ab initio energy bands, it
does not contain information about the actual wavefunctions
in terms of atomic orbitals, which would be needed for reliable
estimation of the U terms and related properties. Nevertheless,
some properties may be inferred from the nature of the energy
bands. Specifically, since our model is comprised of two hon-
eycomb lattices, the geometric properties are expected to be
similar to those of graphene: a Berry curvature which diverges
at the K and K’ points, and a Zak phase of £ obtained upon
integrating the connection around a contour enclosing the
K/K’ point (see Ref. [61] for the behavior of the bands near
the K/K’ points). Previous works have developed moiré-scale
effective models (Refs. [28,29]), but have not been used to
study band topology. For this, we believe a more detailed and
rigorous treatment would be needed, such as in the models
in Refs. [23,24,28-31], full atomistic tight-binding models, or
large-scale first-principles calculations.

IV. DISCUSSION AND CONCLUSIONS

In the present work, we revisited the problem of the low-
energy bands in tBLG with an aim to better understand their
origin and to make connections to correlated electron behavior
in this system. We first reviewed the effects of atomic relax-
ation which is the driving force for creating different types
of electronic states associated with the AA regions, the DW
regions and the AB/BA regions of the moiré supercell. We
then examined in detail the behavior of the electronic low-
energy bands of tBLG near the magic range, as obtained from
ab initio TB methods. These bands exhibit more interesting
features than the Fermi velocity simply going to zero at a
magic angle, as predicted by idealized continuum models [6].
In fact, the Fermi velocity never vanishes, but instead attains
a finite minimum value [20]. The low-energy bands exhibit
the smallest dispersion when the eigenvalues at the I' and M
points of the supercell BZ become equal. We propose that the
values at which this occurs serve as a proper definition for the
bounds of the magic range of twist angles. Within this range,
the curvature of the lower band at I" is negative and it even
intersects the upper band at I' near the middle of the magic
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range. The two bands also touch at M at the same twist angle
where the Fermi velocity reaches a minimum, near the center
of the magic range. The bands become more dispersive again
at twist angles below the magic range, although the orientation
of the bands has changed, which is evident from the shape of
the Fermi surfaces at half-filling.

Overall, our analysis of the low-energy band features sug-
gests that more attention should be paid to their behavior in the
neighborhood of the I" and M points of the supercell BZ, and
for a range of twist angles 6], ~ 67 &+ 0.07°, where 6 is the
magic angle at which the Fermi velocity attains its (nonzero)
minimum value; at the boundaries of the magic range the low-
energy bands become most flat due to the degeneracy of the
I' and M points, and the Fermi surface at half-filling exhibits
intriguing behavior. In fact, we find that at half-filling of the
lower band the K/K’ valleys remain unoccupied throughout
the magic range of twist angles. Close to the middle of the
magic range (where the Fermi velocity reaches a minimum),
even the I' valley is unoccupied, and only states near the M
point are involved.

Additionally, we proposed a (2 + 2)-band model (per spin
and layer) which captures the main features of the low-energy
bands throughout the magic range. The model is comprised
of two honeycomb lattices, one for the AA sites which de-
scribe the low-energy bands, and another for the DW states
which serve as the auxiliary bands necessary to capture the
symmetries of the low-energy bands [33,60]. Our model is
physically motivated by the form of the wave functions ob-
tained from ab initio based models, and contains a small
number of physically intuitive parameters. This model gives
a satisfactory description of the low-energy bands of exact
k - p Hamiltonians, and provides insight into the dramatic
twist-angle-dependence of those bands, particularly within the
magic range.

The motivation for choosing four bands in a minimal model
is based on two facts. First, as is clear from the ab initio
tight-binding bands discussed in Sec. II B, the most interesting
states for studying correlated electron behavior (the “flatest”
bands) are the valence bands of the moiré supercell, which are
in close proximity to the highly dispersive bands with lower
energy, as seen clearly in Fig. 7; thus the two low-energy
bands and two of the adjacent dispersive bands are all that
is required to capture this behavior near the charge neutrality
point (CNP). Second, as more detailed studies of the sym-
metries of the bands reveal [28,29], it is possible to produce
minimal models that contain as few as 5 bands by focusing
on one sector only (conduction or valence bands, relative to
the CNP) through Wannerization of the ab initio tight-binding
results; our model represents an attempt to further reduce
this number to 4, by changing the underlying lattices of both
the AA orbitals (usually taken to be a triangular lattice) and
the DW-orbitals (usually taken to be a kagome lattice), to
a honeycomb lattice. These two facts allow us to focus on
the valence sector of the moiré bands and neglect the higher
energy bands, without sacrificing any critical aspect of the
behavior.

In an attempt to provide a link to a Hubbard-type model
that can capture the many-body aspects of the system, we pro-
jected the auxiliary bands out of the (2 + 2)-band Hamiltonian
to produce an effective 2x2 Hamiltonian for the low-energy

bands. Although the k dependence of the matrix elements
of the effective Hamiltonian is not as physically transparent
as in the original (2 4 2)-band Hamiltonian, the former still
offers an excellent description of the two low-energy bands.
Building an accurate Hubbard-type model from these states
lies beyond the scope of the present paper and is left for future
publications.

Lastly, here we compare and contrast the essential features
of our model to related earlier work. We first emphasize
that our model applies to the behavior of the bands in the
magic range of angles, which has a width of 0.14°, consistent
with experimental results [1], where superconductivity was
observed at twist angles of 1.05° and 1.16°, a fact which
is often overlooked. In contrast, other minimal models, for
instance Refs. [28,44], constructed a model valid for a single
magic-angle value based on two pairs of low-energy bands for
the two different valleys. Our model captures a wide range of
behavior for a very fine sampling of twist angles within the
magic range where the bands change rapidly. The parameters
that enter in our model have physically motivated meaning,
and evolve smoothly as a function of twist angle (except at
65, where the bands touch at I'), which is quite remarkable
for a simple 4 x4 Hamiltonian.

Our model suggests that a natural description of the AA
sites consists of two orbitals interacting on a honeycomb lat-
tice rather than two orbitals on the triangular lattice formed by
the AA sites. The orbitals of our model have lobes distributed
over the corners of a triangle formed by AA regions, a feature
similar to previously considered models of the low-energy
states, see Refs. [26,33]. However, an important difference
with those previous works is that the distributed lobes of
our model point along the sides of the triangle, whereas
those of the previous models point foward the center of the
triangle. This has the consequence that in our model the pri-
mary low-energy orbitals, consisting of the three distributed
lobes, couple predominantly to the states of the kagome lattice
formed by the DW of the moiré pattern. The latter states
represent the highly dispersive, auxiliary bands and can be
described as consisting of elongated ellipses whose linear
combination form orbitals also centered at the same honey-
comb lattice as the primary three-lobe states. In this fashion,
all the important states exist on a common honeycomb lattice.

The coupling of the low-energy bands to auxiliary dis-
persive bands has been proposed recently by Bernevig and
co-workers, see Ref. [31]. The difference from those works
is that in the model proposed here both the low-energy
bands and the dispersive bands are physically motivated by
features of the moiré pattern and the associated localized
orbitals obtained from models with a much larger num-
ber of bands [20,29] that accurately reproduce the ab initio
bands. Interestingly, the low-energy orbitals we derive from
these considerations have a shape consistent with the f-
orbital shape associated with the AA sites in the model of
Ref. [31].

Another important difference between the models pre-
sented here and similar attempts to focus on the low-energy
bands is that our bands are strongly electron-hole asymmet-
ric. This is consistent with ab initio calculations [18] as
well as with experiment [2]. The particle-hole asymmetry
of the bands has important consequences for their behavior.
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Specifically, the lower of the low-energy bands is much more
flat than the upper one, again consistent with experimental
indications that superconductivity is much more pronounced
for hole doping than for electron doping [1].

Of course, some compromises need to be made in order
to describe the low-energy bands with a few-band model.
The low-energy states cannot be localized into fewer than
five bands (per spin and valley) [29], and this is clearly the
case here, as both the lobes at AA sites and the domain-wall
states are distributed across a moiré cell. This is consistent
with the observation that the bands near the magic angle are
predicted to have fragile topology [28,30]. Additionally, the
wavefunctions of the two-band model no longer satisfy all of
the symmetries of tBLG; for instance, the lobes at AA sites,
when distributed across a unit cell, no longer satisfy the M
symmetry. If one insists on preserving these symmetries, then
a larger number of bands is necessary which makes the formu-
lation of a many-body model intractable. Alternatively, it may
be possible to restore some of the symmetries by considering

a supercell of the moiré cell, as recent experimental evidence
seems to suggest [63].

In summary, the model of the low-energy bands derived
here offers certain advantages in that it describes the states of
interest accurately and with the use of relatively few and phys-
ically motivated parameters, whose values evolve smoothly as
a function of the twist angle. This model may serve as a useful
springboard for capturing the correlated electron behavior in
tBLG.
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