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The exploration of various topological nodal-line phonons with novel topological properties and unique
geometrical configurations has long been considered one of the central topics in topological physics. In this
work we find that Weyl nodal lines are composed of two basic categories, i.e., linear and quadratic. According
to the dispersion relations of degeneracy points in them, both linear and quadratic nodal lines can be divided
into three types, i.e., types I, II, and III. Based on these basic types, two unusual nodal lines, i.e., anisotropic
and hybrid, may be defined here. Unfortunately, real materials which may simultaneously generate these basic
and unusual nodal-line phonons with different types and categories have still rarely been reported, owing to
the highly required symmetry conditions. By using symmetry analysis and first-principles calculations, we
uncover that a material family BaXN2 (X= Ti, Zr, Hf) in space group 129 may generate novel butterfly-shape
nodal-birdcage phonons that are composed of three hourglasslike type-II nodal rings and four straight nodal
lines. More importantly, multiple unusual nodal lines, including anisotropic and hybrid ones, also exist in these
materials. The topologically nontrivial features of these various nodal-line phonons are confirmed by the nonzero
Berry phases and the drumheadlike surface states. Our theoretical results provide an ideal material platform to
study the topological properties of various nodal-line phonons, including three unusual types.
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I. INTRODUCTION

Thanks to the intense studies on topological quasiparti-
cles both in electronic and bosonic systems [1–11], a series
of topologically excited states, including Weyl nodal points
[12–19], nodal lines [20–24], and nodal walls [25–29], etc.,
have been predicted in theory, and some of them have been
confirmed in experiments [10–16]. To develop further this
research topic, the exploration of unusual topological quasi-
particles with unique nontrivial features towards specific
device applications has already been one of the central topics
in topological physics. Among them, nodal lines play a par-
ticular role in topological states and thus have long attracted
researchers’ particular attention [30–38]. An important rea-
son is that nodal lines can be considered as the fundamental
units to construct higher-dimensional topological states such
as nodal surfaces and walls, and upon breaking special sym-
metries, they are opened easily to form Weyl points, Dirac
points, and other topological quasiparticles [39], accompanied
with interesting topological phase transitions.

We well know that nodal lines are relatively rich and
complex, because they may display various geometric con-
figurations, including nodal chain, ring, net, cage, straight
lines, and others [40–42], making the researchers in this topic
work as magical painters wandering in the world of topolog-
ical states. Moreover, nodal lines having different geometries
open up a door for understanding the fundamental physics
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of various topological excitations, helping us to design and
fabricate various topological materials to realize topological
device applications. However, the understanding into funda-
mental physics of node lines is still far inferior to that of node
points. Taking Weyl nodal points as examples, based on their
dispersion relations, we have already divided them into three
basic types, i.e., types I, II, and III. Unfortunately, the similar
basic categories on nodal lines have rarely been put forward.
In this work we find that according to the low-energy disper-
sion relations in nodal lines, they can be divided into three
categories, i.e., linear, quadratic, and cubic ones. Note that the
cubic nodal lines are difficult to exist in real materials due to
their limited symmetries; we thus recognize that nodal lines
have two basic categories. Considering further the spatial dis-
tributions of these low-energy bands, both linear and quadratic
nodal lines can be divided into three basic types, referred to
as types I, II, and III, as illustrated in Fig. 1. Furthermore,
based on these three basic types, we may further explore some
unusual nodal lines. For instance, as for a nodal line, along
different momentum directions of the same degeneracy points,
the low-energy dispersion displays completely different types.
Obviously, this nodal line cannot be simply classified into any
one type listed above, so we then refer to it as an “anisotropic”
nodal line. On the other hand, when the dispersion relation
of one section of nodal line displays one type while in other
sections of the same nodal line it behaves as a completely
different type, we refer to this nodal line as a “hybrid” one
[43]. These basic and further classifications are helpful for
us to explore some unusual topological nodal lines in na-
ture, and this classification ideology can be extended to other
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FIG. 1. The top panel, including figures (a) and (b), shows three
types of liner nodal lines. The bottom panel, including figures (d) and
(f), shows three types of quadratic nodal lines. Here the definition of
types I, II, and III is according to the low-energy dispersion relations
of degeneracy points in nodal lines as illustrated in the upper-right
corner of each figure.

classes of nodal lines, including nodal ring, chain, cage, and
net, etc.

In order to demonstrate the existence of various basic
types of linear and quadratic nodal lines and to further ex-
plore unusual nodal lines, including anisotropic and hybrid
ones rarely reported in real materials, in this work, by us-
ing symmetry analysis, low-energy effective k · p model, and
first-principles calculations, we uncover that a material family
BaXN2 (X=Ti, Zr, Hf) [44,45] in space group (SG) 129 can
generate a rare butterfly-shape nodal birdcage composed of
three hourglasslike type-II nodal rings and four straightly lin-
ear nodal lines in their phononic spectra. It should be stressed
that the nodal-birdcage phonons uncovered here are composed
by different kinds of nodal-line phonons and are much differ-
ent from some nodal-cage and nodal-frame phonons reported
previously in Refs. [46,47], which are mainly composed by
two two-dimensional (2D) nodal surfaces connected with four
or six nodal lines. Thus the nodal birdcage in the present work
has an advantage for studying the basic classifications and the
related Berry phase of all the nodal lines to construct the nodal
birdcage. More interestingly, owing to the protections from
the screw rotation symmetry (C̃4z) and the mirror symmetry
(Mx), two unusual nodal lines, i.e., the anisotropic and hybrid
quadratic nodal lines, also exist in these materials. Addition-
ally, two pairs of unusual linear nodal lines, which display
opposite Berry phases and are localized in the kz=0 plane, are
adjacent to the boundaries of Brillouin zone (BZ).

The remainder of this paper is organized as follows. In
Sec. II, by using symmetry analysis we present the required
symmetry conditions and the related effective low-energy k · p
Hamiltonian models for various linear and quadratic nodal
lines. In Sec. III, through systematically analyzing the phonon
spectra of some real materials BaXN2 (X = Ti, Zr, Hf) in SG
129 [44,45], we find that a novel butterfly-shape nodal bird-
cage together with three unusual nodal lines appear in these
family materials, and their topologically nontrivial features
are confirmed by their Berry phases and the related drumhead-
like surface states in surface BZs. Finally, some concluding
remarks are summarized in Sec. IV.

II. SYMMETRY ANALYSIS, CRYSTAL STRUCTURES,
AND CALCULATION METHODS

First of all, we should establish low-energy k · p Hamilto-
nian models to describe the topologically nontrivial features
of quadratic nodal lines, since the low-energy model for lin-
ear nodal lines is relatively easy to understand. By using
symmetry analysis, we find that various types of quadratic
nodal lines can be described effectively by a two-band model.
To enhance the applicability of this model, we will consider
fully the anisotropic and other characteristics appearing in
the nodal lines. Moreover, we focus our discussion on the
high-symmetry path (�-Z) in the three-dimensional (3D) BZ
of SG 129, which are constrained both by the screw rotation
symmetry (C̃4z) and the mirror symmetry (Mx), to establish
the effective models.

As the two band branches which are attributable to form
the degeneracy points of quadratic nodal lines are very close
with each other around a frequency value with kwp, the follow-
ing 2 × 2 Hamiltonian model can be used to describe these
degeneracy points:

Hkp = f0(q)σ0 + fx(q)σx + fy(q)σy + fz(q)σz, (1)

where q = k − kwp denotes the wave vector relative to the
typical frequency value kwp. Moreover, under the mirror sym-
metry Mx and considering the constraint from the screw
rotation symmetry C̃4z, the above effective Hamiltonian
should obey the following relation:

C̃4zHkp(q)C̃−1
4z = H(−qy, qx, qz ). (2)

Taking the eigenvalues of the operator matrix C̃4z for those
two bands along the high-symmetry line �-Z and under the
2D irreps R5, the matrix C̃4z can be written as

C̃4z =
[

eiπ/2 0

0 e−iπ/2

]
.

Then the symmetry operator Mx is applied to further con-
strain the Hamiltonian as below:

MxHkp(q)M−1
x = H(−qx, qy, qz ). (3)

Furthermore, we adopt the similar operation on the Hamilto-
nian by further considering the mirror symmetry Mx along
this high-symmetry path �-Z. Note that the matrix Mx is
described as

Mx =
[

1 0
0 −1

]
.

Finally, the symmetry-permitted expression for quadratic
nodal lines as a function of q to the lowest orders can be
written as

Hkp = a12qxqyσx + b12qxqyσy

+ (
c11q2

x + c22q2
y

)
σz + (

d11q2
x + d22q2

y

)
σ0. (4)

By performing coordinate transformation, we may obtain the
corresponding eigenvalues as

E1,2 =αq2 ± βq2 = d11q2
x + d22q2

y

±
√(

a12
2 + b12

2
)
q2

x qy
2 + (

c11q2
x + c22q2

y

)2
, (5)
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where α and β indicate two simplified expressions described
as

α = d11 cos2 θ + d22 sin2 θ,

β = {(
a2

12 + b2
12

)
cos2 θ sin2 θ

+ (c11 cos2 θ + c22 sin2 θ )2
} 1

2 , (6)

with q=
√

q2
x + q2

y and θ=arctan qy

qx
. By examining the relation

between two eigenvalues E1,2=αq2 ± βq2, we may obtain the
fundamental features of quadratic nodal lines. For example,
for a fixed angle θ , when |α| < β, the first-order derivative
of eigenvalues with respect to the wave vector q exhibits a
typical type-I dispersion in the kx-ky plane, while when |α| >

β, the first-order derivative of eigenvalues exhibits a type-II
dispersion. Particularly, when |α| = β, the eigenvalues tend
to display a type-III dispersion relation.

On the other side, considering that the inversion symmetry
(P), time-reversal symmetry (T ), and glide mirror symmetry
(M̃z) exist in the kz=0.0 plane of SG 129, nontrivial nodal
lines should appear in this plane. Based on these symmetries,
the effective Hamiltonian model for these nodal lines in the
above particular plane can be written as

Hkp = b3qzσy + (
c + c1q2

x + c2q2
y + c3q2

z

)
σz

+ (
a1q2

x + a2q2
y + a3q2

z

)
σ0. (7)

Since the all degeneracy points in these nodal lines are char-

acterized by qz=0 and obey the relation q=
√

q2
x + q2

y , the

corresponding eigenvalues are given by

E1,2 = a1q2 sin2 θ + a2q2 cos2 θ

± (c1q2 sin2 θ + c2q2 cos2 θ + c). (8)

The above relation demonstrates that we may achieve a
well-defined linear nodal ring, which is centered at the high-
symmetry point � in reciprocal space.

In order to achieve the topological characteristics of vari-
ous types of nodal lines and to explore further the existence
of unusual nodal lines, we will systematically study all the
nontrivial bands in the phonon spectra of some real material
samples, i.e., a chiral crystal family BaXN2 (X = Ti, Zr, Hf)
in SG 129 (P4/nmm) [44,45] by using first-principles calcu-
lations. Particularly, we adopt the material sample BaZrN2 as
an example to perform our studies. Note that this material
consists of 2 Ba, 2 Zr, and 4 N atoms in its first BZ, which
are denoted by shiny red, dark green, and light purple balls in
Fig. 2(a). The corresponding Wyckoff positions are 2c (0.5,
0.0, 0.1528) for Ba atoms, 2c (0.5, 0.0, 0.5871) for Zr atoms,
2b (0.5, 0.5, 0.5) and 2c (0.0, 0.5, 0.1755) for N atoms, and
the bulk BZ, (001), and (110) surface BZs are also drawn in
Fig. 2(b).

The band structure of the crystal BaZrN2 is calculated
by the density functional theory (DFT) using the Vienna
ab initio Simulation Package (VASP) with the generalized
gradient approximation (GGA) in the form of the Perdew-
Burke-Ernzerhof (PBE) function for the exchange-correlation
potential [48–50]. An accurate optimization of structural pa-
rameters is employed both by minimizing the interionic forces
less than 0.001 eV/Å and a cutoff energy at 520 eV. The first
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FIG. 2. (a) Crystalline structure the chiral crystal BaZrN2 in a
primitive cell, where the red (light green and dark blue) atoms stand
for Ba (Zr and N) atoms. (b) Bulk BZ of BaZrN2 and the correspond-
ing (001) and (110) surface BZs. (c) Phononic spectrum of BaZrN2

along high-symmetry paths and the corresponding local phononic
DOS. The red box and red dotted line denote a chosen frequency
regime ranging from 0 to 25.0 THz.

BZ is gridded with 6 × 6 × 6 k points. Then the phononic
spectrum is gained using the density-functional perturbation
theory, implemented in thePHONOPY package [51,52]. The
force constants are calculated by using a 2 × 2 × 1 super-
cell. To reveal the topologically nontrivial nature of various
phononic states in material samples, the phononic Hamilto-
nian is constructed by using the tight-binding model, and the
surface local density of states (DOS) are calculated using
the open-source software WANNIER TOOLS code [53] together
with the surface Green’s function [54]. Note that the crystal
structures of all materials are constructed and obtained from
the Materials Project [55].

III. RESULTS AND DISCUSSION

A. Butterfly-shape hourglass type-II nodal birdcage

Since every cell of the crystal BaXN2 (X=Ti, Zr, Hf) is
composed by 8 atoms, its phononic dispersion displays 24
phonon bands, including 3 acoustic and 21 optical branches.
The disappearance of virtual frequency in phononic disper-
sion ensures the dynamical stability of material samples. In
Fig. 2(c) we plot the phononic dispersion of BaZrN2 along
high-symmetry paths and the corresponding phononic DOS
in the frequency regime ranging from 0 to 25 THz. Note that
the phononic spectra of the other two material samples, i.e.,
BaHfN2 and BaTiN2 in this material family, are provided
in the Supplemental Material (SM), Figs. S1 and S2 [56],
respectively.

Through carefully examining the phononic dispersion of
BaXN2, we focus our investigations on three particular fre-
quency regimes to reveal its unique topological features. First,
we find that the degeneracy point contributed by the 14th and
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FIG. 3. (a) A nodal ring in a surface BZ and two time-reversal invariant momentum points O and X are chosen to form a linear path. (b) The
bands with different irres to construct the degeneracy point N along the path O and X. (c) Spatial distribution of Berry phase when the closing
path goes across the nodal line. (d) Spatial distribution of three node rings and four straight nodal lines between the 14th and 15th branches
in the 3D BZ. (e) A butterfly-shape type-II nodal ring appears in the kz = 0.0 plane and four typical paths �-an (n = 1–4) are chosen. (f), (g)
Phononic dispersion along the paths a1-�-a2 and a3-Z-a4, respectively. (h) 3D phonon dispersion of butterfly-shape nodal ring in the kz = 0.0
plane. (i) A butterfly-shape type-II nodal ring appears in the kz = π plane and four typical paths Z-bn (n = 1–4) are chosen. (j), (k) Phonon
dispersion along paths b1-Z-b2 and b3-Z-b4, respectively. (l) 3D phonon dispersion of the butterfly-shape nodal ring at the kz = π plane. (m)
Spatial distribution of two type-II linear nodal lines appearing in the kx = 0.0 plane and four typical paths c1,2-W and c3,4-Z are chosen. (n), (o)
Phononic dispersion along paths c1-W-c2 and c3-Z-c4, respectively. (p) 3D phononic dispersion of type-II linear nodal in the kx = 0.0 plane.

15th phonon branches, highlighted by the red dashed-line box,
displays an obvious type-II dispersion along the paths �-X
and �-M. By using symmetry analysis, we make sure that
both planes localized at kz = 0 and π are protected by the
glide mirror symmetry M̃z, P , and T . Thus the degeneracy
points in these two planes can be described by the effective
Hamiltonian described in Eq. (7) and the corresponding eigen-
values are given by Eq. (8). Based on these messages, we may
conclude that a nodal ring exists in every plane. To verify

this conclusion and to obtain the topological features of nodal
ring in the kz=0 plane, we choose two time-reversal invariant
momentum points O and X, which establish a straight line
to cross this nodal ring at the point N as drawn in Fig. 3(a).
Moreover, around this crossing point N , two associated band
branches are drawn in Fig. 3(b). One may see that just cross-
ing this point, both band branches change their irreducible
representations (irres). By further calculating their first deriva-
tive of eigenvalues with respect to q and then examining its
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derivative with respect to θ , we find that both branches form
this degeneracy point and display a typical type-II dispersion,
verifying that this nodal ring belongs to a linear type-II one.

To determine the nontrivial nature of this nodal ring, we
may examine its Berry phase [57]. To the end, we choose a
ringlike path l1 to encircle the nodal ring near to the crossing
point N as drawn in Fig. 3(a). Then the Berry phase along this
path l1 can be calculated by the following equation:

γ =
∮
C

A(k) · dk, (9)

where A(k) = −i
∑

m〈um(k)|∇k|um(k)〉 is the Berry connec-
tion [58], um(k) is the Bloch wave function of the mth phonon
band, and C is a closed path in momentum space (i.e., l1
adopted here). In a similar way, the nontrivial topology of the
calculated Berry phases for the remaining nodal rings or lines
can be confirmed. The calculated result of Berry phase for
path l1 is given in Fig. 3(c) and clearly demonstrates that along
this closed path, the related Berry phase equals a nonzero
value π , confirming well its nontrivial nature.

To glimpse the whole geometrical configuration of the
nodal ring appearing in the plane with kz = 0, we focus our
attention on the phononic dispersion in the one-eighth regime
of surface BZ, as drawn in Fig. 3(e), in which some typical
paths �-an (n = 1–4) are chosen. The phononic bands along
the paths a1-�-a2 and a3-�-a4 are plotted in Figs. 3(f) and
3(g), respectively. One may see that along the path a1-�, the
crossing point between the 14th and 15th bands possesses
a typical type-II linear dispersion relation and meanwhile,
along the path �-a2, the crossing point between these two
bands displays a similar dispersion relation with completely
opposite slopes. Considering the spatial distributions of the
13th–16th bands, these two degeneracy points can be also
classified further into type-II hourglass nodal points. More-
over, along the paths a3-� and �-a4, two similar type-II nodal
points appear between the 14th and 15th bands [see Fig. 3(g)].
Considering the spatial distributions of the above four nodal
points, together with the screw rotation symmetry C̃4z and the
glide mirror symmetry M̃z in this plane, we may conclude
the geometrical configuration of the nodal ring in the kz = 0
plane displays a butterfly-shape type-II linear nodal ring as
drawn in Fig. 3(e), which is also confirmed well by its 3D map
perspective versus the frequency in the kx-ky plane as plotted
in Fig. 3(h). In a similar way, we also uncover that the nodal
ring in the kz = π plane also displays as a butterfly-shape
type-II linear nodal ring, as illustrated in Figs. 3(i)–3(l).

Furthermore, to obtain the overall morphology of nodal-
line phonons in this real material, we tend to study the
phononic dispersion in the plane with kx = 0.0, which is
perpendicular to the above two planes. Considering that the
mirror symmetry Mx, the screw rotation symmetry C̃2y, and
T exist in this plane, two nodal lines, which are contributed
by the 14th and 15th band branches, should be generated.
To verify this conclusion, we plotted these two nodal lines
according to the associated degeneracy points in the phononic
spectrum in Fig. 3(m). Note that a particular point W with the
coordinates (0.0, 0.0, 0.24), which denotes a triple degenerate
point contributed by the 12th, 13th, and 14th bands, is also
given in this plane. To achieve the topological categories and
the detailed geometric configurations of these nodal lines,

we have chosen four typical paths c1(2)-W and c3(4)-Z, and
the corresponding phononic bands are drawn in Figs. 3(n)
and 3(o), respectively. One may see that along these paths,
four type-II nodal points still exist, indicating that two cor-
responding nodal lines belong to the type-II one. Moreover,
the related 3D map of these nodal points in the ky-kz plane
are also plotted in Fig. 3(p). It clearly demonstrates that these
two nodal lines are nearly completely straight, as drawn in
Fig. 3(m). Considering further the screw rotation symmetry
(C̃4z) in this material, another pair of type-II straight nodal
lines exist in its perpendicular plane with ky = 0, as drawn
in Fig. 3(d). More interestingly, these two pairs of straight
nodal lines just connect with the previous three nodal rings in
the planes kz = 0 and ±π to form a butterfly-shape hourglass
type-II nodal birdcage as drawn in Fig. 3(d), which has rarely
been reported previously in real materials.

B. Nontrivial surface states induced
by the type-II nodal birdcage

In what follows we study the nontrivial surface states in-
duced by the butterfly-shape type-II nodal-birdcage phonons
in the material BaZrN2. Firstly, we plot a part of its phononic
dispersion and the corresponding projection of phonon DOS
in the frequency regime ranging from 6 to 10 THz in the (001)
surface BZ along the high-symmetry paths Y-�-X-M-�-a3 in
Fig. 4(a). It clearly demonstrates that around the projection
point � and in the frequency regime from 8.0 to 8.5 THz,
several projected crossing points displaying an hourglasslike
type-II dispersion relation appear, confirming well the exis-
tence of type-II hourglass nodal rings discussed previously.

Not only that, we also find several surface arc states
induced by the type-II linear nodal birdcage as drawn in
Fig. 4(a). Between two neighboring crossing points formed
by type-II surface-state branches there exist distinct nontrivial
drumheadlike surface states that are produced by the butterfly-
shape type-II nodal birdcage. To demonstrate this finding,
we focus our investigations on three particular surface-state
regimes as denoted by dashed-line loops 1©, 2©, and 3© in
Fig. 4(a) and enlarge them in Figs. 4(b)–4(d), respectively,
where the projection points d1,3,4 and e1,3,4 from d1,3,4 and
e1,3,4 are also highlighted. Note that the three points d1,3,4 and
the other three points e1,3,4 are chosen from the butterfly-shape
nodal ring located in the kz = 0 plane and the similar nodal
ring in the kz = π plane (see Fig. 3). We may find that there ex-
ists a nontrivial surface arc connecting with two neighboring
projection points d1 and e1 (d3 and e3, d4 and e4), confirming
further the topologically nontrivial nature of the butterfly-
shape type-II nodal birdcage observed in this material. To
further examine their nontrivial features, the associated isofre-
quency surface projections at the frequency regime ranging
from 7.93 to 8.45 THz on the (001) surface BZ are also
calculated as drawn in Figs. 4(e) and 4(f), respectively. We
may see that the contour plot of the phononic local DOS
associated with the spatial distribution of isofrequency sur-
face states agrees well with the drumheadlike surface states.
Moreover, due to the fourfold rotation symmetry (C4z) in this
material, the phononic surface states exhibit a distinct square-
shaped geometric symmetry within the surface BZ. To present
comparable studies between the butterfly-shaped hourglass
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FIG. 4. (a) Surface states of BaZrN2 in the (001) surface BZ along the high-symmetry paths X-�-Y-M-�-a3 in the frequency regime
ranging from 6 to 10 THz. (b)–(c) Three drumheadlike surface states induced by the type-II nodal birdcage, which are highlighted by three
dashed-line boxes in the figure (a). (e) and (f) Isofrequency surface contours at 7.9 and 8.4 THz in the (001) surface BZ to demonstrate the
existence of butterfly-shape type-II nodal birdcage and anisotropic quadratic nodal line.

nodal-birdcage phonon and the linear nodal-line phonon, we
provide more details to show the nontrivial phononic states
and the unique nontrivial properties in other family materials
BaXN2 (X = Ti, Zr, and Hf) in the SM, Sec. B [56].

C. Three kinds of unusual nodal-line phonons

Let’s take a look back at the phononic dispersion drawn
in Figs. 3(f), 3(j), and 3(n). We may find that the 15th and
16th phononic branches in the material BaZrN2 display a
distinctive quadratic nodal line along the high-symmetry path
�-Z, which is protected both by the screw rotation symme-
try C̃4z and the mirror symmetry Mx. Through examining
the dispersion relation of the typical degeneracy points at
points �, W, and Z in this quadratic nodal line, we find the
band branches along the kx and ky directions exhibit a typical
type-III feature, while along other directions, such as the 110
direction in the kx = ky plane, they display type-II features,
indicating that along different directions of the same degen-
eracy point in a nodal line the related dispersion relations
belong to completely different categories. We refer to this
quadratic nodal line as an anisotropic one. To demonstrate

further this anisotropic behavior, we present the correspond-
ing 3D phononic dispersion covering points � and Z in the
kx-ky plane in the SM, Figs. S3(e) and S3(f) [56], and that
of the kx-kz plane and the (110) plane in SM Figs. S4(a)–
S4(d) [56]. These 3D maps confirm further the anisotropic
characteristic of this quadratic nodal line by exhibiting type-
II and -III dispersion relations in its different momentum
directions.

It is interesting that the quadratic nodal line along the
high-symmetry path �-Z in another frequency regime dis-
plays completely different dispersion relations in the materials
BaXN2 (X = Zr and Hf). To highlight this finding, we plot
the 21st and 22nd band branches around three typical points
with different frequency values, i.e., point � along different
directions, the point with kz = 0.08, and point Z in Fig. 5(a).
At these three points there are just three band crossings con-
tributing to form the above quadratic nodal line. One may
see that at �, the degeneracy point displays a type-II disper-
sion relation in all momentum directions [see upper panel in
Figs. 5(a) and 5(b)]. Nevertheless, around the point kz = 0.08
with kx = ky = 0.0, the phononic dispersion of the degeneracy
point shows another type of dispersion relation different from
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FIG. 5. (a) Phononic spectra on three typical planes with kz = 0, kz = 0.08 and kz = π , in which the related high-symmetry paths are chosen
as X-�-M, a2-�-a3, k1-(kz = 0.08)-k2 with k1 = (0.5, 0.0, 0.08) and k2 = (0.5, 0.5, 0.08) and R-Z-A. (b) Spatial distributions of node lines
between the 21th and 22th band branches, where the green (blue) type-II linear nodal lines have positive (negative) Berry phase on the kz = 0.0
plane. Here, a hybrid quadratic nodal line (HQL, colored by red) along the path �-Z. (c) Phononic surface states of BaZrN2 in the (001)
surface BZ along the Y-�-X-M-� in the frequency regime ranging from 17.2 to 17.8 THz. (d) Evolution of the nontrivial phononic surface
states with the increasing frequency ky along the �-X-� direction. (e) and (f) Two typical isofrequency surfaces contour at the frequency 17.55
and 17.68 THz on the (001) surface BZ.

the previous one, i.e., a type-II dispersion along the kx direc-
tion, while there is a type-I dispersion along the 110 direction,
especially along path Z-(kz = 0.2). Particularly, around point
Z, the phononic dispersion of degeneracy point is evolved into
a perfect type-I feature [see the fourth panel in Fig. 5(a)].
Obviously, in the different sections of this nodal line, the
phononic dispersion relations belong to different categories.
To differentiate this nodal line from others, we refer to it as a
hybrid quadratic nodal line. It is stressed that the projected
surface states in the phononic spectrum around projection
point � [see Fig. 5(c), highlighted by yellow dash lines] and
the corresponding 3D map (see SM Figs. S4(e)–S4(h) [56])
confirm well its hybrid dispersion relation.

Apart from two unusual quadratic nodal-line phonons,
it is inspiring that another unconventional linear nodal-line
phonon appears also in these material samples. By examining
the 21st and 22nd phononic bands along paths �-M, �-a2,
and �-a3 drawn in Fig. 5(a), we find that there exist some
degeneracy points displaying a type-II dispersion relation.
It is stressed that due to the glide mirror symmetry M̃z, P ,
and T existed in the kz = 0.0 plane; the degeneracy points
in this plane tend to form four linear nodal lines. Moreover,

our further calculations demonstrate that two of them have
a positive Berry phase π and the other two have a negative
one −π , which are highlighted by different colors as drawn
in Fig. 5(b), verifying well their nontrivial features. Interest-
ingly, these linear nodal lines are characterized by another
unusual feature that every nodal line is adjacent to but not in
contact with the boundaries of BZ. To verify their nontrivial
features, we plot the projections of phononic local DOS in
the frequency regime ranging from 17.2 to 17.8 THz on the
(001) surface BZ along the high-symmetry paths Y-�-X-M-�
in Fig. 5(c). One may find that along the projection path
X-M, a visible drumheadlike surface state displays well, and it
should be induced by a pair of nodal lines with opposite Berry
phases [see an enlarged inset panel in Fig. 5(c)]. It is noted
that both the appearance of a drumheadlike surface state and
its evolution process versus the momentum ky [see Fig. 5(d)]
further confirm the nontrivial features of this pair of linear
nodal lines. Furthermore, two typical isofrequency surfaces
which are centered at point � [see Fig. 5(e)] and point M [see
Fig. 5(f)] also clearly display the projections of two pairs of
linear nodal lines, verifying well their spatial distribution and
geometric configurations described in Fig. 5(b).
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IV. CONCLUSIONS

In summary, we have presented the basic categories of
topological nodal lines according to the dispersion rela-
tions of degeneracy points in them, and based on these
basic categories, we have proposed some unusual topolog-
ical nodal lines existing in real materials. By performing
symmetry analysis in combination with the first-principles
calculations, we have uncovered a series of novel topolog-
ical nodal-line phonons in a material family, i.e., BaXN2

(X = Ti, Zr, and Hf) in SG 129, which includes a butterfly-
shape hourglass type-II nodal-birdcage phonon and three
kinds of unusual nodal-line phonons. The nodal-birdcage
phonons are composed of three butterfly-shape nodal rings
and four straightly linear nodal lines in their phonon spectra.
It is interesting that some nodal lines in this nodal birdcage
display unconventional hourglasslike features. More impor-
tantly, three kinds of unusual nodal-line phonons, including

the anisotropic, hybrid quadratic nodal line and two pairs
of linear nodal lines adjacent to the boundaries of BZ, also
appear in this material family. The topologically nontrivial
features of these various nodal lines are confirmed by their
Berry-phase calculations and the drumheadlike surface states
in the related surface BZs. Our theoretical results provide
an ideal material platform to study various novel topolog-
ical nodal-line phonons, including butterfly-shape hourglass
type-II nodal-birdcage phonons and three unusual nodal-line
phonons.
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