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Electronic and magnetotransport properties of twisted bilayer graphene
in the presence of external electric and magnetic fields
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We investigate extensively the electronic and transport properties of twisted bilayer graphene when subjected
to both an external perpendicular electric field and a magnetic field. Using a basic tight-binding model, we show
the flat electronic band properties as well as the density of states (DOS), both without and with the applied
electric field. In the presence of an electric field, the degeneracy at the Dirac points is lifted and a nonmonotonic
behavior is found in the energy shift between the Dirac points of each layer, especially for twist angles below 3◦.
We also study the behavior of the Landau levels (LL) spectra for different twist angles within a very low energy
range. These LL spectra get modified under the influence of the external electric field. Moreover, we calculate the
dc Hall conductivity (σxy) for a very large system using the kernel polynomial method. Interestingly, as we tune
the twist angle from a higher to a lower value, σxy undergoes a transition from a half-integer to an integer quantum
Hall effect, i.e., the value of σxy shifts from ±4(n + 1/2) (2e2/h) (n is an integer) to ±2n (2e2/h) around a small
twist angle of θ = 2.005◦. At this angle, σxy acquires a Hall plateau at zero Fermi energy. However, the behavior
of σxy remains unaltered when the system is exposed to the electric field, particularly at the magic angle where
the bands in both layers can hybridize, and strong interlayer coupling plays a crucial role.
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I. INTRODUCTION

Since the discovery of graphene [1–3], van der Waals
(vdW) layered materials [4] have been at the forefront of sci-
entific interest. Among these, twisted bilayer graphene (TBG)
[5–8] is one such heterostructure that stands out due to its
remarkable band properties. These properties encompass the
coexisting massive and massless Dirac fermions [9], second-
generation Dirac singularities [10], the Hofstadter butterfly
spectrum [11], the coexistence of superlattice Dirac points
and Van Hove singularities (VHS) [12], etc. In TBG, two
graphene layers are rotated at a specific angle relative to each
other, resulting in the formation of a moiré pattern. This pat-
tern can be visualized using scanning tunneling microscopy
[13,14], and it exhibits a periodic nature, with larger periods
observed at smaller twist angles [15]. Moreover, the twist
angle impacts the position of the Dirac cones in each layer,
causing a displacement in momentum [16]. Several methods,
including growth on the C face of a SiC substrate [17,18],
chemical vapor deposition (CVD) growth techniques on metal
substrates [19–22], or mechanical folding of a monolayer
graphene sheet [23], etc., have been used to produce TBG
structures. In TBG, collective charge carrier behavior arises
from the flat regions of the band structure near a saddle point,
where multiple electrons share the same energy level being
highly localized at the AA sites [24]. Experimentally, the
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localization of electrons and the VHS in twisted graphene lay-
ers have been measured by scanning tunneling spectroscopy
[13,25]. The nearly flat low-energy bands in the moiré pattern
formed by twisted graphene layers, referred to as magic-angle
twisted bilayer graphene (MATBG) [6], give rise to a physics
of strong correlation [26,27]. There is evidence of Mott-like
insulating behavior [28], superconductivity [29], the anoma-
lous Hall effect [30], etc., which corroborates the richness of
the physics it possesses.

The low-energy electronic structure of TBG possesses
massless Dirac fermions, albeit with a diminished Fermi
velocity compared to monolayer graphene at small twist
angles [5,24,31], which is quite different from that of an AB-
stacked bilayer graphene. Both theoretical and experimental
studies have demonstrated the alteration of the band gap in
bilayer graphene due to the different on-site energies between
the layers [32,33]. There are records of the possibility of
controlling the band gap of Bernal bilayer graphene by
applying the electric field [34–36]. However, contrary to this,
an external electric field does not induce a band gap in the
band structure of TBG [37]. Nevertheless, the presence of
an interlayer bias gives rise to exotic phenomena, such as
additional anisotropic reduction of the Fermi velocity [38],
the emergence of topologically protected helical modes [39],
12-fold symmetry breaking of quasicrystalline states [40],
etc., in the electronic spectrum. Recent findings also suggest
that large-angle TBG may offer semiconductor-like behavior
with tunable band gaps up to terahertz frequencies when
subjected to an electric field [41]. The combination of gate
tunability [42–44] and twist angle in certain two-dimensional
systems has demonstrated the possibility of achieving
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tunable Mott insulators [42], as well as topological flat
bands [45], etc.

On the other side, the discovery of an unusual quantum
Hall effect in monolayer graphene provides evidence for the
existence of massless Dirac fermions [46], whereas, in the
case of bilayer graphene, the quantization rules for the integer
quantum Hall effect are quite different, confirming the char-
acteristics of massive quasiparticles [47]. The Landau level
(LL) energies vary as En ∼ ±√|n|B (B is the strength of the
magnetic field, n is the LL index) and En ∼ ±h̄ω

√
n(n − 1)

(ω = eB/m is the cyclotron frequency) for the monolayer and
bilayer graphene, respectively. However, the role of interlayer
coupling becomes crucial in the formation of LL spectra as
it influences the behavior of quasiparticles of a pristine TBG
[5,48]. Strikingly, the massless Dirac fermions still survive in
TBG for large twist angles due to the decoupling of twisted
layers [49]. When exposed to a perpendicular magnetic field,
the electronic behavior of TBG remains similar to that of
a monolayer for twist angles exceeding 20◦ [25]. Experi-
mentally, the behavior of the LLs has been addressed using
scanning tunneling microscopy and LL scanning tunneling
spectroscopy depending on the twist angle [25]. Several stud-
ies have been reported on the LL spectrum as well as the Hall
quantization of TBG, both through analytical and experimen-
tal approaches [48,50–54]. Furthermore, the dc conductivity
has been studied for different twist angles in the presence
of disorder [55–57]. Previous works [58,59] have addressed
magnetotransport in small-angle TBG when the applied bias
causes topological channels to appear [60]. However, a more
comprehensive study of the combined effect of electric field
and magnetic field in the magic-angle TBG has yet to be
explored.

In this paper, we investigate the effects of a perpendicu-
lar electric field and a magnetic field on the electronic and
transport characteristics of TBG in the mesoscopic regime,
using a real-space large-scale approach to quantum transport.
We predict the first magic angle and study the electronic
band structure and the density of states (DOS) characteristics
pertaining to the magic angle, as well as for adjacent small
twist angles (both below and above the magic angle). Next,
we introduce a perpendicular electric field into the system to
investigate its influence on the electronic properties. Notably,
we observe nonmonotonic dispersion of energy levels with
varying electric field strength. In the presence of a weak mag-
netic field, we show the DOS spectrum for the magic angle
and also investigate the LL spectra for different twist angles.
We also unveil novel effects of the electric field on the LL
spectrum for the magic angle. Subsequently, we employ the
real-space method to calculate the dc Hall conductivity within
the linear-response regime, utilizing the Kubo-Bastin formula
[61,62], as implemented in KITE [63–65]. Nevertheless, we
reveal the transport behavior in the TBG system with a signif-
icant number of unit cells. This underscores the complexities
that emerge from modeling such structures, especially near the
magic angle, which creates a high demand for research.

The paper is organized as follows. The geometry and the
model Hamiltonian of TBG are introduced in Sec. II. In
Sec. III, we describe the formalism to compute the transport
properties and the DOS in detail. Our results are presented
in Sec. IV. Sections IV A and IV B include the results for the

band structures and the DOS in the absence (U = 0) and pres-
ence (U �= 0) of an external electric field, respectively. The
effects of a perpendicular magnetic field (B �= 0) are depicted
through the LL spectra shown in Sec. IV C. To illustrate the
effects of both electric and magnetic fields simultaneously on
the LL spectra, we observed the density of states in Sec. IV D.
Further, the transport properties are investigated by computing
the dc Hall conductivities in Sec. IV E. Finally, our findings
are summarized in Sec. V.

II. MODEL

In this section, we begin by briefly describing the geomet-
rical structure of our system as given in Fig. 1. Figure 1(a)
shows the schematic diagram of a TBG where we have rotated
the upper layer (layer 2) of an AA-stacked bilayer graphene
(where each atom in one layer aligns directly above or below
an atom in the other) in an anticlockwise direction by an angle
θ with respect to the fixed lower layer (layer 1). The two
sublattices in the lower layer are labeled as A1 (blue) and B1

(light-blue), while those in the upper layer are A2 (red) and B2

(light-red), respectively. The twist center is fixed on a sublat-
tice (A-sublattice) from both layers. The unit cell of a lower
layer is spanned by the lattice vectors a1 = (1/2,

√
3/2)a and

a2 = (−1/2,
√

3/2)a as shown in Fig. 1(b). Here, a = 2.46
Å is the lattice constant of monolayer graphene and |a1| =
|a2| = a. Alternatively, a′

1 and a′
2 represent the lattice vectors

of the rotated upper layer [66]. Furthermore, the Brillouin
zone of the moiré superlattice gets reduced in size with a
hexagonal shape when compared to the Brillouin zones of the
two separate layers, as shown in Fig. 1(c).

For a commensurate lattice structure within TBG, the
lattice vectors in the unit cell can be expressed as a(M )

1 =
na2 + ma1 and a(M )

2 = −ma2 + (n + m)a1, where both m and
n are integers. The unit cell of the superlattice contains N =
4(n2 + mn + m2) atoms. The rotation angle θ is related to
(m, n) by the following condition [31,67]:

cos (θ ) = m2 + n2 + 4mn

2(m2 + n2 + mn)
. (1)

For m = n = 1 (m = 1, n = 0), Eq. (1) reduces to the well-
known AA-stacked (AB-stacked) bilayer graphene. This
implies that θ = 0◦ (θ = 60◦) corresponds to the perfect AA-
stacking (AB-stacking).

Following Ref. [68], we consider a Hamiltonian consisting
of two parts: one is the intralayer part (Hintra), and the other is
the interlayer part (H⊥). This is true for two or more stacked
arrangements of graphene layers. Hence, for a noninteracting
system, the tight-binding Hamiltonian can be written in real
space as (in the absence of any external field)

H = Hintra + H⊥

= −
∑
i �= j

l

t ll
i j (c†

l,icl, j + H.c.)

−
∑
i, j

l �=l ′

t l,l ′
i j (c†

l,icl ′, j + H.c.), (2)
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FIG. 1. (a) A schematic diagram of a TBG lattice is shown. The upper layer (denoted as 2) is rotated with respect to the lower layer (denoted
as 1) by a certain angle. The three different stacking regions (referred to as AA, AB, and BA) formed in the superlattice structure are outlined
by a black circle. (b) An enlarged view of the rectangular box is shown. The two different sublattices in layer 1 are denoted by A1 (blue) and
B1 (light-blue) and in layer 2 are denoted by A2 (red) and B2 (light-red). a1 and a2 are the lattice vectors in layer 1, whereas a′

1 and a′
2 are

the lattice vectors in layer 2. aM
1 and aM

2 are the unit cell lattice vectors for the moiré superlattice. θ corresponds to the rotation angle. (c) The
mini Brillouin zone (BZ) of the moiré superlattice in reciprocal space is spanned by the vectors bM

1 and bM
2 . The high-symmetry points (�M ,

KM , MM ) are given in the Brillouin zone, and the arrows indicate the path over the Brillouin zone. The schematics for band structure is shown
without [t (r) = 0] and with [t (r) �= 0] interlayer coupling for (d) U = 0, B = 0, and (e) U �= 0, B = 0. For the latter case, when t (r) = 0, the
uncoupled graphene layers doped to opposite charges under the applied electric field. However, when t (r) �= 0, these layers couple with each
other and degeneracy lifted in the low-energy bands at Dirac points in the presence of the applied electric field. Landau levels spectra [E (eV)
vs B (T)] and Hall conductivity [σxy (2e2/h) vs E (eV)] are shown for (f) U = 0, B �= 0 with θ = 1.085◦ and 21.78◦, and (g) U �= 0, B �= 0
with θ = 1.085◦. The Landau levels are sensitive to the twist angle and lead to new quantum Hall phases in the system.

where the symbol t ll
i j in the first term (Hintra) represents the

nearest-neighbor intralayer hopping integral between sites i
and j. Specifically, t ll

i j takes on a value of V 0
ppπ = 3.09 eV,

which acts at a distance a0 = a/
√

3 = 0.142 nm (a0 is the
carbon-carbon distance of monolayer graphene). c†

l,i and cl,i

denote the creation and the annihilation operators, respec-
tively, at site i within layer l . For a simple bilayer case, the
layer index l and l ′ can take values of 1 or 2. H.c. denotes the
Hermitian conjugate term. Further, we have not considered
any next-nearest-neighbor intralayer hopping terms in Hintra.

The second term, denoted as H⊥ in Eq. (2), describes the
coupling between layers. For simplicity, we will first explain
the term H⊥ for an AB-stacked bilayer graphene. We consider
two atoms placed on top of each other and separated by
a distance d0. Then the interlayer hopping integral between
these atoms becomes t (0) = V 0

ppσ = 0.39 eV. The on-site en-
ergy is set to zero on all atoms. However, in the context of
TBG, where the planes are rotated relative to each other, the
interlayer hopping integral between sites having an in-plane
projection of r and an out-of-plane projection of d0 can be
expressed as follows:

t (r) = V 0
ppσ e−

(√
r2+d2

0 −d0

)
/λ d2

0

r2 + d2
0

. (3)

As elaborated in Ref. [51], Vppσ [≈ t (r)] is the dominant
factor, but it is adjusted by both the distance and the cosine of
the twisted angle. Here, d0 is taken to be 3.35 Å. λ is the decay
parameter that fine-tunes the cutoff of t (r). In our calculations,
we adopt a value of λ = 0.27Å, which effectively reproduces
the band structures of simple bilayer graphene without twist.

III. FORMALISM

In this section, we shall describe the numerical method
used to compute the transport properties of a TBG system. Our
approach is based on a real-space implementation of the Kubo
formalism to calculate the dc conductivity of large systems,
a technique developed by Garcia et al. [69]. The numeri-
cal implementation of the kernel polynomial method (KPM)
[70,71] entails the expansion of the Bastin formula in terms of
Chebyshev polynomials for obtaining the conductivity tensors
within the linear-response regime. For noninteracting elec-
trons, the components of the dc conductivity tensor (ω → 0)
[69,72,73] can be expressed using the Kubo-Bastin formula
[61,62] as

σαβ (μ, T ) = ie2h̄

A

∫ ∞

−∞
dε f (ε)Tr

〈
vαδ(ε − H )vβ

dG+(ε)

dε

− vα

dG−(ε)

dε
vβδ(ε − H )

〉
, (4)

where μ stands for the chemical potential, while T denotes
the temperature. The area of the sample is denoted by A. vα

and vβ are the components of the velocity operator for α

and β, respectively. f (ε) denotes the Fermi-Dirac distribution
function for a given μ and T . G±(ε, H ) = 1/(ε − H ± iη)
represents the advanced (“−”) and the retarded (“+”) Green’s
function, respectively. η is a small positive number (η → 0+).

Using KPM, we can expand the spectral representation of
both the rescaled δ and Green’s function in terms of Cheby-
shev polynomials [70]. Consequently, the conductivity tensor
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TABLE I. The number of atoms and unit cells used for different
twist angles in our system for obtaining magnetotransport properties.

θ (deg) No. atoms/unit cell No. unit cells

1.085 11164 (32×32)
2.005 3268 (128×128)
3.890 868 (512×128)
6.009 364 (512×256)
21.78 28 (1024×1024)

[Eq. (4)] can be written as

σαβ (μ, T ) = 4e2h̄

πA

4

(E )2

∫ 1

−1
d ε̃

f (ε̃)

(1 − ε̃2)2

×
∑
m,n

�nm(ε̃)μαβ
nm(H̃ ), (5)

where ε̃ denotes the rescaled energy within the [−1, 1]
range. Similarly, H̃ represents the rescaled Hamiltonian,
and E = E+ − E− (where E+ and E− are the maximum
and minimum eigenvalues of the energy spectrum, respec-
tively). The functions �nm(ε̃) and μαβ

nm(H̃ ) depend on the
rescaled energy and Hamiltonian, respectively, and can be
expressed as

�nm(ε̃) ≡ (ε̃ − in
√

1 − ε̃2)ein arccos(ε̃)Tm(ε̃)

+ (ε̃ + im
√

1 − ε̃2)e−im arccos(ε̃)Tn(ε̃) (6)

and

μαβ
nm(H̃ ) ≡ gmgn

(1 + δn0)(1 + δm0)
Tr[vαTm(H̃ )vβTn(H̃ )], (7)

where the latter involves the product of Chebyshev polyno-
mial expansions. The Jackson kernel, denoted as gm, is used
to smooth out the Gibbs oscillations [70], which arise due to
truncation of the expansion outlined in Eq. (5). Tm(x) is the
Chebyshev polynomials, defined by the following recurrence
relation:

Tm(x) = 2xTm−1(x) − Tm−2(x), (8)

where T0(x) = 1 and T1(x) = x.

The density of states (DOS) can be calculated using the
spectral operator δ(ε̃ − H̃ ) as

ρ(ε̃) = 1

N
Trδ(ε̃ − H̃ ) = 1

π
√

1 − ε̃2

∞∑
n=0

μnTn(ε̃), (9)

where μn is the Chebyshev moments and is given by

μn = 1

N

(1 + δn,0)

2
Tr Tn(H̃ ). (10)

IV. RESULTS

In the following sections, we will present our numerical
results, including the electronic and transport properties of
the TBG system. We have simulated a very large system that
consists of a number of atoms of the order of 107 (ten million).
However, since the area of the unit cell depends on the twist
angle, the number of unit cells in each system varies. Table I
shows the number of atoms and unit cells used in each system
for the particular twist angle.

For our analysis, the Chebyshev moments used to expand
the Green’s function and the Dirac deltas were truncated
to M = 12 000 (Chebyshev moments), which is sufficient to
attain an energy resolution of the order of ∼1 meV in the
DOS spectrum. Also, it is important to note that for the DOS
calculations, the number of unit cells considered is even larger
compared to Table I. However, for the transport calculation,
we used sufficient M = 6144 [69] (Chebyshev moments) to
avoid the fluctuations in dc Hall conductivity higher-energy
plateaus. Nevertheless, it is possible to manipulate the system
size and increase the number of Chebyshev moments for very
high precision. We have also imposed periodic boundary con-
ditions for all our numerical simulations.

A. Electronic structures (flat bands)

In this section, we mainly focus on the electronic band
structure, particularly emphasizing the flat band characteris-
tics of a TBG system near the small twist angles at zero
external field. The aim is to illustrate the behavioral transition
observed below and above the magic angle in our system. Ad-
ditionally, we present the DOS plots for the same purpose. In
Figs. 2(a)–2(c), we calculate the energy band structures (left)

FIG. 2. The electronic band dispersion along the high-symmetry points KM → �M → MM → KM [see Fig. 1(c)] and the corresponding
normalized density of states, ρ̄(ε), of TBG are shown for (a) θ = 0.987◦ and (m, n) = (34, 33), (b) θ = 1.085◦ and (m, n) = (31, 30), and
(c) θ = 1.539◦ and (m, n) = (22, 21), respectively.
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and the corresponding normalized DOS, ρ̄(ε) (right), within
the low-energy regime for three commensurate small twist
angles, θ = 0.987◦, 1.085◦, and 1.539◦, respectively, using
Eq. (2). Figure 2(a) shows that the bands are almost flat in
the vicinity of charge neutrality when θ = 0.987◦. This nearly
flat band significantly contributes to the DOS for θ = 0.987◦,
which can also be seen from Fig. 2(a). The DOS exhibits a
prominent sharp peak which corresponds to the flatness of the
band dispersion within the low-energy regime, whereas the
additional smaller peaks arise due to the saddle points from
the remote bands in close proximity to the flat bands. With
the tuning of θ , the energy bands exhibit enhanced flatness,
leading to the formation of localized states with Fermi ve-
locity close to zero value for θ = 1.085◦. This is depicted in
Fig. 2(b). At θ = 1.085◦, we observe our so-called “magic
angle” with two distinct gaps (one above and one below the
charge neutrality). However, these gaps are now separated
from the remote bands with the reduced bandwidth as com-
pared to θ = 0.987◦, where the band overlapping occurs [see
Figs. 2(a) and 2(b)]. As a result, the DOS also shows a similar
sharp peak near the charge neutrality when θ = 1.085◦, but
the two other Van Hove peaks that arise from the remote
bands are now shifted slightly towards the higher energy as
compared to θ = 0.987◦ [see Figs. 2(a) and 2(b)]. These flat
bands that arise due to the strong interlayer coupling also have
implications in the LL spectra, which are discussed later in
Sec. IV C.

Above the magic angle (when θ = 1.539◦), the flatness
of the band near the charge neutrality almost vanishes and
becomes dispersive within the same energy range, especially
near the �M point in the BZ [see Fig. 2(c)]. The correspond-
ing DOS reveals the presence of two diverging Van Hove
singularities located near the charge neutrality. However, the
separation between these two singularities increases as the
twist angle continues to increase [74]. It is important to note
that the energy spectrum as well as the DOS are not sym-
metrical with respect to zero energy for small twist angles,
as shown in Fig. 2. Hence, we observe a small shift in the
charge neutrality due to the broken particle-hole symmetry of
the model at small twist angles.

B. Effects of an external electric field

In this section, we discuss the effects of an external electric
field (which breaks the inversion symmetry) on the electronic
properties of the TBG system at θ = 0.987◦, 1.085◦, and
1.539◦. To introduce a perpendicular electric field, we apply
an electric field strength of +U/2 on layer 1 (lower) and
−U/2 on layer 2 (upper). In Fig. 3, we show how the energy
band structures and the normalized density of states, ρ̄(ε),
depend on the electric field strength difference between the
two layers with a small twist and also evolve with the tuning of
the electric field strength. It is well known that the Dirac cone
touching is protected by the C2T (time-reversal) symmetry
and can be gapped out by breaking this symmetry. In the case
of a TBG system, the external electric field does not induce a
band gap in the spectrum protected by the C2 (180◦) rotational
symmetry [37]. Nevertheless, it does facilitate the transfer of
electronic charge from the lower layer to the upper layer of
the system [75]. This excess electronic charge has a strong
variation for small twist angles.

In the absence of an external electric field, the two bands
(namely, the lowest conduction band and the highest valence
band) across the charge neutrality touch each other at the
superlattice Dirac point labeled as KM (see Fig. 2). When an
electric field is introduced, the degeneracy of the two layers
(upper and lower layers) at the KM point is lifted due to differ-
ent on-site energies induced in each layer. As a consequence,
the two Dirac points move in opposite directions in energy,
and lift the degeneracy with an energy shift at the KM point
of the moiré BZ. We denote it as E (KM ). We also find that
the DOS peaks get broadened and eventually the singularity in
DOS vanishes with the increasing field. Figure 3(a) illustrates
the band structures as well as the DOS at U = 0.2 eV for
θ = 0.987◦ (left panel), 1.085◦ (middle panel), and 1.539◦
(right panel), respectively. The flatness behavior of the energy
bands near the charge neutrality observed for the U = 0 case
is now reduced with the lifting degeneracy, resulting in broad-
ened peaks in the DOS. The broadening is a consequence of a
dispersive splitting in the flat bands for U �= 0. This phe-
nomenon is evident in Fig. 3(a) for θ = 0.987◦ and 1.085◦,
respectively. Additionally, the gap above and below the charge
neutrality is no longer observed for θ = 1.085◦ in the presence
of the electric field. However, this effect is negligible for
U = 0.2 eV when θ = 1.539◦, as shown in the right panel
of Fig. 3(a). When the strength of the electric field, U , is
increased from 0.2 to 0.4 eV, the band dispersion and the
corresponding DOS start evolving in a peculiar fashion be-
low a certain θ value. The energy difference within the Van
Hove singularity peaks in the DOS around the charge neu-
trality diminishes as the flat bands disappear with increasing
bandwidth, as depicted in Fig. 3(b). As we further increase
the value of U (say, U = 0.6 eV), we observe the signifi-
cant contribution from the remote bands especially near the
charge neutrality where the bands are dispersive in nature [see
Fig. 3(c)]. Also, the merging of the VHS peaks is observed
in the corresponding DOS spectrum [see Fig. 3(c)]. This un-
derscores the possibility of controlling the position of both
the charge neutrality and the VHS by varying the twist angle
and gate voltage, respectively. This offers a potent toolkit for
manipulating the electronic states of the system.

For clarity of our findings, we further investigate the tun-
ability of energy shift at the KM point, denoted as E (KM )
as a function of both rotation angle, θ , and the electric field
strength, U . In Fig. 4(a), we have shown the energy difference,
E (KM ), while varying the twist angle, θ , for U = 0.2, 0.4,
and 0.6 eV. Interestingly, E (KM ) remains almost constant
for a certain range of θ (θ > 10◦) across all the values of U
by converging to the magnitude equal to the applied electric
field strength, and subsequently exhibits a steep decline for
θ < 10◦. Nonetheless, this feature becomes particularly re-
markable at extremely small twist angles depending on the
values of the external electric field, as depicted in Fig. 4(b)
with a zoomed view. For the previous case (θ > 10◦), the
shift occurs at +U/2 for layer 1 in the positive energy and
at −U/2 for layer 2 in the negative energy due to the weak
interlayer coupling near the charge neutrality where the layers
behave as decoupled. However, for the latter case, we observe
multiple closing and reopening of the energy shift at the KM

point approximately for θ < 3◦ since the energy levels dis-
perse nonmonotonically with the variation of the electric field
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FIG. 3. The electronic band dispersion along the high-symmetry points KM → �M → MM → KM and the corresponding normalized
density of states, ρ̄(ε), of TBG are shown for (a) U = 0.2 eV, (b) U = 0.4 eV, and (c) U = 0.6 eV with θ = 0.987◦ and (m, n) = (34, 33) (in
the left panel), θ = 1.085◦ and (m, n) = (31, 30) (in the middle panel), and θ = 1.539◦ and (m, n) = (22, 21) (in the right panel), respectively.
The shift in energy at the Dirac point, E (KM ), is denoted by the blue dotted lines.

strength in this regime. At low field strength (U = 0.2 eV),
this anomalous behavior of the energy shift manifests below
1.6◦ (indicated by the black curve), whereas for the other two
values, U = 0.4 and 0.6 eV, the same phenomenon occurs
below 1.8◦ (indicated by the blue curve) and 2.4◦ (indicated
by the brown curve), respectively. Figure 4(c) shows the
plot for E (KM ) as a function of U when θ = 1.085◦. The
nonmonotonic behavior in E (KM ) is still observed with a
similar energy shift closing and reopening while varying the
field strength U .

C. Effects of the magnetic field

In this section, we shall explore the effects of a magnetic
field applied perpendicular to the plane of a TBG system in the
absence of an external electric field. We consider a uniform
magnetic field �B = Bẑ, where B represents the strength of
the magnetic field. The magnetic flux per unit cell is defined

as φ = BS (S being the area of TBG unit cell), measured
in units of the flux quantum φ0 = h/e. We incorporate the
magnetic field effect by multiplying the Peierls phase fac-
tor e2iπφi j (where φi j is the magnetic flux) into the hopping
terms [as outlined in Eq. (2)] using the Peierls substitution
method [76–78]. It is important to note that, in contrast to a
conventional superlattice, the strength of the magnetic field,
B, in a TBG system is determined by the size of the unit
cell. As the dimensions of the unit cell increase, the necessary
strength of the magnetic field decreases. Consequently, with
smaller twist angles, which correspond to larger unit cell di-
mensions, a weaker magnetic field is sufficient to quantize the
single-particle electronic states into LLs [79]. In Fig. 5(a), we
calculate the density of states, ρ(ε), as a function of energy,
E , for different values of B with θ = 1.085◦. At a very low
magnetic field B = 0.01 T [which corresponds to magnetic
flux per unit cell (φ/φ0) ≈ 0.000 35], the discreteness of
the LL peaks is very small. However, as we increase the
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(deg)

(deg)

FIG. 4. (a) Energy shift, E (KM ) (in units of eV), is shown as
a function of twist angles, θ (in units of degree), for U = 0.2, 0.4,
and 0.6 eV (b) Zoomed view of E (KM ) near the small twist angle
(1◦ � θ � 3◦) is shown. (c) Energy shift, E (KM ) (in units of eV),
is shown as a function of electric field strength, U (in units of eV), at
θ = 1.085◦.

magnetic field value B, the LL peaks become more pro-
nounced. Nevertheless, only a few LLs can be clearly
distinguished away from the charge neutrality for θ = 1.085◦,
even in the case of a larger B value [say B = 0.1 T, that
corresponds to magnetic flux per unit cell (φ/φ0) ≈ 0.0035],
which is not true for large twist angles. The influence of the
higher LLs is overridden by those originating from the band
edge. Most importantly, the DOS near the charge neutrality,
corresponding to the flat band, is independent of the strength

FIG. 5. (a) The density of states, ρ(ε) (in units of 1/eV), is
shown as a function of energy, E (in units of eV), for different values
of B at θ = 1.085◦. (b) The density of states, ρ(ε) (in units of 1/eV),
is plotted as a function of energy, E (in units of eV), for different
values of electric field strength, U = 0.0, 0.2, 0.4, and 0.6 eV, at a
fixed value of B (B = 0.1 T) when θ = 1.085◦.

of the magnetic field since it has topological protection [50].
In the DOS plot [Fig. 5(a)], the peak at charge neutrality is
not a Landau level but arises from the unaltered flat band
due to strong C3 symmetry preservation. Furthermore, we
illustrate the Landau level energies, labeled as E , as a function
of the magnetic field B for a range of twist angles, namely
1.085◦, 2.005◦, 3.89◦, and 21.78◦ within the low magnetic
field regime and at low energies. These results are depicted
in Fig. 6(a). When the twist angle is sufficiently large (as in
the case of θ = 21.78◦), the low-energy LL spectrum behaves
similarly to monolayer graphene, with a dependence on both n
(n > 0) and B following a square-root relationship. This sug-
gests that, at lower energies, interlayer couplings are relatively
weak. However, as we reduce the twist angle, for example,
to θ = 3.89◦ and 2.005◦, we still observe similar structures
resembling the Landau levels of monolayer graphene in the
low-energy LL spectra (below 0.2 eV), albeit with variations
in the energy scale. When the twist angle becomes even
smaller, as in the case of a magic angle (θ = 1.085◦), the low-
energy LL spectra become compressed near the Dirac points.
This behavior is consistent with the observed reduction in
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FIG. 6. (a) Landau level energies, E (in units of eV), are plotted
as a function of the magnetic field strength, B (in units of T), for
different twist angles, θ = 1.085◦, 2.005◦, 3.890◦, 21.78◦, as indi-
cated by the different colors. The solid lines indicate the zero-mode
energy states for all the twist angles. n = 1, 2, 3 denotes the three
lowest Landau levels with index n for θ = 1.085◦. (b) Landau level
energies, E (in units of eV), are shown as a function of the magnetic
field strength, B (in units of T), for U = 0 and 0.2 eV at θ = 1.085◦.

bandwidth for smaller twist angles due to significant interlayer
coupling, in contrast to larger twist angles. However, the zero
energy level remains unaltered, which is true for all the twist
angles [see Fig. 6(a)]. Additionally, the zero energy peaks shift
towards positive energies (electron side) as θ decreases. There
are energy level crossings as a function of the magnetic field
for various twist angles within this low field regime. However,
the energy difference between the zeroth LL to the higher-
energy LLs decreases with the twist angle. Moreover, when
the Landau level energy falls below the Van Hove energy
(0.1 eV), energy levels exhibit eightfold degeneracy (spin,
valley, and layers degree of freedom) at very low magnetic
fields, reducing to fourfold degeneracy at higher fields.

D. Effects of both electric field and magnetic field

In this section, we explore the influence of an external
perpendicular electric field, U , on the LL spectra in a TBG
system at low magnetic fields. We first observe how the LL
peaks get modified while varying the strength of the electric
field. Figure 5(b) shows the DOS, ρ(ε), as a function of
energy, E , at low B field (B = 0.1 T) for U = 0, 0.2, 0.4,
and 0.6 eV with θ = 1.085◦. Within the low-energy range,
we observe a reduction in the number of LL peaks with the
increase of the electric field strength, as these LLs are pushed
to a higher energy range. Eventually, at a critical electric
field strength (∼ 0.6 eV), no n > 0 LL peaks appear for
energy range ± 0.1 eV as shown in Fig. 5(b). Consequently, it
becomes possible to achieve electrically adjustable LL spec-
tra in TBG. Figure 6(b) shows the Landau level energies,
E , as a function of the magnetic field, B, under an electric
field strength of U = 0.2 eV. For the sake of comparison,
we have also shown the Landau level energies corresponding

FIG. 7. Hall conductivity, σxy (in units of 2e2/h), is shown as
a function of Fermi energy, EF (in units of eV), for different twist
angles, namely θ = 1.085◦, 2.005◦, 3.89◦, 6.009◦, and 21.78◦ for
B = 1 T and U = 0 eV. The inset shows the zoomed view around
EF = 0.

to the case when U = 0 eV. Notably, the zero energy peak
remains unchanged for both scenarios, i.e., for U = 0 eV and
U �= 0 eV. However, the higher energy LLs (n > 0) exhibit
a discernible shift towards low energy for the U �= 0 case,
as indicated by the dotted lines in Fig. 6(b). Moreover, we
observe the energy level crossings in the LL spectra at very
low energies.

E. Hall conductivity

In this section, we investigate the transport properties of the
TBG system in terms of the Hall conductivity, denoted as σxy,
with respect to the Fermi energy, EF , for different twist angles
using Eq. (4) as elaborated in Sec. III. In Fig. 7, we have
plotted σxy as a function of Fermi energy, EF , for θ = 1.085◦,
2.005◦, 3.89◦, 6.009◦, and 21.78◦ with U = 0 eV and B = 1 T
at absolute zero temperature. The Hall conductivity σxy ex-
hibits a sequence of quantized plateaus for all the twist angles
but with a significant difference in the quantized value of σxy.
More precisely, as we tune the twist angle from a larger value
to a smaller one, a critical point emerges around θ = 2.005◦
where σxy shifts from a half-integer to an integer quantum Hall
effect, i.e., the value of σxy shifts from ±4(n + 1/2) (2e2/h)
to ±2n (2e2/h), n being the integers (2 in front of e2/h is
accounted for spin degeneracy). This is depicted in the inset
of Fig. 7. For a very large twist angle (when θ = 21.78◦), σxy

follows a well-established sequence ±2, ±6, ±10, . . . in units
of 2e2/h which is double that of a monolayer graphene [46].
The underlying reason is obvious, i.e., the two layers behave
as a decoupled layer, implying that the Landau level spectra
are almost equivalent to the monolayer’s LL. Moreover, due to
the layer degeneracy, we see that the Hall conductivity in steps
of 8e2/h between each plateau in σxy indicates the presence
of eightfold (layer, valley, and spin) degeneracy of the LL.
Although the Hall conductivity follows the same sequence for
θ = 6.009◦ as already observed for 21.78◦, the behavior is
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FIG. 8. Hall conductivity, σxy (in units of 2e2/h), is plotted as a function of Fermi energy, EF (in units of eV), and their corresponding
density of states, ρ(ε) (in units of 1/eV), is shown for (a) θ = 1.085◦, (b) θ = 2.005◦, (c) θ = 3.089◦, (d) θ = 6.009◦, and (e) θ = 21.78◦ with
U = 0 eV and B = 1 T.

different for θ = 3.89◦ due to the complicated structure in the
LL spectra [see Fig. 8(c)]. At θ = 3.89◦, the Hall conductivity
exhibits distinct quantized plateaus, while we go to the higher
energy regime. Specifically, it turns negative (−2 in units of
e2/h) on the hole side and positive (+2 in units of e2/h) on
the electron side. Additionally, a zero-energy plateau emerges
with further tuning of the Fermi energy [51]. As we further
reduce the twist angle to a lower value (θ = 2.005◦), the
system undergoes a transition where a zero energy plateau
emerges near the Dirac point with small fluctuations. More-
over, the Hall plateaus follow a different sequence as 0, ±2,
±4, ±6, . . . in units of 2e2/h. Similarly, at the magic angle
(θ = 1.085◦), the Hall plateaus follow the same sequence as
observed for θ = 2.005◦ except for the fluctuations near the
zero Fermi energy. Interestingly, for the smaller twist angles
(1.085◦ and 2.005◦), the coupled layers show that the Hall
conductivity in steps of 4e2/h between each plateau in σxy

indicate the presence of fourfold (valley and spin) degeneracy.
The crossover between the Hall conductivity quantization se-
quence indicates that, for twist angles less than θ = 3.890◦,
the interlayer coupling spreads over the long periodic cells,
which is responsible for the flat bands, precisely localization
of carriers or massive electrons change the transport of the
carriers. Above the twist angles θ = 3.890◦ the transport is
similar to the massless Dirac fermions [46].

In Figs. 8(a) and 8(e), we demonstrate the behavior of the
LL peaks, denoted as ρ(ε) (green curve) during the transition
of Hall conductivity, σxy (red curve), from one plateau to an-
other for every value of θ as illustrated in Fig. 7. Interestingly,
we observe that although there is a sharp plateau near the zero

Fermi energy at θ = 1.085◦, a zero energy peak still exists in
the DOS spectrum [Fig. 8(a)]. This zero-energy peak mainly
arises from the flat band due to strong C3 symmetry preser-
vation. However, for θ = 2.005◦, we observe an increased
number of LL peaks near the zero Fermi energy which is
supported by the nondiscrete behavior of the quantized Hall
plateau, as can be seen from Fig. 8(b). The quantization hap-
pens at ±2n (2e2/h) for both twist angles. These LL spectra
become complicated for θ = 3.890◦, which shows several
LL peaks during the transition from one plateau to another
[Fig. 8(c)]. Nevertheless, with increasing value of θ , we ob-
serve changes in the quantization of the Hall plateaus, which
is also supported by the LL spectra for each of the cases [see
Figs. 8(d) and 8(e)]. The presence of a zero energy LL peak
indicates the absence of a zero energy Hall plateau for both
cases, i.e., for θ = 6.009◦ and 21.78◦. We also observe that the
energy range required to accommodate the LL peaks increases
as we increase the θ value (see Fig. 8). Moreover, the width of
these plateaus associated with the LL transitions depends on
the gap between the two consecutive LLs in the DOS spectra.

Weak and strong magnetic fields: Next, we discuss the
effects of weak as well as strong magnetic fields on the Hall
conductivity with U = 0 as illustrated in Fig. 9. As we know,
the Hall conductivity depends on the available LLs in the
given energy range, and these LLs can be controlled with the
strength of the applied magnetic field. Also for the case of
TBG, the magnetic field is found to be an effective control
knob besides the twist angle to change the Hall conductivity.
In Fig. 9(a), we have shown the evolution of σxy as a function
of Fermi energy, EF , and the density of states [ρ(ε)] for the
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FIG. 9. (a) Hall conductivity, σxy (in units of 2e2/h), is plotted as a function of Fermi energy, EF (in units of eV), and their corresponding
density of states, ρ(ε) (in units of 1/eV), is shown for B = 0.1, 0.5, and 1 T with U = 0 eV and θ = 1.085◦. (b) Hall conductivity σxy (in
units of 2e2/h) is plotted as a function of Fermi energy, EF (in units of eV), for different values of B for θ = 1.085◦, 2.005◦, and 21.78◦ with
U = 0 eV.

weak magnetic field B with θ = 1.085◦ within the low-energy
range. It can be seen that the zero energy peak exists in
the DOS spectra for all values of B arising from the flat
band characteristic. However, this zero energy peak does not
contribute to the Hall conductivity, and consequently a Hall
plateau is present near the zero Fermi energy. At a very low
magnetic field (e.g., B = 0.1 T), the Hall quantization values
exhibit a nondiscrete behavior, as can be seen from Fig. 9(a).
Nonetheless, the overall shape of the plateau transitions cor-
roborates with the characteristics of the LL peaks. Upon
increasing the strength of the B field (B = 0.5 T), the dis-
creteness of the Hall plateaus becomes evident and gets even
more pronounced when B = 1 T [see Fig. 9(a)]. In Fig. 9(b),
we have shown the effects of strong magnetic fields (which
is up to 5 T) on the Hall conductivity σxy for θ = 1.085◦,
2.005◦, and 21.78◦. In the case of a strong B field, the Hall
plateaus become sharper with increasing B field. Furthermore,
the width of these plateaus varies with increasing magnetic
field strength B for all the twist angles (θ = 1.085◦, 2.005◦,
and 21.78◦). Additionally, it can be seen that the Hall plateaus
exhibit some fluctuations away from the zero Fermi energy at
higher energies for θ = 1.085◦ and 2.005◦, which is absent for
θ = 21.78◦. However, these artifacts can be improved with a
higher truncation order of the expansion and by considering a
larger sample size for the former case.

Effects of electric fields: Further, we see the effects of the
electric field on the Hall conductivity for θ = 1.085◦, 2.005◦,
and 21.78◦ with U �= 0 at a fixed B value as shown in Fig. 10.
As discussed in Sec. IV B, the low energy bands are strongly
influenced in the presence of external electric fields; it will
be interesting to see the changes in Hall conductivity with the
nonzero applied electric field for the TBG. In Fig. 10(a), we
have shown the Hall conductivity σxy as a function of Fermi
energy EF and the density of states [ρ(ε)] for θ = 1.085◦,
2.005◦, and 21.78◦ with U = 0.2 eV and B = 1 T. In the pres-
ence of an electric field, the Hall conductivity shows a similar
quantization rule (0, ±2, ±4, ±6, . . . in units of 2e2/h),
as observed previously for the U = 0 case for θ = 1.085◦
and 2.005◦ [see Fig. 10(a)]. The LL peaks show splitting for
θ = 1.085◦ while σxy makes a transition from one plateau to
another within the low energy range as shown in Fig. 10(a).
Moreover, the splitting is also observed in the DOS spec-
tra even when σxy = 0 due to the broken layer degeneracy.
Similarly, for θ = 2.005◦, the LL peak splitting is still there
in the DOS spectra when σxy = 0 as shown in Fig. 10(a).
However, when θ = 21.78◦, we observe the emergence of new
plateaus in addition to the existing ones in the Hall conductiv-
ity phenomenon, resulting in an increased number of LL peaks
within the same energy range. Hence, the Hall quantization
follows a different sequence as 0, ±2, ±4, ±6, . . . in units
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FIG. 10. (a) Hall conductivity, σxy (in units of 2e2/h), is plotted as a function of Fermi energy, EF (in units of eV), and their corresponding
density of states, ρ(ε) (in units of 1/eV), is shown for θ = 1.085◦, 2.005◦, and 21.78◦ with B = 1 T and U = 0.2 eV. (b) Hall conductivity, σxy

(in units of 2e2/h), is plotted as a function of Fermi energy, EF (in units of eV), for different values of U for θ = 1.085◦, 2.005◦, and 21.78◦

with B = 1 T.

of 2e2/h as compared to the U = 0 case [see Fig. 10(a)].
These steps of 4e2/h between each plateau in σxy indicate
the presence of fourfold (valley and spin) degeneracy of the
LL for U �= 0. This Hall conductivity plateau, which exists
at zero Fermi energy, also supports the absence of zero energy
LL. Further, we show similar plots by varying the electric field
strengths U = 0, 0.2, and 0.4 eV for a fixed B value (B = 1 T)
in Fig. 10(b). For θ = 1.085◦ and 2.005◦, the width of the
Hall plateau near the zero Fermi energy decreases with the
increasing electric field strength, which remains the same with
increasing value of the applied magnetic field [see Figs. 9(b)
and 10(b)]. For the latter case, the nondiscrete behavior near
the zero Fermi energy vanishes when U = 0.4 eV. However,
for θ = 21.78◦, the width of the Hall plateau near the zero
Fermi energy increases with the increasing electric/magnetic
field strength as compared to the other two twist angles.

V. CONCLUSIONS

In summary, we have studied the electronic and trans-
port properties under the influence of external electric and
magnetic fields employing a tight-binding model for a TBG
system. In the absence of an external field, the energy bands
of TBG near the Fermi level exhibit a flat nature, leading to the
localization of electronic states for small twist angles falling
within the range of 0.985◦ < θ < 1.539◦. However, when we

apply the electric field, the degeneracy at the superlattice
Dirac point (KM) gets lifted, and the E (KM ) at the Dirac
point behaves nonmonotonically with the variation of twist
angles, θ < 3◦. This suggests that the electric field can be
used as an effective tool to manipulate the electronic band
structure in the proximity of the flat band region. Next, we
explore how the LLs spectra behave for different twist angles
in a weak magnetic field. Moreover, we have demonstrated
the behaviors of the LLs spectra in the presence of an electric
field. We observe a reduction in the number of LL peaks with
the increase of the electric field strength within the low-energy
regime, as these LLs are pushed to a higher energy range.
Additionally, we have found that the Hall quantization rules
depend on the twist angle. At small twist angles (θ = 1.085◦
and 2.005◦), the Hall plateaus follow a different sequence
as 0, ±2, ±4, ±6, . . . in units of 2e2/h as compared to the
larger twist angle (θ = 21.78◦). Interestingly, at small angles,
the electric field effect does not change the Hall quantization,
which is highly in contrast to the large twist angle. At small
twist angles (for θ = 1.085◦ and 2.005◦), the width of the
plateau near the zero Fermi energy decreases as we increase
the electric field strength, while it remains the same with the
increasing B field. However, for large θ , the width of the
plateau near the zero Fermi energy increases as we increase
the electric or magnetic field strength. This study opens up an
opportunity for deciphering the interplay between the external
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fields and the twisting effect on the TBG, uncovering the rich
physics of TBG in the presence of uniform electric and mag-
netic fields. Moreover, it will contribute to the experimental
investigations of magic angles with flat bands.
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