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Valley quantum interference modulated by hyperbolic shear polaritons
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Recently, symmetry-broken polaritons within low-symmetry crystals have triggered extensive research interest
since they present enhanced directionality of polariton propagation for nanoscale manipulation and steering of
photons. The latest discovery of hyperbolic shear polaritons (HShPs) in low-symmetry Bravais crystals provides
great promise for innovating valleytronics. Herein, we theoretically demonstrate the coherent manipulation of
the valley degree of freedom in a two-dimensional valleytronic material interfaced with monoclinic Ga2O3 and
CdWO4 crystals. Robust and wideband tunable valley interference values are achieved in the mid- to far-infrared
wavelengths. By virtue of stronger shear effect in monoclinic Ga2O3, the valley quantum interference fringes
modulated by Ga2O3 crystal are more than those tuned via CdWO4 crystal. After the monoclinic Ga2O3 crystal
is doped by free charge carriers, the number of HShP modes gradually decreases accompanied by the blueshifts
and broadening of some hyperbolic dispersion bands as the doping concentration increases. In consequence,
main fringes of valley quantum interference are broadened and shift toward the short wavelengths. Additionally,
the doping increases the optical losses which limit the effective propagation of shear polaritons in monoclinic
crystals. Therefore, the valley quantum interference is gradually reduced to a smaller and smaller negative value
range as the doping concentration increases in the monoclinic crystal. Finally, the azimuthal dispersion of the
HShP propagation direction gives rise to symmetry-broken valley quantum interference patterns when tuning the
azimuth and twist angles of monoclinic hybrid structures. The azimuth angles of quantum interference fringes
are susceptive to the variation of lattice displacement direction induced via the doping concentration. Thus,
the valley quantum interference has great potential in estimating the doping concentration and the propagation
directions of HShPs in monoclinic crystals.

DOI: 10.1103/PhysRevB.109.155417

I. INTRODUCTION

Over the last few years, valleytronics, as an emerging
research area, has drawn particular attention for a variety
of potential applications ranging from quantum informa-
tion processing [1–3] to valley-based optoelectronic devices
[4–7]. Valleytronics aims at manipulating the electronic valley
degree of freedom in two-dimensional (2D) gapped Dirac sys-
tems, such as the transition metal dichalchogenides (TMDCs)
and gapped bilayer graphene [6–8]. The electronic band
structure of such systems consists of two degenerate yet in-
equivalent K and K ′ valleys at the corners of the hexagonal
Brillouin zone. Because of the broken inversion symmetry
and strong spin-orbit interaction, the excitons (Coulomb-
bound electron-hole pairs) in K and K ′ valleys are coupled
to photons with the same energy but mutually orthogonal
polarization helicities σ±, respectively. To harness the valley
degree of freedom, it is imperative to be able to control the
coherence between excitons in these two valleys actively.
The coherence among the valleys (optical alignment of ex-
citons), i.e., valley quantum coherence, was first revealed by
the observation of a linearly polarized emission (coherent
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superposition of σ± photons) from monolayer WSe2 optically
excited by a linearly polarized light [9]. Thus far, it has been
proved that to realize the intervalley quantum coherence is
one key step toward practical applications with valleytronic
materials [10]. Unfortunately, on account of the constraint
on intervalley scattering and dephasing arising from phonons
and defects, high valley quantum coherence usually occurs
only at extreme conditions such as cryogenic temperature or
near-resonance excitation [11–14]. Recently, several strate-
gies including integrating 2D gapped Dirac materials with
various metastructures and anisotropic 2D materials have been
proposed to realize the valley coherence up to room temper-
ature [13–17]. Nonetheless, these efforts are either relatively
challenging due to the elaborate microfabrication processes
or at the cost of system stability owing to the susceptibil-
ity of ultrathin 2D membranes to the ambience [13–17].
Additionally, previous studies on valley quantum coherence
are mainly limited to the wavelength range from the visi-
ble to the mid-infrared light [10–19], which cannot satisfy
the applications in some far-infrared quantum information
technologies [20,21].

The nanoscale hyperbolic shear phenomenon was dis-
covered in the low-symmetry Bravais crystal β-Ga2O3, and
the conception of hyperbolic shear polaritons (HShPs) was
proposed as a class of polariton modes [22]. The HShPs
originate from the monoclinic crystal structure of β-Ga2O3
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with nonorthogonal principal crystal axes, which have great
potential in creating an anisotropic environment near the val-
leytronic material for exciting the coherence between two
valleys at room temperature. The HShPs appear in the mid-
to far-infrared region, which have preliminarily shown great
promise for remarkably enhancing the near-field thermal ra-
diation and the photonic spin Hall effect [23,24]. Monoclinic
CdWO4 crystal has also been demonstrated to support HShPs
in a wide infrared range of 200−900 cm−1 [25]. The HShPs
have sparked strong research interest due to their intriguing
physicochemical characteristics [26–28]. Nevertheless, the
study on HShPs is still in the prototype stage, and lots of
research areas including the interplay between valley quantum
coherence and HShPs have not yet been explored. There re-
main many open questions to be resolved. For instance, what
discrepancies are there between the valley quantum interfer-
ences modulated by monoclinic Ga2O3 and CdWO4 crystals?
How do the valley quantum interference fringes evolve with
various controlling factors such as the electron-doping con-
centration in monoclinic crystals, the thickness of monoclinic
crystals, the azimuth and twist angles of monoclinic hybrid
structures?

Inspired by the advances in valleytronics and hyperbolic
polaritons, in this paper, we theoretically propose an approach
to modify the valley quantum interference in the mid- to
far-infrared spectral region. The discrepancies between the
valley quantum interferences tuned by monoclinic Ga2O3 and
CdWO4 crystals as well as the evolutions of valley quantum
interferences with the electron-doping concentration, crystal
thickness, and azimuth and twist angles are clearly uncovered.
The influencing mechanism of HShPs on the valley quantum
interference is discussed in detail.

II. MODEL AND THEORETICAL METHODS

There are generally two strategies to generate the quan-
tum coherence between two valley excitons. One involves an
external coherent electromagnetic pump [9,29], and another
one is spontaneous via generating an anisotropic environment
in the vicinity of valley excitons [17,18]. The latter is rela-
tively less explored and is the subject of this paper. In the
mid- to far-infrared range, biased bilayer graphene [30] and
photoexcited TMDCs [31,32] could serve as an important
excitonic building block. The inset in Fig. 1(a) sketches two
degenerate valleys K and K ′ in the electronic band structure
of a hypothetical 2D valley material. Excitons in the K and
K ′ valleys are coupled to photons with the helicities σ±, re-
spectively. We assume that one electron is initially excited to
the lowest level of the conduction band of the K valley. In
an isotropic electromagnetic vacuum, such as the case with
free space, this excited electron returns to the ground state
(i.e., the highest level of the valence band) via emitting a
photon without exciting the orthogonal K ′ valley electron.
However, in the presence of a neighboring monoclinic crys-
tal material which creates a local in-plane anisotropic space
near the valley material, the emission from the K valley can
radiatively excite the electron in the K ′ valley and vice versa.
Such coupling interaction leads to the spontaneous generation
of valley coherence and yields quantum interference among
their emissions [16–18].

FIG. 1. (a) A schematic of hyperbolic shear polariton (HShP)-
modulated valley quantum interference in a two-dimensional (2D)
valley material. Crystal1 (or crystal2) stands for monoclinic Ga2O3

or CdWO4 crystal. Monoclinic crystal1 and crystal2 create a local
in-plane anisotropic environment which allows a finite nonzero cou-
pling between mutually orthogonal valley excitons (see the inset)
in the 2D valley material. The emission from the K valley with σ+
polarization can radiatively excite the orthogonal K ′ valley with σ−
polarization. Such interaction leads to the spontaneous generation
of valley coherence and yields quantum interference among their
emissions. Unit cells of (b) Ga2O3 and (c) CdWO4 with monoclinic
angle β and the Cartesian coordinate system (x, y, z) fixed to the unit
cells. (d) Schematic view from the top of the twist-induced mono-
clinic crystals. The surface of Ga2O3 or CdWO4 is the monoclinic
(010) plane (x-y plane). The azimuth angle � (or �′) of crystal1 (or
crystal2) is the angle between the x0 and a axes, where (x0, y0, z0) is
the laboratory coordinate system. The twist angle between crystal1
and crystal2 is θ = �′ − �.

As shown in Fig. 1(a), the 2D valley material is placed
above the stacked monoclinic crystal1 and crystal2. Crystal1
(or crystal2) can be monoclinic Ga2O3 or CdWO4 crystal. The
factors dg, d1, and d2 stand for the vertical distance of val-
ley excitons from the surface of crystal1 and the thicknesses
of crystal1 and crystal2, respectively. The valley material
film is parallel to the monoclinic (010) plane (x-y plane) of
crystal1 and crystal2. Since the literature still lacks specific
expressions of dipole moments for two orthogonal far-infrared
excitons in gapped Dirac systems, in our model, the following
dipole moments which are suitable for two nontrivial tilted
circular orthogonal dipoles in an H-type MoSe2/WSe2 bilayer
heterostructure are utilized [18]:

D1 = (0.18 + 0.64i)x̂ + (0.58 − 0.01i)ŷ + (0.37 − 0.3i)ẑ,

(1)

D2 = (0.53 − 0.35i)x̂ + (0.02 − 0.45i)ŷ + (0.47 + 0.42i)ẑ.

(2)

In theory, any photonic environment which creates an
anisotropy in the spontaneous emission rates in D1 and D2

directions will result in the coupling between these two val-
leys, thus leading to a finite generation of spontaneous valley
coherence. The valley coherence can be quantified experi-
mentally by a metric called the degree of linear polarization
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(DoLP) of the emission with DoLP = (I1-I2)/(I1 + I2). The
symbols I1 and I2 are the intensities of two linearly polarized
emissions. The steady-state DoLP in the absence of pumping
is an ill-defined quantity as the populations in K(K′) and valley
coherence converge to zero [17]. To measure the spontaneous
coherence, we posit a weak incoherent bidirectional pump.
In this case, the DoLP is approximately equal to the valley
quantum interference that is calculated by [16,17]

Q = (�1 − �2)/(�1 + �2), (3)

where �1 and �2 are the spontaneous emission rates for
dipoles oriented along D1 and D2 directions, respectively. The
spontaneous emission rate of an arbitrarily oriented emitter
located nearby the anisotropic material can be derived from
the Purcell factor that is given by [33,34]

Fp = �1,2

�0
= 1 + 6πc

ω
(μ∗

1,2 · Im[Gs(r0, r0, ω)] · μ1,2), (4)

where �0 is the spontaneous emission rate in free space, c
is the speed of light in vacuum, ω is the angular frequency
of the electromagnetic wave, μ1,2 is the unit vector in the

direction of the dipole moment of emitter, Gs(r0, r0, ω) is the
scattering part of dyadic Green function at the position of the
dipole considering the presence of monoclinic crystals, and
r0 is the source position. Following the procedure outlined

in Refs. [33,34], the scattered-tensor Green′s function at the
source position can be calculated by

Gs(r0, r0, ω)

= i

8π2

∫ ∞

−∞

∫ ∞

−∞
(rssMss + rspMsp + rpsM ps + rppM pp)

× exp (2ikzz0)dkxdky. (5)

Here, ri j (i, j = s, p) are the matrix elements of the tensor
Fresnel reflection coefficient related to the incident s- and
p-polarized light. The first and second letters of the subscript
in each coefficient denote the polarization states of incident
and reflected waves, respectively. The factors kx, ky, and kz are
the components of wave vector along x, y, and z directions,
respectively, z0 = dg is the distance between the monoclinic
crystal and the emitter. The generalized 4 × 4 transfer ma-
trix formalism, which is capable of calculating the Fresnel
coefficients and the field intensity distribution for light prop-
agation in anisotropic stratified media [35,36], was utilized to
theoretically explain the observed HShPs in experiment [22].
Thus, the generalized 4 × 4 transfer matrix formalism is used
to calculate the reflection coefficients ri j here. The matrices

Mi j (i, j = s, p) in Eq. (5) are obtained by the following
expressions [16,33,34]:

Mss = 1

kzk2
ρ

⎛
⎜⎝

k2
y −kxky 0

−kxky k2
y 0

0 0 0

⎞
⎟⎠, Msp = 1

k0k2
ρ

⎛
⎜⎜⎜⎝

−kxky −k2
y − kyk2

ρ

kz

k2
x kxky

kxk2
ρ

kz

0 0 0

⎞
⎟⎟⎟⎠,

M ps = 1

k0k2
ρ

⎛
⎜⎜⎝

kxky −k2
x 0

k2
y −kxky 0

− kyk2
ρ

kz

kxk2
ρ

kz
0

⎞
⎟⎟⎠, M pp = kz

k2
0k2

ρ

⎛
⎜⎜⎜⎜⎝

−k2
x −kxky − kyk2

ρ

kz

−kxky −k2
y − kyk2

ρ

kz

kxk2
ρ

kz

kyk2
ρ

kz

k4
ρ

k2
z

⎞
⎟⎟⎟⎟⎠, (6)

where k0 = (k2
x + k2

y + k2
z )1/2 is the free-space wave vector

and kρ = (k2
x + k2

y )1/2 is the in-plane wave vector.
Monoclinic crystals are characterized by unequal lengths

of their three principal axes and one shear angle. They support
only the twofold axis of rotational symmetry along b and a
mirror plane (a-c plane). Here, the parameters a, b, and c
denote vectors of the unit cell, as shown in Figs. 1(b) and
1(c). Due to the monoclinic angle (β = 103.7◦ and 91.13◦ for
Ga2O3 and CdWO4, respectively) [37,38], axes a and c are not
perpendicular to each other. In view of the low crystal sym-
metry, the off-diagonal permittivity components cannot be
completely removed through the coordinate rotation. Hence,
four independent components of the permittivity tensor arise
in monoclinic Ga2O3 and CdWO4 crystals, written in Carte-
sian coordinates as ε = [εxx εxy 0; εyx εyy 0; 0 0 εzz] (εxy =
εyx is bounded by reciprocity). Since all four components
are complex-valued entries, the monoclinic permittivity tensor
is a non-Hermitian tensor, and it is composed of the high-
frequency contributions and the dipole charge resonances
[25,37,38]. To unveil the influence of free charge carriers on

the valley quantum interference, the doped monoclinic Ga2O3

crystals with four free charge-carrier densities N (in cm−3)
at log10N = 18.0, 18.5, 19.0, and 19.5 are also inspected in
addition to the pure monoclinic Ga2O3 crystal. The detailed
calculation equations of permittivity tensors for monoclinic
Ga2O3 and CdWO4 crystals are given in Eqs. (S1)–(S7) in the
Supplemental Material [39].

Generally, hyperbolic polaritons can be generated when
either the real parts of two diagonal permittivity elements are
negative and another one is positive or one is negative and two
are positive. However, the strong dielectric response of off-
diagonal terms εxy = εyx �= 0 in monoclinic crystals typically
prevents the electromagnetic propagation angle from being
aligned with the principal axes, inducing a prominent shearing
effect of polariton modes. This shear phenomenon in the di-
electric response leads to the appearance of so-called HShPs,
where both momentum (wavelength) and propagation direc-
tion disperse with the frequency [22,25]. Figure 2 presents
the real parts of permittivity elements, i.e., Re(εxx ), Re(εxy),
Re(εyy), and Re(εzz ), for monoclinic Ga2O3 and CdWO4
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FIG. 2. Real parts of permittivity elements for pure monoclinic (a) Ga2O3 and (f) CdWO4 crystals, and n-type doped Ga2O3 crystals with
(b) log10N = 18.0, (c) log10N = 18.5, (d) log10N = 19.0, and (e) log10N = 19.5. The wavelength ranges in which Re(εxx ), Re(εxy ), Re(εyy ),
and Re(εzz ) have different signs are shaded by different colors, and the corresponding signs of each color are shown in the left table.

crystals. Their corresponding imaginary parts of permittivity
elements are given in Fig. S1 in the Supplemental Material
[39].

The hyperbolic dispersion bands in which Re(εxx ), Re(εxy),
Re(εyy), and Re(εzz ) have opposite signs are shaded by 13 dif-
ferent colorful backgrounds. Depending on the combination
of positive or negative real parts of four permittivity elements,
various types of phonon polaritons are supported, such as
elliptical surface phonon polaritons in green, type-I (in-plane
in magenta and dusty blue, out-of-plane in light navy) and
type-II (in-plane in wine, out-of-plane in orange) hyperbolic
polariton modes.

By virtue of the low-symmetry lattice structure, one can
also engineer the valley quantum interference via tuning the
parameters of azimuth and twist angles. The azimuth angle �

(or �′) is defined by a certain in-plane rotation with respect to
the normal of monoclinic crystal. That is, we tune the rotation
angles � and �′ of crystal1 and crystal2 around the z0 axis
in-plane, as indicated in Figs. 1(a) and 1(d). Accordingly, the
twist angle θ is defined as θ = �′ − � [see Fig. 1(d)].

To make the valley excitons efficiently couple to the
shear polaritons in monoclinic crystals, the position of
valley exciton should be sufficiently far from the surface
of monoclinic crystals such that it sees the crystals rather

than several adjacent atoms. Nevertheless, the farther the
valley exciton is, the larger the size of monoclinic crystal
is required. The lattice constants of β-Ga2O3 (or CdWO4)
are a = 12.23 Å, b = 3.04 Å, and c = 5.80 Å [37] (or
a = 4.959 Å, b = 5.812 Å, and c = 5.020 Å) [38]. Especially
valley excitons could suffer from the nonlocal effects induced
via monoclinic crystals for only several nanometers of dis-
tance dg. Figure S2 in the Supplemental Material [39] presents
the variations of Purcell factors with respect to the wavelength
λ and the distance dg for dipoles oriented along D1 and D2

directions, respectively. One can see that the Purcell factors
tend to be constants when the distance dg increases to ∼50 nm.
Considering these, the vertical distance of valley excitons
from the surface of crystal1 is taken to be dg = 50 nm.

III. RESULTS AND DISCUSSIONS

We first consider the condition that crystal1 and crystal2
are the same monoclinic crystal and the twist angle θ = 0◦
(see Figs. 3–6 and S2−S9 in the Supplemental Material [39]).
Figure S3 in the Supplemental Material [39] exhibits the col-
ormaps of quantum interference Q vs the wavelength λ and
the thickness d = d1 + d2 when the azimuth angle � = 90◦.
It is found that the Q spectra present local minimum and
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FIG. 3. (a) Real and (b) imaginary parts of Fresnel reflection coefficient rpp for pure monoclinic Ga2O3 and CdWO4 crystals, and doped
Ga2O3 crystals at different free charge-carrier densities. Quantum interferences (Q) for two orthogonal dipoles positioned at a distant height
from the monoclinic Ga2O3 crystal with (c) N = 0.0, (d) log10N = 18.0, (e) log10N = 18.5, (f) log10N = 19.0, (g) log10N = 19.5, and (h) pure
CdWO4 crystal. For comparison, their respective spectral curves of Im(rpp) are replotted by white solid lines in (c)−(h).

maximum values around d = 8 µm. Thus, unless otherwise
specified, the thicknesses of crystal1 and crystal2 are set to be
d1 = d2 = 4.0 µm by default.

Figures 3(a) and 3(b) show the optical spectra of real
and imaginary parts [i.e., Re(rpp) and Im(rpp) ] of Fresnel
reflection coefficient rpp, respectively, when both the stacked
crystal1 and crystal2 are monoclinic Ga2O3 (or CdWO4) crys-
tal at � = 90◦. Their corresponding quantum interferences Q
for two orthogonal dipoles are plotted as a function of the
wavelength λ in Figs. 3(c)–3(h). One can see that the variation
tendency of quantum interference fringes is like that of the
extreme values in Im(rpp) (cf. the white solid lines and the
Q spectra). For the pure monoclinic crystals, as shown in
Figs. 3(c) and 3(h), the wavelength positions of local minima
(or maxima) of Q are slightly deviated from the dips (or
peaks) of Im(rpp) spectra. For example, the Q spectral band
in Fig. 3(c) for pure Ga2O3 crystal presents the strongest
negative (or positive) quantum interference at 30.5 µm
(or 32.6 µm), while its corresponding Im(rpp) shows a
dip (or peak) at 30.0 µm (or 33.2 µm). The Q spectral
band in Fig. 3(h) for pure CdWO4 crystal exhibits the
smallest (or largest) quantum interference value at 24.5 µm
(or 27.1 µm), while its corresponding Im(rpp) gives a dip (or
peak) at 24.3 µm (or 28.2 µm). For the doped Ga2O3 crystals,
especially for log10N � 18.5 in Figs. 3(e)–3(g), the spectral
shape including the peak and dip positions of Q matches very
well with that of Im(rpp). Furthermore, the Q value region
changes from −0.7 to 1.0 for pure monoclinic Ga2O3 crystal
[see Fig. 3(c)]. By contrast, the valley quantum interferences
in Figs. 3(d)–3(g) become completely negative values after the
Ga2O3 crystal is doped by free charge carriers.

The imaginary part Im(rpp) is proportional to the photonic
local density of states [40–42]. As the doping concentration N
increases in monoclinic Ga2O3, the values of dips in Im(rpp)
spectra mainly present an increased tendency, while that of
the main peaks in Im(rpp) show a decreased trend, as depicted
in Fig. 3(b). The dips in Im(rpp) gradually shift toward short
wavelengths with increasing the N value. When the doping
concentration increases to log10N = 19.0 and 19.5, many dips
and peaks disappear, and the Im(rpp) spectra become rel-
atively flat, indicating the low sensitivity of photonic local
density of states to the change of wavelength. In consequence,
the quantum interference bands are gradually broadened, the
dips in Q spectra exhibit blueshift, and Q is limited to a
smaller and smaller negative value range with increasing the
doping concentration [see Figs. 3(c)–3(g)]. In the later discus-
sions on the optical field distributions, we will see that the
decrease in color scales of Q spectra is also associated with
the optical losses induced via electron doping.

For the pure Ga2O3 crystal, the Re(rpp) spectrum also
shows a multipeak oscillation behavior [see Fig. 3(a)]. The
Re(rpp) gives its smallest value at λ = 32.7 µm which is very
close to the wavelength position (32.6 µm) of maximum pos-
itive quantum interference in Fig. 3(c). This implies that the
influence of Re(rpp) on the Q spectra cannot be ignored for
pure monoclinic crystals. By right of the impact of Re(rpp),
the wavelength positions of local minima (or maxima) of Q
slightly stray from the dips (or peaks) of Im(rpp) spectrum.
Similarly, Re(rpp) of pure CdWO4 crystal gives its smallest
dip value at 26.8 µm, leading the largest peak at 27.1 µm in
Q spectrum to deviate from the position (at 28.2 µm) of the
strongest peak in Im(rpp), as shown in Fig. 3(h). The dips
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FIG. 4. Isofrequency surfaces for pure monoclinic (a) Ga2O3 and (f) CdWO4 crystals at the work wavelengths λ = 30.5 and 24.5 µm,
respectively. (b)−(e) are the isofrequency surfaces for doped Ga2O3 crystals at electron-doping concentrations log10N = 18.0, 18.5, 19.0, and
19.5, respectively. Their corresponding work wavelengths are λ = 30.0, 28.8, 28.6, and 28.3 µm, respectively. The red and blue surfaces denote
the positive and negative signs of kz/k0. The contour lines at the bottom of each subgraph are the projections of isofrequency surfaces.

and peaks in Re(rpp) become increasingly weaker, even some
of them disappear, as the doping concentration increases. The
spectral shape of Q is little affected via the Re(rpp) such that
it well coincides with that of Im(rpp) at high electron-doping
concentrations.

The variation of valley quantum interference with Fresnel
reflection coefficient in Fig. 3 can be further attributed to the
evolution of dispersion bands of HShPs induced via electron
doping in monoclinic Ga2O3. As show in Fig. 2, there are 11
kinds of color shades for pure monoclinic Ga2O3. The types
of hyperbolic dispersion gradually decrease to be six kinds
as the doping concentration increases to log10N = 19.5. The
decrease of hyperbolic types is accompanied by the blueshifts
and broadening of some dispersion bands (e.g., the dispersion
bands shaded by dark cyan, orange, and green colors). As a
result, many quantum interference fringes in Figs. 3(c)–3(g)
shift toward the short wavelengths, even some weak quantum
interference dips and peaks are gradually smeared out with
increasing the doping concentration from log10N = 18.0 to
19.5. There are only nine kinds of color shades for pure
monoclinic CdWO4 [see Fig. 2(f)]. Therefore, the quantum
interference fringes modulated by CdWO4 in Fig. 3(h) are less
than those modified via Ga2O3 in Fig. 3(c).

To more clearly unveil the underlying influencing mech-
anism of hyperbolic responses on the valley quantum inter-
ference, Figs. 4(a)–4(f) exemplifies the solutions for shear
polariton wavevectors at λ = 30.5, 30.0, 28.8, 28.6, 28.3, and
24.5 µm for Ga2O3 crystal with N = 0.0, log10N = 18.0,
18.5, 19.0, 19.5, and pure CdWO4 crystal, respectively. These
adopted λ values for Ga2O3 correspond to the quantum inter-
ference dips at ∼30 µm in Figs. 3(c)–3(g). Their discrepancies

are the blueshifts induced by different concentrations of elec-
tron doping in Ga2O3. The solution method for Fig. 4 is
described in Sec. 2 in the Supplemental Material [39].

One can see from Figs. 4(a)–4(e), when we change the
doping concentrations in Ga2O3 crystal, not only does the
polariton wave vector magnitude change, but the direction
of hyperboloid also rotates within the monoclinic plane. This
is a typical feature of the reduced symmetry associated with
HShPs supported in monoclinic crystals. For the pure crys-
tals, both Ga2O3 and CdWO4 possess the in-plane hyperbolic
polariton mode, as shown in Figs. 4(a) and 4(f). After dop-
ing with log10N = 18.0, the isofrequency surface of Ga2O3

crystal transits to the type-I out-of-plane HShP mode with
two degeneracy points [see Fig. 4(b)]. Further increasing
the doping concentration to log10N = 18.5 [see Fig. 4(c)],
the hyperbolic isofrequency surface undergoes compressing
along both kx and ky axes. Meanwhile, the degeneracy points
disappear, and there is only one vertex in the one-branched hy-
perboloid. As the doping concentration increases to log10N =
19.0 and 19.5, the isofrequency surfaces transit to the in-plane
hyperbolic topologies with different wave vector magnitudes
and directions, as presented in Figs. 4(d) and 4(e).

Additionally, we also inspect the evolution of isofrequency
surface with the electron-doping concentration at a fixed
wavelength λ = 29.0 µm, as shown in Fig. S4 in the
Supplemental Material [39]. In this case, all the Ga2O3

crystals with N= 0.0, log10N = 18.0 and 18.5 support type-I
out-of-plane HShP mode (see Figs. S4(a)−S4(c) in the
Supplemental Material [39]). With increasing the doping
concentration in Ga2O3 crystal from log10N = 19.0 to 19.5
(Figs. S4(d) and S4(e) in the Supplemental Material [39]), we
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FIG. 5. Variations of quantum interference Q with respect to the wavelength λ and the azimuth angle �. The radial axis and angle stand for
the factors of λ in µm and � in degrees, respectively. (a) and (f) are for the cases of pure monoclinic Ga2O3 and CdWO4 crystals, respectively.
(b)−(e) are for the conditions of doped Ga2O3 crystals with log10N = 18.0, 18.5, 19.0, and 19.5, respectively.

observe an optical topological transition from open (in-plane
hyperbolic) to closed (elliptical) isofrequency surfaces. These
rich topological transitions of shear polariton modes account
for the blueshifts of quantum interference dips (even the
broadening of interference bands and the disappearance of
some fringes) at ∼30 µm induced via increasing the doping
concentrations in Ga2O3 crystal.

The optical field distributions with respect to the excitation
wavelength λ and z0 position for the conditions of Figs. 3(c)–
3(h) are shown in Figs. S5(a)–S5(f) in the Supplemental
Material [39]. We see from Fig. S5 in the Supplemental Mate-
rial [39] that the reflected light field as well as the optical field
in monoclinic crystals mainly exhibits a diminished tendency
with increasing the electron-doping concentration in Ga2O3

crystal, which is detrimental to the strengthening of valley
quantum interference. This characteristic can be attributed to
the influences of crystal losses on the HShPs. As depicted in
Fig. S1 in the Supplemental Material [39], the imaginary parts
of permittivity elements for Ga2O3 crystal gradually increase
with increasing the N values, which can cause the increment
of electromagnetic wave absorption and convert more wave
energy into the heat. Figure S6 in the Supplemental Material
[39] shows the isofrequency surfaces of pure and doped mon-
oclinic crystals after artificially setting all the imaginary parts
of four permittivity elements to be zero. By comparing Fig. S6
in the Supplemental Material [39] with Fig. 4, it is found that
the lossless makes the isofrequency surfaces smoother and
the losses limit the effective transmission of electromagnetic
wave through monoclinic crystals. Hereby, the variation am-
plitude of Fresnel reflection coefficient becomes weaker and
weaker with increasing the doping concentration, as shown
in Figs. 3(a) and 3(b). Accordingly, the Q spectra in Fig. 3
along with Fig. 5 are gradually limited to a smaller and smaller
negative value range as the doping concentration increases in
the monoclinic crystal.

Figures 5(a)–5(f) exhibit the colormaps of quantum inter-
ference Q vs the wavelength λ and the azimuth angle � for
different doping concentrations of Ga2O3 and pure CdWO4

crystals. Their corresponding optical spectra of Im(rpp) are
shown in Figs. S7(a)–S7(f) in the Supplemental Material [39].
Because the origin of polar coordinate stands for λ = 0.0 µm
and the wavelength range λ < 18 µm is beyond the scope
of this paper, all the central results of polar coordinates in

this paper are blank. The optical field distributions |Ex| as
a function of z0 position at four different azimuth angles
are given in Figs. S8(a)–S8(f) in the Supplemental Material
[39]. All the azimuthal dispersions of Q, Im(rpp), and |Ex|
exhibit no mirror symmetry about the crystal axes. In marked
contrast, after artificially setting the off-diagonal permittivity
element εxy to be zero, as shown in Fig. S9 in the Supple-
mental Material [39], the optical spectra of Q, Im(rpp), and
|Ex| become symmetric about the crystal axes � = 0◦ (180◦)
and 90◦. This phenomenon delineates the effects of symmetry
breaking of monoclinic crystal structure in the valley quantum
interference.

This broken symmetry also endows the valley quantum
interference with exclusive azimuthal-dispersion property. In
Fig. 5, the azimuth angles of interference fringes rotate with
tunning the doping concentration in monoclinic crystals. For
example, the Q spectrum in Fig. 5(a) for pure Ga2O3 crys-
tal presents a local minimum value at the coordinate (λ, �)
= (30.5 µm, 90◦). As the doping concentration increases to
log10N = 18.0, 18.5, 19.0, 19.5, the corresponding local mini-
mum value shifts to (30.0 µm, 80◦), (28.8 µm, 142◦), (28.2 µm,
136◦), and (28.1 µm, 140◦), respectively. Based on the above
discussions, the change of λ value is mainly attributed to the
shift of hyperbolic dispersion band marked by cyan color in
Fig. 2. As for the variation of the � value, as depicted by
open squares in Fig. 6(a), it could be ascribed to the change of
lattice displacement direction (which can change the propaga-
tion direction of shear polaritons) within the monoclinic plane
induced via tuning the doping concentration [43].

To further parameterize the rotation nature, the major po-
larizability angle is defined by

α(λ) = 1

2
arctan

[
2Re(εxy)(λ)

Re(εxx )(λ) − Re(εyy)(λ)

]
, (7)

which diagonalizes the real part of the permittivity ten-
sor of monoclinic crystal individually at each wavelength.
Figure 6(b) shows the dispersion curves of α(λ) for pure
monoclinic Ga2O3 and CdWO4 crystals and doped Ga2O3

crystals at different N values. The α values at λ = 30.5, 30.0,
28.8, 28.2, and 28.1 µm are marked by solid squares for Ga2O3

crystal with N= 0.0, log10N = 18.0, 18.5, 19.0, and 19.5,
respectively. In Fig. 6(a), the � values are nearly equal to the
α values (cf. the solid and open squares).
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FIG. 6. (a) The azimuth and the major polarizability angles at
which the quantum interferences Q have local maximum (see the
circular symbols) and minimum (see the square symbols) values for
pure (N = 0) monoclinic Ga2O3 and CdWO4 crystals, and doped
Ga2O3 crystals. The solid lines are just drawn as a guide to the eye.
(b) Dispersion curves of the major polarizability angle α(λ) for pure
monoclinic Ga2O3 and CdWO4 crystals, and doped Ga2O3 crystals at
different N values. Solid (or open) circles indicate the α (or �) values
at λ = 34.6 µm for Ga2O3 and λ = 26.8 µm for CdWO4. Solid (or
open) squares indicate the α (or �) values at λ = 30.5, 30.0, 28.8,
28.2, 28.1, and 24.4 µm for Ga2O3 crystal with N= 0.0, log10N =
18.0, 18.5, 19.0, 19.5, and pure CdWO4 crystal, respectively.

Furthermore, open (or solid) circles in Fig. 6(a) present the
� (or α) values at λ = 34.6 µm for pure and doped Ga2O3

crystals. The azimuth angle monotonically increases with in-
creasing the doping concentration, in accordance with the
variation of the major polarizability angle. At λ = 34.6 µm,
because the hyperbolic polariton mode is nearly unchanged
via the electron doping [always shaded by orange color, as
shown in Figs. 2(a)–2(e)] and all the Q spectra in Figs. 5(a)–
5(e) have local maximum values, this can eliminate the
influences originating from the shift of hyperbolic dispersion
band and the related change of polariton mode. Figure 6(a)
clearly demonstrates that the propagation directional changes
of shear polaritons parameterized by Eq. (7) are responsible
for the azimuthal dispersion of valley quantum interference
fringes in Fig. 5.

For the CdWO4 crystal, the Q spectrum in Fig. 5(f) has
local minimum and maximum values at (24.4 µm, 140◦) and
(26.8 µm, 56◦), respectively. Their corresponding major po-
larizability angles are α = 51◦ + 90◦ and 56◦, respectively, as
shown in Fig. 6. Here, the difference value 90◦ is the repeti-
tion period of wavelength-dependent major polarizability axes
[22]. Again, it evidences that the azimuth and the major polar-
izability angles are approximately equal at the extreme values
of Q spectra. This finding could be significant since it provides
one strategy, i.e., through characterizing the valley quantum
interference, to measure the lattice displacement direction and
the doping concentration in monoclinic crystals.

Figures 7(a)–7(d) show the variations of quantum
interference Q with respect to the wavelength λ and the
twist angle θ for the hybrid architectures of Ga2O3-Ga2O3,
Ga2O3-CdWO4, CdWO4-CdWO4, and CdWO4-Ga2O3. To
more clearly distinguish the quantum interference fringes, the
color scales of Q in Figs. 7(a)–7(d) are limited to a smaller

FIG. 7. Variations of quantum interference Q with respect to
the wavelength λ and the twist angle θ for the hybrid architectures
of (a) Ga2O3-Ga2O3, (b) Ga2O3-CdWO4, (c) CdWO4-CdWO4, and
(d) CdWO4-Ga2O3. The radial axis and angle stand for the factors
of λ in µm and θ in degrees, respectively. The azimuth angle � of
crystal1 is tuned from 0◦ to 180◦, while the azimuth angle �′ of
crystal2 is fixed at 90◦. Both Ga2O3 and CdWO4 crystals are pure
monoclinic crystals.

range. Original colormaps of Q are shown in Figs. S11(b),
S11(f), S11(j), and S11(n) in the Supplemental Material
[39]. The optical field distributions for these four hybrid
structures as a function of the wavelength λ and z0 position
at θ = 0◦, 30◦, 60◦, and 90◦ are presented in Fig. S10 in
the Supplemental Material [39]. Both Ga2O3 and CdWO4

crystals are pure monoclinic crystals in Figs. 7, S10, and S11
in the Supplemental Material [39].

In Fig. 7(a), two quantum interference fringes can be found
near the λ = 32.5 and 35 µm around θ = 0◦ for the hybrid
structure of Ga2O3-Ga2O3. These two fringes mainly increase
in interference intensity and gradually merge with increasing
the twist angle up to 71◦. Thereafter, they gradually disappear
as the twist angle increases to 90◦. This variation tendency
is in conformity with the intensity change of reflected light
field, as shown in Figs. S10(a)–S10(d) in the Supplemental
Material [39]. At θ = 0◦, the structure of Ga2O3-Ga2O3 gives
rise to relatively strong reflected light fields at ∼32.5 and
∼35 µm (see Fig. S10(a) in the Supplemental Material [39]).
As θ increases to 30◦ and 60◦ (Figs. S10(b) and S10(c) in
the Supplemental Material [39]), these two field intensity
bands gradually merge into one at ∼34 µm, and the inten-
sity becomes stronger. When θ increases to 90◦ (Fig. S10(d)
in the Supplemental Material [39]), the field intensity at
∼ 34 µm is severely attenuated. At the same twist angle (cf.
Figs. S10(a)–S10(d) and S10(e)–S10(h) in the Supplemental
Material [39]), the reflected light fields at ∼32.5 and ∼35 µm
for the structure of Ga2O3-CdWO4 are stronger than those
for Ga2O3-Ga2O3. Hereby, two strong quantum interference
fringes can be clearly observed throughout the whole in-
spected θ value region for the structure of Ga2O3-CdWO4,
as shown in Fig. 7(b).

Similarly, the quantum interference fringes for the struc-
tures of CdWO4-CdWO4 and CdWO4-Ga2O3 are also
determined via the reflected light field intensities. For
instance, at θ = 60◦, 90◦ and λ = 46.5 µm (cf. Figs. S10(k),
S10(l), and S10(o), S10(p) in the Supplemental Material
[39]), the reflected light field of CdWO4-Ga2O3 is far larger
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than that of CdWO4-CdWO4 such that there is (or no) a
strong valley quantum interference fringe in Fig. 7(d) [or
Fig. 7(c)] at 46.5 µm with ranging the twist angle from 60◦
to 90◦. After expanding the twist angle to −90◦, Figs. 7(a)–
7(d) present four different symmetry-broken valley quantum
interference patterns. Thus, in practical applications, the val-
ley quantum interference could be utilized to estimate the
stacking sequence and directions of multilayer monoclinic
crystals.

Finally, Figs. S12(a)−S12(p) in the Supplemental Material
[39] compare the quantum interference spectra for four hybrid
architectures at different thickness ratios of d1 = 0.5d2, d1 =
2d2, and d1 = 3d2. In each subgraph, the controlling factors,
i.e., the radial axis and the radial angle, are the wavelength λ

and the twist angle θ . For better comparison, Figs. 7(a)–7(d)
are repeated in Figs. S12(b), S12(f), S12(j), and S12(n) in
the Supplemental Material [39], i.e., the condition of d1 = d2.
The number of valley quantum interference fringes increases
as the ratio d1/d2 increases for the hybrid architectures of
Ga2O3-Ga2O3 (see Figs. S12(a)−S12(d) in the Supplemental
Material [39]) and Ga2O3-CdWO4 (see Figs. S12(e)−S12(h)
in the Supplemental Material [39]). This may originate from
the fact that thicker monoclinic Ga2O3 crystal by virtue of
its shear effect creates a stronger anisotropic environment
near the valley excitons. In marked contrast, the number of
interference fringes decreases as the ratio d1/d2 increases
for the hybrid architecture of CdWO4-Ga2O3 (see Figs.
S12(m)−S12(p) in the Supplemental Material [39]). This is
because the shear effect of CdWO4 crystal is weaker than that
of Ga2O3 crystal. The thickening of monoclinic CdWO4 as
crystal1 will increase the distance between valley excitons
and crystal2 (i.e., Ga2O3 crystal), which is detrimental to
valley quantum interference. For the case of CdWO4-CdWO4

(see Figs. S12(i)−S12(l) in the Supplemental Material [39]),
the interference fringes for d1 = d2 are more than those for
d1 = 0.5d2. At this condition, both crystal1 and crystal2 are
monoclinic CdWO4 such that increasing d1 can generate a
stronger anisotropic environment near the valleytronic mate-
rial. Nonetheless, the further increase of d1 will reduce the
contribution from nonzero twist angle to the anisotropy of
environment. Because of the weak shear effect, the thickening
of CdWO4 as crystal1 may not compensate the diminished
contribution from nonzero twist angle. Thus, Figs. S12(k)
and S12(l) in the Supplemental Material [39] exhibit different
variation tendency from Figs. S12(c) and S12(d) in the Sup-
plemental Material [39] for the case of Ga2O3-Ga2O3. That
is, the interference fringes for the case of CdWO4-CdWO4

become less and less with increasing the thickness ratio to be
d1 = 2d2 and d1 = 3d2.

IV. CONCLUSIONS

To summarize, we have discussed a spontaneous genera-
tion of valley quantum interference between two orthogonal
dipoles in a 2D valleytronic material interfaced with stacked
monoclinic Ga2O3 and/or CdWO4 crystals. Results show that
the valley quantum interference can be broadly modulated in
the mid- to far-infrared region using the shear polaritons in
monoclinic crystals. Even so, CdWO4 crystal only supports a
weak shear effect stemming from the small monoclinic angle

(91.13◦) that limits the ability to fully quantify the behavior
of shear polaritons. For Ga2O3 crystal, this shear effect is sig-
nificantly amplified as the monoclinic axis is offset at 103.7◦.
Consequently, the valley quantum interference fringes mod-
ulated by pure Ga2O3 crystal are more than those tuned via
pure CdWO4 crystal. Additionally, the spectral shape of valley
quantum interference Q is like that of Im(rpp). Especially the
sensitivity of photonic local density of states to the change
of wavelength is gradually reduced with an increment of the
electron-doping concentration in monoclinic crystals. Thus,
the spectral shapes of Q and Im(rpp) are quite in accordance
with each other at high doping concentrations. With increas-
ing the doping concentrations in monoclinic Ga2O3 crystal,
the number of HShP modes gradually decreases accompanied
by the blueshifts and broadening of some hyperbolic disper-
sion bands. As a result, many quantum interference fringes are
widened and shift toward the short wavelengths. Moreover,
the electron doping can increase the optical losses which limit
the effective propagation of shear polaritons in monoclinic
crystals. Hence, the valley quantum interference is gradually
reduced to a smaller and smaller negative value range as the
doping concentration increases in the Ga2O3 crystal. In virtue
of the azimuthal dispersion of HShPs propagation direction
within the monoclinic plane, the quantum interference fringes
change their directions with increasing the doping concentra-
tions in monoclinic crystals. The valley quantum interference
exhibits symmetry-broken patterns depending upon tuning
the rotation angle and the twist angle of monoclinic hybrid
structures around the z axis in the plane. This means that the
valley quantum interference can be used to characterize the
phonon modes and structural microvariations including the
lattice displacement direction and the electron-doping con-
centration in monoclinic crystals. The findings also indicate
that low-symmetry Bravais crystals can serve as prospective
candidates for manipulating the spontaneous valley coherence
in 2D valleytronic materials.

In experiment, the valley quantum coherence can be ef-
fectively detected and manipulated with polarization-resolved
photoluminescence measurements [9–15]. It is worth noting
that the dipole moments of valley excitons in a MoSe2/WSe2

bilayer heterostructure are used here due to lack of specific
expressions of dipole moments for orthogonal far-infrared
excitons. These valley excitons may be formed at wavelengths
away from the mode range of HShPs. As such, far-infrared
valleytronic materials are needed to be developed in an ac-
tual experiment. Even so, the predicted physical phenomena
as well as the revealed interplay mechanism between valley
excitons and HShPs in this paper offer vistas and theoretical
guidance for the future designing of active valleytronic quan-
tum devices.
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