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Tunneling between two systems of interacting chiral fermions
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We develop a theory of tunneling between two systems of spinless chiral fermions. This setup can be realized
at the edge of a quantum Hall bilayer structure. We find that the differential conductance of such a device in
the absence of interactions has an infinitely sharp peak as a function of applied voltage. Interaction between
fermions results in broadening of the conductance peak. We focus on the regime of strong interactions, in which
the shape of the peak manifests well defined features associated with the elementary excitations of the system.
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I. INTRODUCTION

Interactions between one-dimensional fermions give rise
to a number of strongly correlated phenomena [1]. Their
complete understanding is generally beyond the scope of the
Landau Fermi liquid paradigm [2]. Instead, the low-energy
properties of one-dimensional systems are typically described
in terms of the Luttinger liquid theory [3]. The best known
feature of this theory is the power-law scaling of the tunnel-
ing density of states at low energies [4,5]. Luttinger liquid
behavior has been experimentally observed in various one-
dimensional systems, such as carbon nanotubes [6–8] and
semiconductor quantum wires [9].

Similar phenomena have been predicted to emerge at the
edges of fractional quantum Hall systems [10,11]. In this
case, the low energy excitations are described by the chiral
Luttinger liquid theory, in which the properties of the system
are controlled by the filling fraction ν of the corresponding
quantum Hall state. For ν−1 being an odd integer, the tun-
neling density of states of the chiral Luttinger liquid was
predicted to follow the power-law behavior D(ε) ∝ εχ , where
ε is the energy measured from the chemical potential and
χ = ν−1 − 1 [10]. These predictions have been confirmed
experimentally [12,13]. We note that although the very exis-
tence of fractional quantum Hall effect and, therefore, chiral
Luttinger liquid at its edge, is due to the electron-electron
interactions; the exponent in the above power law does not
explicitly depend on the interaction strength.

In this work we consider the special case of integer quan-
tum Hall effect with filling factor ν = 1. The edge state of this
system can be modeled as a system of chiral one-dimensional
fermions [14]. At ν = 1, the above power law gives a finite
tunneling density of states at the chemical potential. There-
fore, one may assume that the interactions do not significantly
affect the properties of one-dimensional chiral fermions. On
the other hand, recent work on spinless chiral fermions shows
that the effects of interactions manifest themselves in the be-
havior of the spectral function of the system [15]. In particular,
at fixed momentum p, the spectral function Ap(ε) has the
shape of a peak with the width proportional to the interaction
strength.

The main difference between the density of states D(ε)
and the spectral function Ap(ε) is that the latter describes the

response of the system when a particle is added to or removed
from it has a fixed momentum p. In one dimension, such phys-
ical processes can be probed experimentally in devices with
momentum-conserved tunneling setup [16–20]. In recent ex-
periments [21,22], momentum-conserved tunneling between
a quantum wire and a quantum Hall system was used to probe
the edge states with unprecedented accuracy. Alternatively,
momentum-conserved tunneling can be achieved in quantum
Hall bilayer devices [23–26] operated in the regime, where
transport between the layers is dominated by edge states rather
than the gapped excitations in the bulk. Given these exper-
imental advances, it is important to study theoretically how
interactions affect momentum-conserved tunneling in systems
of interacting chiral fermions.

In this paper, we develop a general theory of momentum-
conserved tunneling between two systems of spinless one-
dimensional chiral fermions. We account for interactions both
within and between the two systems and focus on the limit of
strong interactions. As an application of our theory, we study
tunneling between the edge states in a quantum Hall bilayer
device. We show that the differential conductance of such a
device has a sharp peak as a function of applied voltage. We
find that the shape of the peak shows well defined features
associated with the elementary excitations of the system.

II. MODEL

We consider two systems of interacting one-dimensional
spinless chiral fermions separated by a short distance, as illus-
trated in Fig. 1(a). This setup is described by the Hamiltonian
Ĥ = Ĥ0 + ĤT , with

Ĥ0 =
∑

p

ε (1)
p c†

1,pc1,p +
∑

p

ε (2)
p c†

2,pc2,p

+ 1

L

2∑
j=1

∑
pp′
q>0

V ( j)(q)c†
j,p+qc j,pc†

j,p′c j,p′+q

+ 1

L

∑
pp′
q>0

Ṽ (q)(c†
1,p+qc1,pc†

2,p′c2,p′+q

+ c†
2,p+qc2,pc†

1,p′c1,p′+q). (1)
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FIG. 1. (a) The schematic representation of the setup under con-
sideration, which can be realized in quantum Hall bilayer devices.
(b) The sketch of the free fermion dispersions ε ( j)

p . In the absence
of interactions, current shows steplike behavior as illustrated in
the inset.

Here the operator c j,p annihilates a fermion in the state with
momentum p in system j, with j = 1, 2. The energy of
fermions in system j is represented by ε

( j)
p , which is assumed

to be a monotonic function of p. Motivated by the experi-
ments on quantum Hall bilayer devices, we assume that the
two systems of chiral fermions are of the same length L and
have similar properties, but are not identical. The interactions
within each system and between them are expressed in terms
of the Fourier transformed interaction potentials V ( j)(q) and
Ṽ (q), respectively. In this paper, we assume that these quanti-
ties are positive, which corresponds to repulsive interactions.
The operator

ĤT =
∑

p

(γpc†
1,pc2p + γ ∗

p c†
2,pc1p) (2)

describes momentum-conserved tunneling between the two
systems; γp stands for the tunneling matrix element.

To calculate the tunneling current, we start with the op-
erator Î = (ie/h̄)

∑
p(γpc†

1,pc2,p − H.c.) accounting for the
charge current from system 1 to system 2. Assuming a weak
tunneling regime, we proceed with the evaluation of charge
current 〈Î〉 perturbatively in ĤT and, retaining only the terms
of the lowest order in γp. The resulting expression for the
current per unit length I = 〈Î〉/L takes the form

I = e

Lh̄2

∑
p

|γp|2
∫ ∞

−∞
dt

[
F (12)

p (t ) − F (21)
p (−t )

]
,

(3a)

F ( j j′ )
p (t ) = 〈c†

j,p(t )c j′,p(t )c†
j′,p(0)c j,p(0)〉. (3b)

In the absence of interactions, the two particle average (3b)
decouples into the product of single particle averages, which
can be calculated straightforwardly. In this case, Eq. (3a) gives
the expression for current per unit length at zero temperature
in the form

I = e

h̄2

∑
m

|γpm |2 [θ (εm − μ2) − θ (εm − μ1)]∣∣∂p
(
ε

(1)
p − ε

(2)
p

)∣∣
p=pm

∣∣ , (4)

where θ (x) is the unit step function and μ j stands for the
chemical potential of the system j. Momentum-conserved
tunneling is possible when the energies of fermions in two
systems become equal at a certain momentum, i.e., ε (1)

p = ε (2)
p .

In general, there are several solutions p = pm of this equa-
tion; the corresponding energies are denoted by εm, where

m = 0, 1, . . .. Figure 1(b) illustrates the case of a single so-
lution with p = p0.

To study the current-voltage characteristic of the device,
we introduce voltage as eV = μ1 − μ2 and also assume that
the chemical potential μ2 is fixed and chosen as the origin of
energy, i.e., μ2 = 0. The current (4) shows steps as a function
of voltage. Current-voltage characteristics in the case of a sin-
gle solution with ε (1)

p = ε (2)
p = ε0 > 0 is shown in the inset of

Fig. 1(b). The corresponding differential conductance per unit
length G = ∂I/∂V has an infinitely sharp peak at eV = ε0.

The main objective of this work is to investigate how
the presence of strong interactions within and between the
systems affects the current-voltage characteristic shown in
the inset of Fig. 1(b). In this case, the average (3b) no
longer decouples. We focus on the low energy regime, where
calculations in the presence of strong interactions are sim-
plified greatly upon the bosonization of the Hamiltonian of
the system.

III. BOSONIZATION

We follow the standard bosonization procedure [3] to
reformulate the problem in bosonic variables using the trans-
formation

ψ j (x) = û j√
L

eip( j)
F x/h̄eiϕ†

j (x)eiϕ j (x). (5)

Here ψ j (x) annihilates a fermion at position x in system j; it is
related to the operator c j,p by the Fourier transformation. The
operator û j lowers the particle number Nj in system j by one,
i.e., [û j, N̂j] = û j , and also includes the Klein factor emerg-
ing in the bosonization procedure. The Fermi momentum of
system j is denoted by p( j)

F . The bosonic fields ϕ j (x) are
defined by

ϕ j (x) = −i
∞∑

l=1

1√
l
eiql x/h̄b j,l , ql = 2π h̄

L
l, (6)

with b j,l being the bosonic annihilation operators.
To express Ĥ0 in terms of bosonic variables, we first note

that in the strong interaction regime, the curvature of elec-
tronic dispersion can be neglected [15]. Thus, we linearize the
fermion dispersion ε

( j)
p near the Fermi point,

ε ( j)
p = μ j + v

( j)
F

(
p − p( j)

F

)
, (7)

where the corresponding Fermi velocity is denoted by v
( j)
F . We

note that the Fermi momentum p( j)
F depends on the chemical

potential μ j and that this dependence is affected by the inter-
actions [27]. Using Eqs. (5)–(7), we express the operator Ĥ0

in terms of bosonic variables as

Ĥ0 =
∞∑

l=1

(
ε

(1)
l b†

1,l b1,l + ε
(2)
l b†

2,l b2,l
) + μ1N̂1 + μ2N̂2

+
∞∑

l=1

Ul (b
†
1,l b2,l + b†

2,l b1,l ), (8a)

ε
( j)
l =

[
v

( j)
F + V ( j)(ql )

2π h̄

]
ql , Ul = Ṽ (ql )

2π h̄
ql . (8b)

155415-2



TUNNELING BETWEEN TWO SYSTEMS OF INTERACTING … PHYSICAL REVIEW B 109, 155415 (2024)

It is convenient to bring Eq. (8a) to the diagonal form

Ĥ0 =
∞∑

l=1

(
ε̃

(1)
l b̃†

1,l b̃1,l+ε̃
(2)
l b̃†

2,l b̃2,l
) + μ1N̂1 + μ2N̂2 (9)

by performing the transformation(
b1,l

b2,l

)
=

(
cos θl − sin θl

sin θl cos θl

)(
b̃1,l

b̃2,l

)
, tan 2θl = 2Ul

ε
(1)
l −ε

(2)
l

.

(10)

The energies ε̃
( j)
l in Eq. (9) are defined by

ε̃
( j)
l = ε

(1)
l +ε

(2)
l

2
− (−1) j

2

√(
ε

(1)
l − ε

(2)
l

)2 + 4U 2
l , (11)

where we assumed ε
(1)
l > ε

(2)
l [28].

IV. EXPRESSION FOR THE CHARGE CURRENT

To evaluate the charge current (3a), we need an expression
for the time dependent operator ψ j (x, t ). In addition to the
time dependence of the bosonic field ϕ j in Eq. (5), the Hamil-
tonian (9) generates the time dependence of the lowering
operator û j (t ) = û je−iμ j t/h̄. Therefore,

ψ j (x, t ) = û j√
L

e−iμ j t/h̄eip( j)
F x/h̄eiϕ†

j (x,t )eiϕ j (x,t ). (12)

Using Eqs. (3a) and (12), we proceed with the evaluation of
charge current. In the thermodynamic limit L → ∞, we find
the following expression for the current per unit length at zero
temperature [27]:

I = e|γ |2
h̄2

∫ ∞

−∞
dq

∫ ∞

−∞
dε Ã(1)(q, ε)

× Ã(2)(�pF − q,�μ − ε). (13)

Here �pF = p(1)
F − p(2)

F and �μ = μ1 − μ2 > 0. At low en-
ergies, tunneling of fermions is confined to the vicinity of
the Fermi level, and thus to arrive at Eq. (13) we neglected
the momentum dependence of the tunneling matrix element,
γp → γ . The function Ã( j) is defined by

Ã( j)(q, ε) = lim
L→∞

∫ ∞

−∞

dt

2π h̄

∫ L

0

dy

L
e−i(qy−εt )/h̄

× exp

( ∞∑
l=1

1

l
ei[ql y−ε̃( j) (ql )t]/h̄

)
. (14)

We note that, in the absence of interactions between the two
systems, Ã( j) represents the spectral function of the system
j [15]. In this case, the charge current given by Eq. (13) is
proportional to the convolution of the spectral functions of the
two systems.

The form of the charge current given by Eq. (13) re-
flects the momentum and energy conservation in our system.
To demonstrate this, we consider a process of tunneling of
fermions from system 1 to system 2. This particle exchange
process produces the overall change in the energy of the sys-
tem ε1 + ε2 − �μ as seen from Eq. (9). Here, ε j is the total
energy of bosonic excitations in the branch j after tunneling.

Similarly, the change in momentum is q1 + q2 − �pF , with
q j being the total momentum of the bosonic branch j. There-
fore, the conservation of energy and momentum requires ε2 =
�μ − ε1 and q2 = �pF − q1, which is reflected in Eq. (13).
To study the current (13) in more detail, we need to specify a
particular form of the interactions.

V. CONTACT INTERACTIONS

In the limit of extremely short range interactions, the en-
ergy of bosonic excitations given in Eq. (11) is linear in
momentum, i.e., ε̃( j)(q) = ṽ jq, where

ṽ1,2 =
v1 + v2 ±

√
(v1 − v2)2 + 4v2

12

2
, (15a)

v j = v
( j)
F + V ( j)(0)

2π h̄
, v12 = Ṽ (0)

2π h̄
. (15b)

To study the charge current (13), we also need an expression
for the voltage dependence of �pF . Setting again μ1 = eV
and μ2 = 0, we obtain [27]

�pF (V ) = �pF (0) + eV

v
, v = v1v2 − v2

12

v2 + v12
. (16)

For the linear dispersion ε̃( j)(q) = ṽ jq, Eq. (14) yields
Ã( j)(q, ε) = θ (ε)δ(ε − ṽ jq). Using Eq. (13), we then find

I = e|γ |2
h̄2(ṽ1−ṽ2)

[θ (eV −eV1) + θ (eV −eV2)−1], (17)

where Vj is found from the condition eVj = ṽ j�pF (Vj ), and is
given by eVj = ṽ jv�pF (0)/(v − ṽ j ). Although Eq. (13) was
written for �μ > 0, the result (17) applies for both positive
and negative voltage V .

In general, the charge current (17) has two steps positioned
at the voltages Vj , with V1 and V2 being of the opposite sign
due the inequality ṽ1 � v � ṽ2. At small �pF (0), voltages V1

and V2 are small and thus we are in the regime of applicability
of bosonization theory. The number of steps reduces to one in
two special cases. First, in the absence of interactions between
the two systems, i.e., Ṽ (0) = 0 and thus v12 = 0, we have
V1 → ∞. Second, in the limit of v1 = v2, we get V2 → ∞.

It is instructive to compare this behavior with that of nonin-
teracting systems, where current is given by Eq. (4). Assuming
linear dispersions in Eq. (4), we find only one step. The
absence of the second step is due to the fact that the applied
voltage changes only p(1)

F , while p(2)
F is fixed. Different appli-

cation of voltage, such as μ1,2 = ±eV/2, would result in two
steps in I (V ). In the special case, when the Fermi velocities
of the two systems are identical, current (4) vanishes. This is
in contrast to the case of interacting systems, where even at
v1 = v2, current (17) yields a step at voltage V1.

VI. SHORT RANGE INTERACTIONS

When the range of interactions is nonzero, the non-
linearity of the bosonic spectrum should be taken into
account. Assuming the interactions are of short range, we
substitute ε( j)(q) = v jq − η jq3/(2π h̄) and U (q) = v12q −
η12q3/(2π h̄) into Eq. (11) and obtain the bosonic spectra ε̃( j)
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(a) (b)

FIG. 2. (a) The dimensionless form of differential conduc-
tance defined by G = ∂I/∂V , where I = (h̄2v1/e|γ |2 )I and V =
eV/[�pF (0)v1]. The solid blue curve is obtained from Eq. (13) for
the choice of parameters v2 = 0.5v1, v12 = 0.3v1, η2 = 0.8η1, η12 =
0.6η1, and η1[�pF (0)]2/(2π h̄v1) = 0.005. The dotted red curve
shows the conductance to leading order in small nonlinearity given
by Eq. (20) for the same values of parameters as that of the blue
curve. (b) The blue and red lines are the plots of the spectra ε̃1(q)
and �μ − ε̃2(�pF − q). Dashed lines show the linear asymptotes
of corresponding bosonic spectra. Only the small shaded triangular
region with typical momentum q∗ contributes to the current (13).

in the form

ε̃( j)(q) = ṽ jq − η̃ j

2π h̄
q3. (18)

Here the parameter η̃ j > 0 accounts for the curvature of the
bosonic spectrum; its expression in terms of microscopic pa-
rameters of the model is given in Ref. [27]. For the spectrum
(18), the function Ã( j) takes the form [15]

Ã( j)(q, ε) = 2π h̄

η̃ jq3
a

(
2π h̄

η̃ jq3
[ε − ε̃( j)(q)]

)
. (19)

Here a(x) is a universal function, which vanishes outside the
region 0 < x < 1 and has singularities at x = 1 − n−2, where
n = 1, 2, . . .. The position of the nth singularity corresponds
to the energy ε = nε̃( j)(q/n) and thus reflects the nature of the
many-body excitations in the system.

Substitution of Eq. (19) into Eq. (13) allows one to study
the differential conductance per unit length G = ∂I/∂V for
�μ = eV > 0. Thus, assuming �pF (0) > 0, we now study
the differential conductance in the vicinity of the step at
V = V2. For a particular choice of parameters, the voltage
dependence G(V ) obtained numerically from Eq. (13) is plot-
ted in Fig. 2(a). The δ-function peak of conductance in the
case of contact interactions is now broadened because of the
nonlinearity of the bosonic spectrum. The shape of the peaks
shows clear singularities at certain values of voltage.

To understand the shape of the peak of differential con-
ductance shown in Fig. 2(a), we study the current (13) in
leading order in small parameters η̃ j . To this end, we first
note that the function Ã( j)(q, ε) defined by Eq. (14) is finite
only when both momentum and energy are positive. This
constraint restricts the range of integration in Eq. (13) to
0 < q < �pF and 0 < ε < �μ, which corresponds to the
rectangle shown in Fig. 2(b). In addition, the concavity of
spectrum (18) guarantees that the total energy ε j of any set
of bosonic excitations with the total momentum q is in the
range ε̃( j)(q) � ε j < ṽ jq. [This is the reason why a(x) in
Eq. (19) vanishes outside the region 0 < x < 1]. It is then
clear that only the region defined by ε̃(1)(q) � ε < ṽ1q and

�μ − ε̃(2)(�pF − q) � ε > �μ − ṽ2(�pF − q) contributes
to the current (13). This region can be visualized by plot-
ting the spectra ε̃(1)(q) and �μ − ε̃(2)(�pF − q) along with
their linear asymptotes as illustrated in Fig. 2(b), where we
took �μ ∼ eV2, i.e., the red dotted line passes near the point
(q, ε) = (0, 0). From the figure, it is seen that only the small
triangular region formed by crossing of the spectrum of the
slow branch (red) with that of the fast branch (blue) and its
linear asymptote (dashed blue) contributes to the current (13).

In the case of weak nonlinearity, i.e., (�pF )2η̃ j � 2π h̄ṽ j ,
typical momentum q∗ within this triangular region is small,
q∗ � �pF . Thus, the broadening of Ã(1)(q, ε) due to the
nonlinearity of spectrum can be neglected compared to that
of Ã(2)(�pF − q,�μ − ε), i.e., we can replace Ã(1)(q, ε) →
θ (ε)δ(ε − ṽ1q). Equation (13) then reduces to a single in-
tegral. The result to leading order in η̃2 takes the compact
form [29]

I = e|γ |2
h̄2(ṽ1−ṽ2)

∫ 1+λ

0
dx a(x), (20a)

λ = 2π h̄e(V − V2)

η̃2[�pF (0)]3

(
1 − ṽ2

v

)4

. (20b)

Current (20) vanishes at voltages corresponding to λ < −1,
then grows monotonically and reaches a plateau at voltage V2,
where λ vanishes. Differentiation of Eq. (20) with respect to
voltage yields a conductance peak with the shape essentially
identical to that of the universal function a(x). As shown in
Fig. 2(a), the differential conductance obtained from Eq. (20)
reproduces all the features of that obtained from Eq. (13)
numerically.

VII. DISCUSSION

Our results can be tested in experiments with quantum Hall
bilayer structures. The sizes of the devices in the existing
experiments [23–26] are large, and as a result the transport
is dominated by the gapped excitations in the bulk. By using
smaller size structures, transport properties dominated by the
edge states can be investigated. Typically, in quantum Hall de-
vices, the electron density is controlled by nearby gates, which
screen the Coulomb interactions and thus the case of short
range interactions discussed here will be relevant. A small
temperature and disorder are expected to result in broadening
of the sharp features shown in Fig. 2.

To summarize, we presented a low-energy theory
of momentum-conserved tunneling between two systems
of spinless one-dimensional chiral fermions in the regime of
strong interactions. We applied our theory to study transport in
small quantum Hall bilayer devices. We showed that the dif-
ferential conductance of such a device has a distinctive shape
with nontrivial features reflecting the many-body physics of
interacting chiral fermions.
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