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Hole qubits in germanium quantum dots are promising candidates for coherent control and manipulation of
the spin degree of freedom through electric dipole spin resonance. We theoretically study the time dynamics
of a single heavy-hole qubit in a laser-driven planar germanium quantum dot confined laterally by a harmonic
potential in the presence of linear and cubic Rashba spin-orbit couplings and an out-of-plane magnetic field.
We obtain an approximate analytical formula of the Rabi frequency using a Schrieffer-Wolff transformation
and establish a connection of our model with the ESDR results obtained for this system. For stronger beams,
we employ different methods such as unitary transformation and Floquet theory to study the time evolution
numerically. We observe that high radiation intensity is not suitable for the qubit rotation due to the presence
of high-frequency noise superimposed on the Rabi oscillations. We display the Floquet spectrum and highlight
the quasienergy levels responsible for the Rabi oscillations in the Floquet picture. We study the interplay of both
the types of Rashba couplings and show that the Rabi oscillations, which are brought about by the linear Rashba
coupling, vanish for typical values of the cubic Rashba coupling in this system.
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I. INTRODUCTION

Qubit is the basic unit of quantum information. The search
for materials where qubits can be fast-operated, efficiently
controlled, and well shielded from the environment has been
at the forefront of research. Solid-state spin qubits, such as
in Si, Ge, and III-V semiconductor heterostructures, have at-
tracted immense attention in recent times as nanometer-scale
quantum devices can be lithographically fabricated onto them,
creating an isolated environment for the spins to achieve long
coherence times [1–4]. Furthermore, technological advance-
ments in microelectronics and production of high-quality Si
hold great prospect of building a scalable semiconductor plat-
form to develop quantum computers which may host millions
of qubits [5,6].

The Zeeman-split electronic spin states are suitable can-
didates for single and multiqubit operations, as proposed by
Loss and DiVincenzo [7]. Single qubit gates such as Pauli
gates have been realized in Si and GaAs by inducing Rabi
oscillations between the spin-up and -down states with the
help of electron spin resonance (ESR) [8–12]. However, ESR
offers experimental roadblocks from the point of view of
scaling as magnetic fields are difficult to localize in miniature
landscapes. However, electrical driving is easier to imple-
ment locally through the application of ac voltage across
the in situ gate electrodes. Modulation of g-tensor [13–17],
slanting-Zeeman field ESR [18–21], and electric dipole spin
resonance (EDSR) [22,23] have proved to be reliable tech-
niques for achieving coherent qubit control through pure
electrical drives. Among these, EDSR is of particular interest
as it harnesses the spin-orbit coupling (SOC) of the material
to perform the qubit rotations. The mechanism of EDSR has
been extensively studied over the years in quantum wells [24],
planar quantum dots with electron- [25] or hole-qubits [26],
TMD monolayers [27], and double quantum dots [28]. The

electronic spin-qubits in 2D GaAs quantum dot [22] and InSb
nanowire [23] have successfully exhibited single-spin EDSR.

The electron spin qubits are prone to decoherence and
relaxations due to interaction with phonons [29–32] in the
presence of SOC and contact-hyperfine interaction with the
sea of nuclear spins [33–35]. The latter can be substantially
minimized in group IV semiconductors such as Si and Ge
as they can be engineered into nuclear-spin free materials by
isotopic purification [36–38]. In recent times, hole spin-qubits
have emerged as viable alternatives to the electronic coun-
terparts [39]. The suppressed hyperfine interaction due to the
p-nature of the hole wave function leads to longer coherence
times [40–43]. Moreover, the valley degeneracy which stands
as an obstacle in using Si electrons as spin-qubits [44], is
absent for holes. The most attractive feature is, however, the
stronger SOC of holes as compared to that of conduction
electrons, which facilitates faster EDSR [26]. However, it
can also lead to stronger decoherence through spin-phonon
interactions [45].

Although Si might appear to be the natural choice for hole
spin-qubits, it is Ge that provides some of the most desirable
features for qubit control [46]. The smaller effective mass
of holes in Ge [47] relaxes nanofabrication requirements, as
the quantum dots are larger than in Si. Since Ge is heavier
than Si, it has stronger SOC [48] which is desirable for
faster qubit operations. Single-hole qubit rotations have
been successfully demonstrated in planar Ge quantum wells
and nanowires using EDSR [49–52]. The 2D holes of Ge
exhibit p-cubic Rashba SOC [53,54] consisting of cubic-
(∝ p+ p− p+σ+ + H.c.) and spherically symmetric terms
(∝ p3

+σ− + H.c.), out of which the latter dominates. The
Dresselhaus SOC is absent due to bulk-inversion symmetry
of the crystal. Several theoretical studies have attributed the
EDSR in planar Ge quantum dots to the cubic-symmetric
component of the SOC [52,55] in the presence of an
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out-of-plane magnetic field. The electrical operation of planar
Ge hole spin qubits in an in-plane magnetic field has also
been studied theoretically [56]. However, it has been recently
argued that the cubic-symmetric component is negligibly
small and a p-linear direct Rashba SOC, which exists in
[001]-oriented Ge/Si quantum wells, is indeed responsible
for the EDSR [57]. Its origins are attributed to the local C2v

interface [58–61] and is deduced by performing atomistic
pseudopotential method calculations [57,62]. Further studies
have also claimed the existence of a p-linear Dresselhaus SOC
in these heterostructures originating from heavy-hole/light-
hole mixings [63]. A specific kind of p-linear Rashba SOC
can also be induced by moving the dot across inhomogeneous
strain fields, which along with g-factor modulations results
in faster Rabi rotations [64]. Inhomogenous and inseparable
electric fields can also lead to a different type of SOC mecha-
nism that supports hole manipulation with in-plane magnetic
fields [65].

In the past two decades, there have been significant de-
velopments in intense-ultrafast laser spectroscopy [66–68],
which gave birth to Floquet engineering. The previous works
on EDSR with hole spin-qubits dealt with the application
of electric pulses through gate electrodes only. The study of
EDSR with laser pulses or optical EDSR is still missing.
Second, the EDSR problem was only treated perturbatively
and the effects of stronger electric fields were not addressed.
Third, the previous works did not take into account the effect
of simultaneous presence of both linear and cubic Rashba
SOC in determining the nature of EDSR. In this work, we
make a comprehensive study of all the above aspects by
studying EDSR of 2D HH states of Ge driven by a circularly
polarized laser beam. We consider the dominant forms of SOC
in this system viz. the p-linear and the spherically symmetric
component of p-cubic Rashba SOC. We show that the effect
of laser field is equivalent to that of the usual gate-driven
EDSR setup. For small linear Rashba parameter and weak
driving (perturbative limit), we perform a Schrieffer-Wolff
transformation to obtain approximate analytical expressions
of the Rabi frequency and Rabi transition probabilities. For
realistic system parameters, the Rabi frequency turns out to be
of the order of megahertz. We discuss the dependence of the
maximum transition probability and width of the resonances
on the magnetic field strength, driving frequency and Rashba
parameter. For stronger driving and larger Rashba strengths,
we resort to numerical methods. In the presence of either of
the Rashba couplings, we exploit the “rotational” symmetries
of the system to derive a unitary transformation that converts
the driven Hamiltonian into a static one, making the numeri-
cal computation of the time-evolved state easier. We observe
a high-frequency component superimposed on the resonant
Rabi oscillations for larger amplitudes of radiation, which the
perturbation theory does not capture. When both the Rashba
couplings are present, we use Floquet theory to numerically
calculate the time evolution. We study the interplay of both
the couplings and observe that large and realistic values of the
cubic Rashba coupling drives the system out of resonance and
effectively destroys the Rabi oscillations. We also show that
the Rabi frequency is equal to quasienergy gap between two
adjacent Floquet levels, which increases with the radiation
amplitude.

FIG. 1. Schematic diagram of the model.

The paper is organized as follows. In Sec. II, we discuss the
theoretical model of the planar Ge quantum dot. In Sec. III, we
derive the interaction Hamiltonian of the laser beam with the
hole qubit. In Sec. IV A, we study relation between time evo-
lution of the driven system in different gauges. Section IV B
deals with analytical formalism to obtain the Rabi frequency
of the system when the SOC and drive are treated perturba-
tively. In Sec. IV C, we discuss the numerical methods such
as unitary transformation and Floquet theory use to solve the
Schrödinger equation. In Sec. V, we present and analyze the
results of our study for realistic system parameters and laser
strengths in the presence of either or both types of SOC in this
system. Finally, we conclude our results in Sec. VI.

II. MODEL

In groups IV and III–V semiconductors, the hole states lie
close to the � point of valence band of these materials and
have effective spin J = 3/2. These states can be described by
the 4×4 Luttinger Hamiltonian [69]. In 2D quantum wells
confined along the growth direction, the heavy-hole (HH)
states (spin ±3/2) split apart from the light-hole (LH) ones
(spin ±1/2) with a higher energy. The splitting depends on
the well thickness (say d) and varies as d−2. We consider a 2D
HH-gas of Ge confined electrostatically in the lateral direction
and subjected to a magnetic field perpendicular to the 2D
plane (B = Bẑ) as shown in Fig. 1. The confinement can be
modeled by a parabolic potential U (x, y) = mω2

0(x2 + y2)/2,
where ω0 = h̄/(ml2

0 ) with l0 being the confinement length-
scale (approximated as radius of the dot) and m being the
effective heavy hole mass. Including the SOC effects, the
Hamiltonian of the HH states in the out-of-plane magnetic
field can be written as

H0 = P2

2m
+ U (x, y) − 1

2
g⊥μBBσz + iαc(P3

−σ+ − P3
+σ−)

− iαl (P−σ+ − P+σ−), (1)

where P = p − |e|AB(r), AB(r) = B(−y, x)/2, σ± =
(σx ± iσy)/2, and P± = Px ± iPy. The parameter
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αc = 3γ0αR〈Ez〉/(2�me) is the cubic Rashba SOC strength
(corresponding to the dominant spherically symmetric
contribution) which is directly proportional to the average
electric field at the interface 〈Ez〉 and inversely proportional
to HH-LH splitting �. Here, me is the bare electron mass,
αR the coupling constant, γ0 a Luttinger parameter and
g⊥ the out-of-plane component of the g-factor tensor. The
parameter γ0 is equal to the Luttinger parameters γ2 and
γ3 within the spherical approximation of the Luttinger
Hamiltonian, i.e., γ0 = γ2 ≈ γ3 [70]. The parameter αl

denotes the newly claimed linear Rashba SOC strength
[57]. The Rashba couplings can be controlled either by
changing the interfacial dc electric field, the well thickness
or both. When the Rashba couplings are tuned to zero, i.e.,
αl = αc = 0, the Hamiltonian is exactly solvable using the
following coordinate transformations [31]:

x = 1√
2�

(
√

ω1q1 + √
ω2q2), (2)

y = 1

m
√

2�

(
p1√
ω1

− p2√
ω2

)
, (3)

px =
√

�

2

(
p1√
ω1

+ p2√
ω2

)
, (4)

py = m

√
�

2

(−√
ω1q1 + √

ω2q2
)
, (5)

where [qi, q j] = [pi, p j] = 0, [qi, p j] = ih̄δi, j and the con-

stants are defined as ω1,2 = � ± ωc/2, � =
√

ω2
0 + ω2

c/4,
ωc = |e|B/m, and ωz = g⊥μBB/h̄. It is to be noted that for
holes, ω1,2 have their signs exchanged when compared to
those defined in Ref. [31]. Upon transforming, the SOC-free
Hamiltonian in the new coordinates can be written as a sum
of two uncoupled harmonic oscillators with Zeeman coupling

HFD = p2
1

2m
+ 1

2
mω2

1q2
1 + p2

2

2m
+ 1

2
mω2

2q2
2 − h̄ωz

2
σz. (6)

Using the ladder operators

â1,2 =
√

mω1,2

2h̄

(
q1,2 + i

p1,2

mω1,2

)
(7)

and

â†
1,2 =

√
mω1,2

2h̄

(
q1,2 − i

p1,2

mω1,2

)
, (8)

the Hamiltonian can be cast as

HFD = h̄ω1

(
n̂1 + 1

2

)
+ h̄ω2

(
n̂2 + 1

2

)
− h̄ωz

2
σz, (9)

where n̂i = â†
i âi is the number operator. Its eigenstates are the

well-known Fock-Darwin (FD) levels with energies En1,n2,s =
h̄ω1(n1 + 1/2) + h̄ω2(n2 + 1/2) − h̄ωzs/3 and eigenvectors
|n1, n2, s〉 = 
n1 (q1

√
mω1/h̄)
n2 (q2

√
mω2/h̄)|s〉, where s =

±3/2. Here, 
n(...) is the nth excited state of the harmonic
oscillator in the specified coordinates. Therefore, on tuning
αc,l → 0, we get pure localized spin states which can be used
as qubits.

For finite αc,l , the last two terms of Eq. (1), representing
the Rashba interaction HR, can be rewritten as

HR = H (C)
R + H (L)

R , (10)

where

H (C)
R = αc(mh̄)3/2[( f+â†

1 + f−â2)3σ+ + H.c.] (11)

and

H (L)
R = αl

√
mh̄[( f+â†

1 + f−â2)σ+ + H.c.], (12)

with

f± = ±
√

� + ωc

2
√

�
. (13)

Hence, the total Hamiltonian is H0 = HFD + H (C)
R + H (L)

R .
The superscripts “C” and “L” denote cubic and linear Rashba
couplings, respectively. The Rashba interactions couple the
FD levels with different spin quantum numbers and hence spin
is no longer a conserved quantity. The exact eigenstates of
the system in the presence of the Rashba coupling(s) are un-
known and hence perturbation theory is often used to study the
physics of these systems. For very small Rashba strengths, the
FD levels can still be considered as approximate energy levels
of the system as the first order correction in energy due to the
Rashba couplings are zero. The first order corrections to the
energy eigenstates are however nonzero and states with oppo-
site spins get mixed. For example, the cubic Rashba coupling
mixes |0, 0,−3/2〉 with |3, 0, 3/2〉 up to first order in αc while
the linear Rashba coupling mixes |0, 0,−3/2〉 with |1, 0, 3/2〉
up to first order in αl . However, for time spans much shorter
than the coupling time scale, spin is approximately a good
quantum number.

A. Symmetries

The system also has some continuous symmetries which
can be seen from the commutator relations of angular mo-
mentum. In terms of the number operators, the orbital angular
momentum operator can be written as Lz = h̄(n̂2 − n̂1). Since
[Lz, HFD] = 0, the orbital angular momentum is conserved in
absence of the Rashba couplings. On defining operators

Ĵ (L)
z = Lz + h̄σz/2 for αl 	= 0, αc = 0 (14)

and

Ĵ (C)
z = Lz + 3h̄σz/2 for αc 	= 0, αl = 0, (15)

we get [Ĵ (L)
z , HFD + H (L)

R ] = 0 and [Ĵ (C)
z , HFD + H (C)

R ] = 0.
This implies the presence of a rotational symmetry about z
axis in the total Hilbert space (spin plus orbital) when either
of the two Rashba couplings are present. As we show later,
this symmetry of the Hamiltonian can be exploited to obtain
the time-evolution of the system under circular driving.

III. CIRCULAR DRIVE BY LASER

A coherent laser beam of circularly polarized radiation
is shone upon the hole gas normally (Fig. 1). We treat the
laser beam classically by modeling it as a plane wave with
electric and magnetic fields given by E(r, t ) = E0[sin(ωt +
kz), cos(ωt + kz), 0] and B(r, t ) = −(E0/c)[− cos(ωt + kz),
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sin(ωt + kz), 0], respectively. The effect of the electromag-
netic field is incorporated into the Hamiltonian (1) through
the vector and scalar potentials in two different gauges
viz. velocity gauge and length gauge. It is to be noted
that the ac electric field is in-plane and also averages out
to zero over the time scales of qubit operations. Hence,
it has no influence on the Rashba strength (∝ 〈Ez〉) in
this model.

A. Velocity gauge

The most natural choice of gauge to describe plane wave
radiation is the velocity gauge. In this gauge, the beam can
be represented by a vector potential Ar (r, t ) = A0[cos(ωt +
kz),− sin(ωt + kz), 0] and φ(r, t ) = 0, where A0 = E0/ω

with E0 being the electric field amplitude. The Hamiltonian
(1) becomes periodic in time through Peierls substitution, i.e.,
H (t ) = H0(P − |e|Ar (r, t )). So, in this gauge, the coupling
with radiation is only through the vector potential. Since z = 0
for the hole gas, Ar (r, t ) ≡ Ar (t ) = A0(cos ωt,− sin ωt, 0).
The driven Hamiltonian can be decomposed as H (t ) = HFD +
HR + V (t ), where

V (t ) =
3∑

n=−3

Vneinωt , (16)

where Vn are the Fourier components whose matrix elements
are given by

V0 = e2A2
0

2m
, (17)

V1 = 3iαc|e|A0mh̄( f+â†
1 + f−â2)2σ+iαl |e|A0σ+

+ i
|e|A0

2m

√
mh̄( f+â1 + f−â†

2), (18)

V2 = −3αc

√
mh̄|e|2A2

0( f+â†
1 + f−â2)σ+, (19)

and

V3 = −iαc|e|3A3
0σ+. (20)

Due to Hermiticity, the Fourier components are related as
V−n = V †

n . The forms of the matrix elements of Vn and HR

can be found in Appendix A. Since the magnetic vector lies
in-plane, it does not have any Zeeman interaction with the hole
spins because the 2×2 HH submatrices fulfill the property:
Jx = Jy = 0 and Jz = 3σz/2 [45,71].

The second term of V1 and the term V3 couple spins
with the same orbital quantum numbers. It shows that Rabi
transitions |3/2〉 ⇐⇒ | − 3/2〉 may be induced within the
same orbital sector (�n1 = �n2 = 0) using circularly po-
larized light if the higher levels are decoupled. To begin
with, let us consider the block of the two lowest lying FD
states viz. |0, 0, 3/2〉 and |0, 0,−3/2〉 that have opposite
spins:

H2×2 =
⎛
⎝ e2A2

0
2m + h̄� − h̄ωz

2 κ (t )

κ∗(t ) e2A2
0

2m + h̄� + h̄ωz

2

⎞
⎠, (21)

where κ (t ) = iαl |e|A0eiωt − iαc|e|3A3
0e3iωt . The lowest block

resembles a two-level system driven by harmonic modes

of frequencies 3ω and ω corresponding to cubic and linear
Rashba SOCs, respectively. For ω = ωz/3 and ω = ωz, the
Rabi frequencies are 2αc|e|3E3

0 /(h̄ω3) and 2αl |e|E0/(h̄ω),
respectively. This shows that the vector potential of the co-
herent radiation can cause hole-spin resonance (�n1 = 0,

�n2 = 0,�s = 3) in the presence of Rashba SOC. However,
the Rabi oscillations are killed by the coupling of this block
with the higher energy levels and hence the two-level picture
does not capture the physics of the complete system.

B. Length gauge

We may also choose another gauge where A′
r (r, t ) =

(0, 0, E0/c[x sin(ωt + kz) + y cos(ωt + kz)]) and φ′
r (r, t ) =

−E0[x sin(ωt + kz) + y cos(ωt + kz)]. The two gauges are
related as: A′

r (r, t ) = Ar (r, t )+∇(r, t ) and φ′
r (r, t ) =

φr (r, t ) − ∂t(r, t ), where

(r, t ) ≡  = (E0/ω)[−x cos(ωt + kz) + y sin(ωt + kz)].

(22)

Since Pz is absent, Ãz does not couple with the static Hamil-
tonian. So, the coupling with radiation is only through the
scalar potential φ′

r (r, t ) = −E0(x sin ωt + y cos ωt ) at z = 0,
i.e., H ′(t ) = HFD + HR + |e|φ′

r (r, t ). This is called the length
gauge.

The Hamiltonian in the length gauge is identical to that
of an EDSR setup. For EDSR, a circularly rotating electric
field E = E0(sin ωt, cos ωt ) is applied across the dot using
two perpendicular pairs of gates. Then, the interaction of the
heavy holes with the field can be written as

Vg(t ) = −|e|
∫ r

E · dr′ = −F0(x sin ωt + y cos ωt ), (23)

where F0 = |e|E0. Hence, Vg(t ) = |e|φ′
r (r, t ). It is to be noted

that although the oscillating electric field also produces a
magnetic field, its magnitude is 1/c times smaller the electric
field and would have negligible effect on the spin dynamics.
Hence, we can safely ignore the magnetic vector potential in
this case [25].

Using the transformations (2) and (3) in Eq. (23), we get

Vg(t ) = i
F0

2

√
h̄

m�
(â1eiωt − â†

1e−iωt − â2e−iωt + â†
2eiωt ).

(24)

The total Hamiltonian of the driven dot is H ′(t ) = HFD +
HR + Vg(t ), where HFD is the exactly solvable part and HR +
Vg(t ) is to be treated as perturbation. The perturbation does
not couple the spins in the lowest energy block which are the
Zeeman-split ground states (i.e., n1 = n2 = 0 orbital sector).
So, spin rotations can be achieved only through the higher
order transitions. For a drive of the form of Eq. (24), only the
linear Rashba coupling supports EDSR. This can be explained
as follows. At resonance ω = ωz, Vg(t ) can cause a virtual
transition with no spin flip (�ni = ±1,�s = 0) followed by
another virtual transition accompanied by a spin flip (�ni =
±1,�s = ±3) mediated by the linear Rashba coupling in
(10). This brings about the desired Rabi oscillations in the
system even in absence of a rotating magnetic field. The cubic
Rashba coupling cannot cause EDSR because the cubic terms
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not couple levels with �ni 	= ±1 and hence the x-linear drive
cannot cause virtual transitions back to the original level.
Thus, the length gauge provides a better picture of the Rabi
oscillations as compared to the velocity gauge.

IV. TIME EVOLUTION

A. Time evolution in different gauges

The Hamiltonians and the solutions of the time-dependent
Schrödinger equation (TDSE) in the two gauges are related as

H ′(t ) = ei|e|/h̄H (t )e−i|e|/h̄ − |e|∂t (25)

and

|ψ ′(t )〉 = ei|e|/h̄|ψ (t )〉, (26)

respectively, where  is defined in Eq. (22). From Eq. (26), it
follows that

U ′(t, 0) = ei|e|(r,t )/h̄U (t, 0)e−i|e|(r,0)/h̄. (27)

Clearly, the time evolution is gauge-dependent (as the
Hamiltonian is gauge-dependent). To render the transition am-
plitudes gauge-invariant, the initial (|i〉) and final (| f 〉) states
must be gauge transformed in the following way [72]:

|i′〉 = ei|e|(r,0)/h̄|i〉, (28)

| f ′〉 = ei|e|(r,t )/h̄| f 〉. (29)

Then, we have 〈 f ′|U ′(t, 0)|i′〉 = 〈 f |U (t, 0)|i〉. It is easier to
study the dynamics in the length gauge because the interaction
in this gauge has a lesser number of terms [Eq. (24)] than that
in the velocity gauge [Eq. (16)]. So, it is to be noted that the
numerical results presented in this paper are obtained using
the length gauge only.

The exact analytical solutions of the TDSE cannot be ob-
tained for this system in either of the two gauges. Since we are
interested in Rabi oscillations, first, we obtain an approximate
analytical expression of the Rabi frequency by treating the
Rashba coupling(s) and the drive perturbatively. Second, we
compute the numerical solutions and the Rabi frequencies us-
ing the methods of unitary transformation and Floquet theory.

B. Analytical formalism

An approximate analytical form of the Rabi frequency
can also be obtained in the length gauge using perturbation
theory. The linear Rashba coupling is off-diagonal in the
FD basis as it couples blocks with orbital quantum number
differing by 1, i.e., �ni = ±1. For small Rashba strengths
( αl

√
mh̄ω0

h̄ω0
= α̃l � 1) as compared to the confinement energy

scale h̄ω0, we can perform a Schrieffer-Wolff (SW) trans-
formation [25,30,73,74] to diagonalize the Hamiltonian of
the dot such that the off-diagonal couplings are removed up
to linear order in α̃l . Using the transformation, the effective
two-level Hamiltonian for this system can be written as (see
Appendix B for details)

Heff(t ) =
(

E1 −iγ eiωt

iγ e−iωt E2

)
, (30)

where

E1 = − h̄ωz

2
− α2

l m f 2
−

ω2 + ωz
, (31)

E2 = h̄ωz

2
− α2

l m f 2
+

ω1 − ωz
, (32)

and

γ = F0αl

2
√

�

(
f+

ω1 − ωz
+ f−

ω2 + ωz

)
. (33)

The Hamiltonian (30) is equivalent to that of a two-level Rabi
problem with oscillations in occupation probabilities given by

P1(t ) = Pmax sin2(ωRt ), P0(t ) = 1 − P1(t ), (34)

where the amplitude, Rabi frequency, and the level separation
are given by

Pmax = γ 2

h̄2ω2
R

, (35)

ωR =
[
γ 2

h̄2 + (ω − ω21)2

4

]1/2

, (36)

and

ω21 = E2 − E1

h̄
= ωz + α2

l m

h̄

(
f 2
−

ω2 + ωz
− f 2

+
ω1 − ωz

)
, (37)

respectively. Hence, the new resonance condition is ω = ω21

due to the energy correction second order in αl . The resonant
Rabi frequency is ωres = 2γ /h̄ and is hence, linearly propor-
tional to both αl and F0.

At resonance, the time-evolved state is given by

|ψ (t )〉 =
(

e−iE1t/h̄ cos(γ t/h̄)

e−iE2t/h̄ sin(γ t/h̄)

)
. (38)

The expectation value of the spin vector follows the following
trajectory:

〈σ(t )〉 = [cos ωt sin(2γ t/h̄),− sin ωt sin(2γ t/h̄),

× cos(2γ t/h̄)]. (39)

The Bloch sphere dynamics through a half Rabi cycle (Tπ =
π/ωres) is shown in Fig. 2 when the system is initialized in
spin-up state. The spirals occur due to the finite 〈σx(t )〉 and
〈σy(t )〉 which oscillate with a frequency of ω. It can be shown
that the number of rotations about the z axis is ω/(2ωres).
Since ω � ωres in our case, the spin vector 〈σ(t )〉 makes a
large number of rotations/precessions ∼2710 about the z axis
before flipping down completely at T = π/ωres. Hence, the
Rabi oscillation is not simply a “rotation” of the spin about
x or y axis, but a spiralling-down motion. The irradiation
by laser for half Rabi cycle acts as a π pulse with possible
applications in designing a quantum NOT gate.

C. Numerical formalism

1. Unitary transformation

We know that the TDSE for a simple two-level system
under circular driving can be solved exactly by purging the
time-dependence of the Hamiltonian through an appropriate
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FIG. 2. Bloch sphere dynamics of the qubit on application of
the laser beam for half Rabi cycle, i.e., Tπ = π/ωres. We use
the following system parameters: F̃0 = 0.02×300, B = 0.5 T, α̃l =
0.0047, ω̃c = 0.303, ω̃z = 0.214, ω = ω21 which are defined in
Sec. V. The spin-up state spirals down to the spin-down state on the
Bloch sphere because the driving frequency is much larger than the
Rabi frequency. Here, F̃0 has been magnified 300 times the actual
value for better visualization of the rotations (although a stronger
drive leads to other effects which is discussed later). As a result, the
spin vector rotates ∼9 times about the z axis during the process of
spin-flip.

unitary transformation. Using a similar approach and the fact
that [J (L)

z , HFD + H (L)
R ] = 0 and [J (C)

z , HFD + H (C)
R ] = 0, we

can deduce a static Hamiltonian H(L) or H(C) when either of
the two Rashba couplings (linear or cubic) is present in the
system (see Appendix C for details). For the velocity gauge,
we deduce

H(L)/(C) = H0 + H(L)/(C)
R , (40)

where

H0 = h̄�(n̂1 + n̂2 + 1) + h̄

(
ω − ωc

2

)
(n̂2 − n̂1)

+ |e|2A2
0

2m
− i|e|A0

√
mh̄

2m
( f+(â†

1 − â1) − f−(â†
2 − â2)),

(41)

H(L)
R = h̄

2
(ω − ωz )σz

+ αl [(
√

mh̄( f+â†
1 + f−â2) + i|e|A0)σ+ + H.c.],

(42)

H(C)
R = h̄

2
(3ω − ωz )σz

+ αc[(
√

mh̄( f+â†
1 + f−â2) + i|e|A0)3σ+ + H.c.].

(43)

Similarly, for the length gauge, we get

H′(L)/(C) = H′
0 + H′(L)/(C)

R , (44)

where

H′
0 = h̄�(n̂1 + n̂2 + 1) + h̄

(
ω − ωc

2

)
(n̂2 − n̂1)

+ iF0

2

√
h̄

m�
(â1 − â†

1 − â2 + â†
2), (45)

H′(L)
R = h̄

2
(ω − ωz )σz + H (L)

R , (46)

H′(C)
R = h̄

2
(3ω − ωz )σz + H (C)

R , (47)

and H (C)
R and H (L)

R are defined in Eqs. (11) and (12), respec-
tively.

In this gauge, the time evolution operator of the system can
be written as the ordered product of two unitary operators,

U ′(L)/(C)(t ) = eiĴ (L)/(C)
z ωt/h̄e−iH′(L)/(C)t/h̄. (48)

The first factor accounts for the unitary transformation and the
second, containing the static Hamiltonian, gives the dynami-
cal phase in the transformed frame. For the velocity gauge,
H′(L)/(C) is simply replaced by H(L)/(C) in the second exponen-
tial. If the system is initialized in a FD state |ni

1, ni
2, si〉, then

the transition amplitude to a state |n f
1 , n f

2 , s f 〉 is

a f (t ) = ei(n f
2 −n f

1 +s f (L)/(C) )ωt

×
∑

m

e−iε′
mt/h̄

〈
n f

1 , n f
2 , s f

∣∣ε′
m

〉〈
ε′

m

∣∣ni
1, ni

2, si
〉
, (49)

where H′(L)/(C)|ε′
m〉 = ε′

m|ε′
m〉, s f (L) = s f /3, and s f (C) = s f ,

with s f = ±3/2. The eigenvectors of H′(L)/(C) can be ob-
tained numerically by truncating its matrix up to a sufficiently
large number of FD levels. With |0, 0, 3/2〉 as the initial
state, we then obtain the occupation probabilities of the states
|0, 0,±3/2〉 as a function of time by computing |a f (t )|2 using
Eq. (49).

2. Floquet theory

When both the Rashba couplings are present, we do not
have a suitable unitary transformation to make the Hamil-
tonian time-independent. On periodic driving, the basis of
Floquet states is more relevant to work with as they be-
have like static states in an extended Hilbert space of the
driven system. They evolve similar to the static energy
eigenstates but with a sum of quasienergy values and “n”
multiples of photon energies contained in their dynamical
phases. Since the Hamiltonian of the driven dot is periodic
in time, the dynamics can be studied using Floquet the-
ory. By Floquet’s theorem, the following solutions to the
TDSE exist:

|u(t )〉 = e−iεηt/h̄|φη(t )〉, (50)

where εη are the real-valued quasienergies and |φη(t )〉 are
the corresponding Floquet modes periodic in time. Consider-
ing the FD states as |n1, n2, s〉 ≡ |l〉, the transition amplitude
(i → f ) can be written as (see Appendices D and E for de-
tailed derivation),

a f (t ) =
∑

η

(∑
n′

(
cn′

i,η

)∗
)(∑

n

cn
f ,ηe−i(εη−nh̄ω)t/h̄

)
, (51)

where lmax is the maximum number of FD levels considered
in the problem and cn

l,η is defined in Eq. (D6). The number
of independent Floquet modes is equal to the number of FD
levels considered in the calculation. The Floquet modes can be
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FIG. 3. Comparison between analytical and numerical values of
resonant Rabi frequencies. (a) Variation of ωres with the radiation
amplitude E0 for αl = 2.01 meV Å/h̄ and B = 0.5 T. (b) Variation of
ωres with αl for E0 = 2.172 kV/m and B = 0.5 T.

obtained by numerical diagonalization of the Floquet Hamil-
tonian truncated up to a large number of FD levels and the
occupation probabilities |a f (t )|2 of the states |0, 0,±3/2〉 can
hence be calculated using Eq. (51).

V. RESULTS AND DISCUSSION

Let us define dimensionless quantities as ω̃z = ωz/ω0,
ω̃c = ωc/ω0, ω̃ = ω/ω0, α̃c = αc p3

0/(h̄ω0), α̃l = αl p0/(h̄ω0)
and F̃0 = F0/(p0ω0) where p0 = √

h̄mω0. For a confinement
length l0 = 20 nm and using known values of parameters
for Ge/Si quantum wells [57,62,75], i.e., m ∼ 0.09 me, g⊥ ≈
15.7, αc = 2.26×105 meV Å3/h̄3, αl = 2.01 meV Å/h̄, we
get α̃l = 0.0047, ω̃z = 0.428 B, and ω̃c = 0.606 B, where B
is the magnetic field strength in Tesla. For all the results
that follow, we use these parameters unless stated otherwise.
For B = 0.5 T, the resonant driving frequency is ω ≈ ωz =
6.9×1011 Hz. For F̃0 = 0.02, E0 ≈ 2127 V/m which is well
within the attainable limits for modern-day lasers.

A. Analytical results

For F̃0 = 0.02 and B = 0.5 T and the system parameters
mentioned above, we get ωres = 127.24 MHz. This value
can be increased further by applying stronger laser beams.
Figure 3 shows excellent agreement between the analytically
and numerically computed values of resonant Rabi frequen-
cies for small values of α̃l and F̃0. Figure 4 shows density plots
of the probability amplitude Pmax from Eq. (35) as a function
of ω̃ and α̃l for a fixed radiation amplitude F̃0 = 0.08 and dif-
ferent values of magnetic field: (a) B = 0.5 T, (b) B = 1.0 T,
and (c) B = 1.5 T. The dark curves on the plots indicate the
resonances in Pmax. The width of the resonances (∝ γ ) gradu-
ally increases with B and αl . Since the linear Rashba strength
is nearly fixed by the calculations [57,62], sharper resonances
can be achieved by working at low magnetic fields.

B. Numerical results

First, we use the method of unitary transformation to
obtain the Rabi oscillations when αl 	= 0, αc = 0. Figure 5
shows variation of occupation probabilities of the ground
(|0, 0, 3/2〉) and first excited (|0, 0,−3/2〉) states of the dot,
labeled as P0(t ) and P1(t ), respectively, with time for different
values of radiation amplitude when the system is initialized in
the ground state and the resonance condition is satisfied. The

FIG. 4. Plot of maximum transition probability as a function of ω̃

and α̃l for a fixed radiation amplitude F̃0 = 0.08 and different values
of magnetic field: (a) B = 0.5 T, (b) B = 1.0 T, and (c) B = 1.5 T.
The dark curves indicate the resonances. The width of the resonances
increase with B and αl .

resonant Rabi frequency clearly increases with the radiation
amplitude, as expected from the expression of ωres. Similar
behavior is displayed with respect to the variation of αl . The
numerical methods can also be used to study the time evolu-
tion of the qubit for stronger electrical drives characterized
by larger values of F̃0. This would incorporate the higher

FIG. 5. Plots of occupation probability as a function of time
for realistic system parameters (i.e., B = 0.5 T, α̃l = 0.0047, ω̃c =
0.303, ω̃z = 0.214, ω = ω21) and different values of driving
strength: (a) F̃0 = 0.02, (b) F̃0 = 0.04, (c) F̃0 = 0.06, and (d) F̃0 =
0.08. The resonant Rabi frequency is an increasing function of the
driving strength.
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FIG. 6. Plots of occupation probability as a function of time
for realistic system parameters (i.e., B = 0.5 T, α̃l = 0.0047, ω̃c =
0.303, ω̃z = 0.214, ω = ω21) and larger values of radiation ampli-
tude: (a) F̃0 = 0.1, (b) F̃0 = 0.2, (c) F̃0 = 0.4, and (d) F̃0 = 0.6.

order terms of the perturbation theory discussed in Sec. IV B.
Figure 6 shows the probability oscillations for stronger laser
beams. We observe that the resonant Rabi frequency increases
but a high-frequency noise, whose amplitude grows with F0,
is superimposed on the Rabi oscillations. Its origin can be
explained using the results of the Schrieffer-Wolff transforma-
tion. On the right-hand side of Eq. (B8), H0

SW represents the
undriven diagonal (up to the order of α2

l ) Hamiltonian, Vg(t )
couples identical spin states with different orbital quantum
numbers and [S,Vg(t )] couples opposite spin states with same
orbital quantum number. For low driving strengths, effect of
Vg(t ) is negligible as compared to [S,Vg(t )] and nearly no
transitions take place from the ground state to the excited
states with higher orbital quantum numbers. For larger driv-
ing strengths, Vg(t ) competes with [S,Vg(t )] and off-resonant
transitions (|�ni| 	= 0) with smaller amplitudes but a much
larger frequency than the resonant (n1 = n2 = 0,�s = ±3,)
oscillations take place in addition to the latter. Those transi-
tions appear as a high-frequency noise overlapped with the
original Rabi oscillations since the total probability has to be
conserved. This noise would hamper the fidelity of the quan-
tum gate at the cost of faster operations. Hence, a low laser
amplitude (∼2–8 kV/m) is recommendable to perform qubit
rotations in this system with a good accuracy. The inefficiency
of EDSR for stronger drives has also been observed in double
quantum dots [28].

As mentioned earlier, no probability oscillations are ob-
served for αl = 0, αc 	= 0 as the cubic Rashba coupling does
not support EDSR. When both αl 	= 0 and αc 	= 0, the method
of unitary transformation fails and hence we use Floquet
theory to obtain the time dynamics. First, we elaborate how
the Floquet theory explains the time evolution. In Eq. (51),
the term within the first parenthesis represents the projection
of the initial state on the ηth Floquet mode. The different
nth-order sidebands of the ηth Floquet mode evolve in time
with dynamical phases e−i(εη−nh̄ω)t/h̄. The term within the sec-
ond parenthesis denotes the dynamical transition amplitudes
from the ηth Floquet mode with “−n” photons (or nth order

sideband) to the lth FD level. For a strictly two-level Rabi
problem at resonance, the ground and first excited states have
equal magnitudes of projections (= 1/

√
2) on each of the

Floquet modes and also the first excited state has its projection
on the sideband of same photon number n for each η. As a
result, the final transition amplitude from |0〉 → |1〉 is a sum
of two oscillating terms viz. e−i(ε0−nh̄ω)t/h̄ and e−i(ε1−nh̄ω)t/h̄

of equal magnitudes, which give rise to Rabi oscillations
of frequency equal to the quasienergy difference only, i.e.,
ωres = |ε0 − ε1|/h̄ and maximum transition probability equal
to 2×(1/

√
2)2 = 1.

Using Eq. (51), the transition probability to the lth FD state
can be simplified as

Pl (t ) = |al (t )|2 =
∑

{χ},η>ζ ,n>m

× 2Rηζ

lmnm′n′ cos

[
(�εηζ − �nmh̄ω)t

h̄
+ θ

ηζ

lmnm′n′

]

+
∑

{κ},η>ζ

2Rηζ

lnnm′n′ cos
[
�εηζ t/h̄ + θ

ηζ

lnnm′n′
]

+
∑

{ρ},n>m

2Rηη

lmnm′n′ cos
[−�nmωt + θ

ηη

lmnm′n′
]

+
∑
{ξ}

∣∣cn
lη

∣∣2(
cn′

0,η

)∗(
cm′

0,η

)
, (52)

where {χ} = {η, n, n′, ζ , m, m′}, {κ} = {η, n, n′, ζ , m′},
{ρ} = {η, n, n′, m, m′}, {ξ} = {η, n, n′, m′}, �εηζ = εη − εζ ,
�nm = n − m, Rηζ

lmnm′n′ = |cn
l,η(cn′

0,η )∗(cm
l,ζ )∗cm′

0,ζ |, and

θ
ηζ

lmnm′n′ = Arg[cn
l,η(cn′

0,η )∗(cm
l,ζ )∗cm′

0,ζ ].

FIG. 7. Variation of quasienergies of certain Floquet levels with
radiation amplitude for realistic system parameters (i.e., B = 0.5 T,
α̃l = 0.0047, ω̃c = 0.303, ω̃z = 0.214, ω = ω21). The quasiener-
gies of the levels represented by the red dotted curves decrease with
F0 and also do not contribute to the Rabi oscillations for the given
initial and final states. The levels represented by the blue solid curves
participate in the Rabi rotations and the Rabi frequency, equal to the
gap between them, increases (linearly) with F0.
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FIG. 8. Plots of occupation probability as a function of time
for realistic system parameters (i.e., B = 0.5 T, α̃l = 0.0047, ω̃c =
0.303, ω̃z = 0.214, F̃0 = 0.02, ω = ω21) and different values of
cubic Rashba coupling: (a) α̃c = 0.002, (b) α̃c = 0.003, (c) α̃c =
0.0047 (equal to αl ), and (d) α̃c = 0.013 (typical value). The Rabi
oscillations become increasingly nonresonant with increase in αc and
nearly vanish for typical values for αc for this system.

For the multilevel system in consideration, we find that the
second summation in Eq. (52) is the dominant contribution to
the time-dependent part of the oscillations. This means that
two quasienergy levels with an identical photon number con-
tribute to the Rabi oscillations. Figure 7 shows the variation
of quasienergies of some of the Floquet levels with the radi-
ation amplitude at resonance and in absence of cubic Rashba
coupling. The levels denoted by the blue curves are the ones
which have equal projections on both the initial (|0, 0,+3/2〉)
and final (|0, 0,−3/2〉) FD levels. Hence, these are the levels
which participate in the Rabi oscillations in Floquet picture
and the Rabi frequency is equal to the difference of their
quasienergies. The gap between the levels increases (lin-
early) with the radiation amplitude and is consistent with the
values of ωres.

In Fig. 8, we study the dependence of the resonant Rabi
oscillations on the cubic Rashba strength αc using numerical
results of the Floquet theory. We observe a gradual diminish-
ing of the resonant Rabi oscillations on increasing the values
of αc. We find that that oscillations nearly disappear for real-
istic values of αc.

VI. CONCLUSION

To conclude, we have studied the time dynamics of a planar
Ge hole spin-qubit driven by coherent circularly polarized
radiation in the presence of an out-of-plane magnetic field
and Rashba SOCs. The coherent beam may be supplied by
ultrafast laser pulses which have been extensively used in
recent years for Floquet engineering. We consider the recently
claimed p-linear and the dominant spherically symmetric
component of the p-cubic Rashba SOC found in heavy holes.
We show that a laser drive of suitable frequency can be used
to perform qubit rotations in the presence of linear Rashba

coupling (only), an effect similar to EDSR with ac gate-
voltages. We have shown how the problem can be solved using
two different gauges viz. velocity and length gauges. For small
Rashba strength and weak laser beam, we use perturbation
theory and make a Schrieffer-Wolff transformation to obtain
an analytical form of the Rabi frequency. The Rabi frequency
is linearly proportional to the radiation amplitude and the
linear Rashba strength. For a laser beam of electric field
amplitude 2.127 kV/m, the Rabi frequency is approximately
127 MHz for realistic system parameters. We observe that the
width of resonance increases with increase in strengths of the
magnetic field and Rashba coupling.

For higher radiation amplitude, we employ methods of
unitary transformation and Floquet theory independently for
numerical computation of the qubit dynamics. The method of
unitary transformation deals with transforming to a rotating
frame of reference and exploiting the rotational symmetry
of the system in the total Hilbert space of spin and orbital
degrees of freedom. This method is valid when only one of
the two Rashba couplings (linear or cubic) is present. Hence,
we use it to study the effect of stronger laser beams in the Rabi
oscillations when only linear Rashba coupling is considered.
We encounter a high-frequency noise in the Rabi oscillations
for stronger laser beams thereby rendering the drive unsuitable
for qubit manipulation. As already known, no Rabi oscilla-
tions occur when only cubic Rashba coupling is present in the
system.

We have used Floquet theory to solve the Schrödinger
equation when both linear and cubic Rashba couplings are
simultaneously present in the system. The numerical results
show that the Rabi oscillations gradually diminish as we in-
crease the cubic Rashba strength for a fixed linear Rashba
paramater. This implies that the system is driven out of res-
onance by the cubic Rashba coupling. For a realistic value
of the cubic Rashba parameter, the Rabi oscillations nearly
vanish despite the presence of linear Rashba coupling. Hence,
the cubic Rashba coupling, which can be controlled by chang-
ing the interficial electric field using gate electrodes, has to be
highly minimized to observe resonant Rabi oscillations in this
system. We have also shown that the Rabi frequency is equal
to the quasienergy gap between two Floquet levels which is
an increasing function of radiation amplitude.

Our results may be useful to achieve optical control of hole
qubits in Ge quantum dots. With photolithography already
boosting the semiconductor fabrication industry, the use of
coherent laser beams for manipulation of spin-qubits is an-
other attractive option to develop quantum NOT gates with
the aid of strong SOC of the heavy-hole states in 2D Ge
heterostructures.
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APPENDIX A: MATRIX ELEMENTS OF HR AND Vn

The matrix elements of HR in the FD basis are

〈n′
1, n′

2, s′|HR|n1, n2, s〉 = f0(n′
1, n′

2, n1, n2)δs′,3/2 δs,−3/2 + f0(n1, n2, n′
1, n′

2)δs′,−3/2 δs,3/2, (A1)

where

f0(n′
1, n′

2, n1, n2) = αc(mh̄)3/2
[

f 3
−
√

n2(n2 − 1)(n2 − 2) δn′
1,n1 δn′

2,n2−3 + 3 f 2
− f+

√
(n1 + 1)n2(n2 − 1) δn′

1,n1+1 δn′
2,n2−2

+ 3 f− f 2
+
√

(n1 + 1)(n1 + 2)n2 δn′
1,n1+2 δn′

2,n2−1 + f 3
+
√

(n1 + 1)(n1 + 2)(n1 + 3) δn′
1,n1+3 δn′

2,n2

]
+ αl

√
mh̄

[
f+

√
n1 + 1 δn′

1,n1+1 δn′
2,n2 + f−

√
n2 δn′

1,n1 δn′
2,n2−1

]
. (A2)

The matrix elements of Vn are

〈n′
1, n′

2, s′|V0|n1, n2, s〉 =|e|2A2
0

2m
δn′

1,n1 δn′
2,n2 δs′,s, (A3)

〈n′
1, n′

2, s′|V1|n1, n2, s〉 = 3iαc|e|A0mh̄
[

f 2
+
√

(n1 + 1)(n1 + 2) δn′
1,n1+2 δn′

2,n2 + 2 f+ f−
√

(n1 + 1)n2 δn′
1,n1+1 δn′

2,n2−1

+ f 2
−
√

n2(n2 − 1) δn′
1,n1 δn′

2,n2−2
]

δs′,3/2 δs,−3/2 + iαl |e|A0 δn′
1,n1 δn′

2,n2 δs′,3/2 δs,−3/2

× i
|e|A0

2m

√
mh̄

[
f+

√
n1 δn′

1,n1−1 δn′
2,n2 + f−

√
n2 + 1 δn′

1,n1 δn′
2,n2+1

]
δs′,s, (A4)

〈n′
1, n′

2, s′|V2|n1, n2, s〉 = −3αc

√
mh̄|e|2A2

0

[
f+

√
n1 + 1 δn′

1,n1+1 δn′
2,n2 + f−

√
n2 δn′

1,n1 δn′
2,n2−1

]
δs′,3/2 δs,−3/2, (A5)

and

〈n′
1, n′

2, s′|V3|n1, n2, s〉 = −iαc|e|3A3
0 δn′

1,n1 δn′
2,n2 δs′,3/2 δs,−3/2. (A6)

APPENDIX B: SCHRIEFFER-WOLFF TRANSFORMATION

The SW transformation can be written as

H0
SW = eS (HFD + HR)e−S ≈ HFD + [S, HR]/2, (B1)

where S† = −S and

[HFD, S] = HR. (B2)

We consider the following ansatz for S:

S = Ŝ(1) + Ŝ(2)σ+ − Ŝ(2)†
σ−, (B3)

where Ŝ(i) = S(i)
1a â1 + S(i)

1b â†
1 + S(i)

2a â2 + S(i)
2b â†

2 with i = 1, 2.
Using Eqs. (B3) in (B2) and comparing both the sides, we
get Ŝ(1) = 0 and

Ŝ(2) = α

√
m

h̄

(
f+

ω1 − ωz
â†

1 − f−
ω2 + ωz

â2

)
. (B4)

Using Eq. (B4) in Eq. (B1), we get

H0
SW = HFD + ξ̂+P+ + ξ̂−P−, (B5)

where P± = (1 ± σz )/2 are the spin-projection operators and

ξ̂+ = α2
l m

2

[
2 f 2

+
ω1 − ωz

n̂1 − 2 f 2
−

ω2 + ωz
(1 + n̂2)

+ f+ f−(â1â2 + â†
2â†

1)

(
1

ω1 − ωz
− 1

ω2 + ωz

)]
, (B6)

ξ̂− = − α2
l m

2

[
2 f 2

+
ω1 − ωz

(1 + n̂1) − 2 f 2
−

ω2 + ωz
n̂2

+ f+ f−(â1â2 + â†
2â†

1)

(
1

ω1 − ωz
− 1

ω2 + ωz

)]
. (B7)

For a weak driving ( F0
h̄ω0

√
h̄

mω0
= F̃0 � 1), the SW Hamil-

tonian can be written as

HSW(t ) = H0
SW + eSVg(t )e−S

≈ H0
SW + Vg(t ) + [S,Vg(t )]. (B8)

Then, the lowest energy block of HSW(t ) (spanned by
|0, 0,±3/2〉 states) can be written as

Heff(t ) = − h̄ωz

2
σz − α2

l m f 2
−

ω2 + ωz
P+ − α2

l m f 2
+

ω1 − ωz
P−

− iγ eiωtσ+ + iγ e−iωtσ−

=
⎛
⎝− h̄ωz

2 − α2
l m f 2

−
ω2+ωz

−iγ eiωt

iγ e−iωt h̄ωz

2 − α2
l m f 2

+
ω1−ωz

⎞
⎠, (B9)

where

γ = F0αl

2
√

�

(
f+

ω1 − ωz
+ f−

ω2 + ωz

)
. (B10)

APPENDIX C: METHOD OF UNITARY
TRANSFORMATION

We can get a static Hamiltonian through a unitary transfor-
mation when at least one of the Rashba couplings is absent.
Imposing this condition, the driven Hamiltonian in the veloc-
ity gauge containing exclusively the linear or cubic Rashba
coupling is given by

H (L)/(C)(t ) = HFD + Hr (t ) + H (L)/(C)
R (t ), (C1)
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where

Hr (t ) = |e|2A2
0

2m
− |e|A0

m
(Px cos ωt − Py sin ωt ), (C2)

H (L)
R (t ) = αl [−i(P− − |e|A0eiωt )σ+ + H.c.], (C3)

and

H (C)
R (t ) = αc

[
i(P− − |e|A0eiωt )3σ+ + H.c.

]
. (C4)

In the length gauge, the driven Hamiltonian is simply

H ′(L)/(C)(t ) = HFD + H (L)/(C)
R + Vg(t ). (C5)

The driven Hamiltonians in either gauge can be reduced to
a static one by solving the TDSE in a frame rotating with Ar .
If |ψ (t )〉 is the solution in the rest frame, then the solution
in the rotating frame, having angular speed “−ω” (clockwise)
about z axis, is given by

|
(t )〉 = Rz(ωt )|ψ (t )〉, (C6)

where Rz is the standard rotation operator about z axis. For
the driven Rashba Hamiltonian, it can be written as

R(L)/(C)
z (ωt ) = e−iĴ (L)/(C)

z ωt/h̄, (C7)

where Ĵ (L)/(C)
z are defined in Eqs. (14) and (15). Using Eq. (C6)

in the TDSE and working with the Hamiltonian in length
gauge, we get

ih̄
∂

∂t
|
(t )〉 =

(
RzH

′(L)/(C)(t )R†
z + ih̄R†

z

∂

∂t
Rz

)
|
(t )〉.

(C8)

where Rz ≡ R(L)/(C)
z . Using Eq. (C7), it reduces to

ih̄
∂

∂t
|
(t )〉 = H′(L)/(C)|
(t )〉, (C9)

where

H′(L)/(C) = H ′(L)/(C)(t = 0) + Ĵ (L)/(C)
z ω (C10)

is the time-independent Hamiltonian in the rotating frame. In
terms of ladder operators, the transformed Hamiltonian in the
velocity gauge can be written as

H(L)/(C) = H0 + H(L)/(C)
R (C11)

where

H0 = h̄�(n̂1 + n̂2 + 1) + h̄

(
ω − ωc

2

)
(n̂2 − n̂1) + |e|2A2

0

2m

− i|e|A0

√
mh̄

2m
( f+(â†

1 − â1) − f−(â†
2 − â2)), (C12)

H(L)
R = h̄

2
(ω − ωz )σz

+ αl [(
√

mh̄( f+â†
1 + f−â2) + i|e|A0)σ+ + H.c.],

(C13)

H(C)
R = h̄

2
(3ω − ωz )σz

+ αc[(
√

mh̄( f+â†
1 + f−â2) + i|e|A0)3σ+ + H.c.].

(C14)

Similarly, for the length gauge, we get

H′(L)/(C) = H′
0 + H′(L)/(C)

R , (C15)

where

H′
0 = h̄�(n̂1 + n̂2 + 1) + h̄

(
ω − ωc

2

)
(n̂2 − n̂1)

+ iF0

2

√
h̄

m�
(â1 − â†

1 − â2 + â†
2), (C16)

H′(L)
R = h̄

2
(ω − ωz )σz + H (L)

R , (C17)

H′(C)
R = h̄

2
(3ω − ωz )σz + H (C)

R , (C18)

and H (C)
R and H (L)

R are defined in Eqs. (11) and (12), respec-
tively.

Hence, the time-evolved state in the rest frame

|ψ (t )〉 = R†
z |
(t )〉 = eiĴ (L)/(C)

z ωt/h̄e−iH′(L)/(C)t/h̄|ψ (0)〉. (C19)

If the system is initialized in an FD state |ni
1, ni

2, si〉, then the
transition amplitude to a state |n f

1 , n f
2 , s f 〉 is

a f (t ) = 〈
n f

1 , n f
2 , s f

∣∣ψ (t )
〉

= ei(n f
2 −n f

1 +s f (L)/(C) )ωt
∑

m

e−iε′
mt/h̄d ′

f ,m(d ′
i,m)∗, (C20)

where H′(L)/(C)|ε′
m〉 = ε′

m|ε′
m〉, d ′

f ,m = 〈n f
1 , n f

2 , s f |ε′
m〉, d ′

i,m =
〈ni

1, ni
2, si|ε′

m〉, s f (L) = s f /3, and s f (C) = s f , with s f = ±3/2.
The transition probabilities are

Pf (t ) =
∑
m,n

e−i(ε′
m−ε′

n )t/h̄d ′
f ,m(d ′

i,m)∗(d ′
f ,n)∗d ′

i,n,

=
∑

m

|d ′
f ,m|2|d ′

i,m|2

+
∑
m 	=n

e−i(ε′
m−ε′

n )t/h̄d ′
f ,m(d ′

i,m)∗(d ′
f ,n)∗d ′

i,n. (C21)

APPENDIX D: COMPUTATION OF FLOQUET MODES

The dynamics of a quantum system is described by the
time-dependent TDSE,

ih̄
∂

∂t
|ψ (t )〉 = H (t )|ψ (t )〉. (D1)

If H (t + T ) = H (t ), then the Floquet theorem states that there
exists solutions to Eq. (D1) called Floquet states given by

|uη(t )〉 = e−iεηt/h̄|φη(t )〉, (D2)

where εη is a real-valued number called the quasienergy and
|φη(t )〉 is called the Floquet mode which has the same period-
icity as the Hamiltonian, i.e., |φη(t + T )〉 = |φη(t )〉.

On substituting Eq. (D2) in Eq. (D1), we get(
H (t ) − ih̄

∂

∂t

)
|φη(t )〉 = εη|φη(t )〉. (D3)

So, the quasienergies are eigenvalues of the Floquet
quasienergy operator (H (t ) − ih̄ ∂

∂t ) with Floquet modes as the
eigenstates.
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The Floquet modes can be expanded in the FD basis {|l〉}
(or any orthonormal basis) as

|φη(t )〉 =
∑

l

cl,η(t )|l〉, (D4)

where cl,η(t ) = 〈l|φη(t )〉 with cl,η(t ) = cl,η(t + T ). Since
cl,η(t ) are time-periodic, they can be expanded in Fourier
basis as

cl,η(t ) =
∞∑

n=−∞
cn

l,ηeinωt , (D5)

with ω = 2π/T being the angular frequency of the periodic
drive. Using Eqs. (D4) and (D5), the Floquet modes can be
rewritten as

|φη(t )〉 =
∞∑

n=−∞

∑
l

cn
l,η|l〉einωt . (D6)

Substituting Eq. (D6) in Eq. (D3), multiplying e−in′ωt 〈l ′| from
left and time-averaging over a period T gives

∞∑
n=−∞,l

(
1

T

∫ T

0
〈l ′|H (t )|l〉ei(n−n′ )ωt dt + nh̄ωδn,n′δl,l ′

)
cn

l,η

= εηcn′
l ′,η. (D7)

The above system of equations represents an infinite-
dimensional matrix eigenvalue equation:

HF 
η = εη
η, (D8)

where HF is the Floquet Hamiltonian matrix and 
η is its
eigenvector corresponding to the quasienergy eigenvalue εη.
The matrix elements of HF and 
η are given by

〈l ′, n′|HF |l, n〉 = 1

T

∫ T

0
〈l ′|H (t )|l〉ei(n−n′ )ωt dt + nh̄ωδn,n′δl,l ′ ,

(D9)

and 
η = (.. cn
l,η.. )T where T stands for transpose. The

eigenvalues are obtained numerically by truncating the matrix
up to a certain order in n depending on the strength of the
periodic drive. Once 
η is computed, the Floquet mode can be
obtained by plugging the coefficients {cn

l,η} back into Eq. (D6).

APPENDIX E: TIME-EVOLVED STATE
IN FLOQUET PICTURE

At t = 0, Eq. (D6) gives

|φη(0)〉 =
∑

l

⎛
⎝ ∞∑

n′=−∞
cn′

l,η

⎞
⎠|l〉. (E1)

We drop the infinite summation limit of n′ from this point
as we consider only a finite nmax. It can be shown that
{|φη(0)〉} form a complete basis, i.e.,

∑
η |φη(0)〉〈φη(0)| = 1.

Hence, if the system is initialized in a FD state, say |i〉, then

|ψ (0)〉 = |i〉 =
∑

η

|φη(0)〉〈φη(0)|i〉

=
∑

η

(∑
n′

(
cn′

i,η

)∗
)

|φη(0)〉. (E2)

To obtain the time-evolved state |ψ (t )〉, we use the Floquet
time-evolution operator

U (t ) = P (t )e−iHF t/h̄, (E3)

where P (t ) = P (t + T ) is a time-periodic unitary operator
[with P (0) = 1] and HF is a time-independent Hermitian
operator called the Floquet Hamiltonian. The stroboscopic
time-evolution operator is U (T ) = e−iHF T/h̄. The application
of U (t ) on |ψ (0)〉 gives

|ψ (t )〉 =
∑

η

(∑
n′

(
cn′

i,η

)∗
)
P (t )e−iHF t/h̄|φη(0)〉. (E4)

Since |φη(0)〉 is an eigenstate of HF [see Eq. (D8)] with
eigenvalue εη, we get

|ψ (t )〉 =
∑

η

(∑
n′

(
cn′

i,η

)∗
)

e−iεηt/h̄P (t )|φη(0)〉

=
∑

η

(∑
n′

(
cn′

i,η

)∗
)

e−iεηt/h̄|φη(t )〉

=
∑

η

(∑
n′

(
cn′

i,η

)∗
)⎛

⎝∑
l,n

cn
l,ηe−i(εη−nh̄ω)t/h̄

⎞
⎠|l〉,

(E5)

where we have used Eq. (D6) in the last step. Thus, the
probability amplitude of finding the system in state | f 〉 when
initialized in state |i〉 is

〈 f |ψ (t )〉 =
∑

η

(∑
n′

(
cn′

i,η

)∗
)(∑

n

cn
f ,ηe−i(εη−nh̄ω)t/h̄

)
. (E6)
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