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Nonequilibrium field theory with a temperature gradient: Thermal current in a nanowire
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A perturbative framework is developed within the standard nonequilibrium field theory techniques to incor-
porate a temperature gradient across a thermoelectric device. The framework uses a temperature-dependent
pseudo-Hamiltonian generated from the exact density matrix in the presence of nonuniform temperatures. We
develop a perturbation theory for small temperature gradients in long wires and obtain the nonlinear thermal
conductance as a function of temperature difference. The framework should be adaptable to more general cases
of temperature inhomogeneities in either fermionic or bosonic systems.
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I. INTRODUCTION

Thermoelectric current is generated by converting heat to
electrical energy [1]. A typical thermoelectric device is a
good electrical conductor with its two ends kept at two dif-
ferent fixed temperatures, generating a difference in chemical
potential between the two ends [2–4]. However, the device
also needs to be a poor thermal conductor in order to have
a large efficiency. It has been proposed [5] that improved
efficiency and power output in thermoelectric devices re-
quire two independent considerations: taking advantage of
an interplay between the material and the thermodynamic
parameters available to increase the charge transport in the
nonlinear regime [6,7], and simultaneously decreasing the
heat current by using surface-disordered nanowires [8–15].
Because of the temperature difference between its two ends,
there exists a temperature gradient across the nanowire. In the
linear-response regime, the temperature difference is assumed
to be small and one can treat the entire device at one fixed
average temperature. In this case one can use the standard
nonequilibrium field theory (NEFT) techniques [16,17], valid
for a thermally homogeneous system, to evaluate both the
electrical and the thermal current in the device. In the non-
linear regime mentioned above, the temperature difference
between the ends can be large and the temperature of the
wire is different at different distances from the two ends.
The standard NEFT techniques break down in such cases;
studying charge or heat currents requires a generalization of
the currently available NEFT methods to incorporate thermal
inhomogeneity.

In this paper we generalize the existing NEFT techniques
in the presence of a temperature gradient and evaluate the
heat current across a thermoelectric device. For simplicity
we consider a uniform wire of length L = Na, a being the
lattice spacing and the number of sites N � 1. One end
of the wire is kept at a fixed hot temperature TH and the
other end at a colder temperature TC . We use a perturbation
theory valid for small temperature gradients. The framework
divides the system into slices of subsystems at different tem-
peratures connected together and allows us to describe the
nonequilibrium Green’s functions in terms of the temperature

at the midpoint and additional temperature-dependent pertur-
bation terms proportional to the thermal gradient parameter
γ /L, with γ ≡ ln TH/TC . The phonon Green’s functions can
be explicitly written down in terms of the same parameter
and the temperature of the midpoint of the conductor. We
show that for γ � 1 and N � 1, a systematic and consis-
tent perturbation theory can be developed that allows us to
study the effects of the temperature gradient on the thermal
current in the absence of any other perturbation. Further per-
turbations can then be added in this inhomogeneous thermal
system.

While we consider a long nanowire as the simplest in-
homogeneous thermal system for illustrative purposes, it
should be possible to generalize the framework to include
arbitrary thermal inhomogeneities. The method involves rein-
terpreting the density matrix of a given Hamiltonian with
different subsystems at different temperatures in terms of an
effective density matrix of a temperature-dependent pseudo-
Hamiltonian at one arbitrary but fixed temperature. In the
following sections we first introduce the framework for gen-
eral inhomogeneous systems. We exploit the fact that Wick’s
theorem can be applied if we incorporate the thermal in-
homogeneity in the density matrix via a pseudointeraction
term added to our Hamiltonian. We consider the case of
phonons in detail which is relevant for thermoelectric de-
vices. While the inhomogeneity generates several additional
(pseudo)interaction terms, we illustrate our method by choos-
ing one featured term and evaluating the corresponding effects
on the nonequilibrium Green’s functions as well as the thermal
current within our perturbative framework. We evaluate the
frequency-dependent thermal current as well as the nonlin-
ear thermal conductivity for finite-temperature differences to
leading order in γ . These effects should be observable in
thermal transport measurements in nanowires.

The paper is organized as follows. We introduce the general
framework for thermally inhomogeneous systems in Sec. II
and obtain the correction to the phonon Green’s function to
first order in the parameter γ due to a thermal gradient across
a nanowire in Sec. III. The resulting thermal current and the
corresponding thermal conductance are obtained in Sec. IV.
Section V contains a summary and discussion.
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FIG. 1. A wire of length L attached to two leads, hot and cold,
with temperatures TH and TC , respectively. The temperature inside
the wire has a gradient along the length. We imagine dividing the
wire into thin slices, the nth slice being at inverse temperature βn.

II. FRAMEWORK FOR THERMALLY
INHOMOGENEOUS SYSTEMS

For simplicity, we consider a wire of length L as shown in
Fig. 1 with two ends connected to perfect leads fixed at two
different temperatures TH and TC ; the subscripts refer to hot
and cold, respectively. The temperature difference creates a
stationary thermal gradient inside the wire. We now imagine
dividing the wire into N number of thin slices, the nth slice
being at temperature Tn. The Hamiltonian of the system can
be written as a collection of N subsystems,

H =
∑

n

[
H0

n + HI
n + HI

n,n+1

]
, (2.1)

where H0
n and HI

n are the free (quadratic) and the interaction
parts of the nth slice, respectively, and Hn,n+1 is the interaction
between connected slices. The corresponding density matrix
is given by

ρ(t0) = exp
[−∑

n βn
(
H0

n + HI
n + HI

n,n+1

)]
Tr

{
exp

[−∑
n βn

(
H0

n + HI
n + HI

n,n+1

)]} . (2.2)

The Green’s function can be written as

G(1, 2) = −i Tr[ρ(t0)T ψH (1)ψ†
H (2)], (2.3)

where T is the time-ordering operator.
The fact that each slice has a different temperature makes

the evaluation of the Green’s functions difficult because a
compact time ordering is not available and the Wick’s theorem
cannot be applied directly. The fact that the density matrix in
(2.2) does not commute with the Hamiltonian (2.1) suggests
that a thermally homogeneous Hamiltonian is not a good de-
scription of the time evolution of a thermally inhomogeneous
system. We take this into account by rewriting the numerator
of the density matrix as∑

n

βn
[
H0

n + HI
n + HI

n,n+1

] = β0Hp,

Hp ≡
∑

n

[
H0

n + βn − β0

β0
H0

n + βn

β0

(
HI

n + HI
n,n+1

)]
. (2.4)

We now observe that the density matrix of H defined in (2.1)
with different inverse temperatures βn at different slices n is
the same as the density matrix of a pseudointeraction Hamil-
tonian Hp in (2.4) at an arbitrary but fixed inverse temperature
β0. We choose to work with the temperature-dependent
pseudo-Hamiltonian Hp as our starting point, which means
we do all the traces on eigenstates of Hp; the perturbation
theory for this pseudo-Hamiltonian can then be worked out
within the standard NEFT framework, albeit with additional

nonstandard temperature-dependent interaction terms. In the
following section, we will illustrate the method with a simple
but important example, taken from thermoelectricity, where
a clear small expansion parameter can be identified and the
perturbation theory becomes well defined in the large N limit.

We note that a different series expansion for a thermally
inhomogeneous system was proposed in Ref. [18] and Wick’s
theorem seems to work for an interacting system within the
equilibrium Green’s function (EGF) framework. There are
also exact solutions available for some expectation values in
one-dimensional models that can be mapped on to conformal
field theories [19,20]. Our framework should be more gener-
ally applicable for both EGF and NEFT.

III. NANOWIRE WITH A TEMPERATURE GRADIENT

As a simple illustrative example, we consider phonon prop-
agation across a nanowire. We assume that the free phonon
dispersion relation is given by

ω2
k = K

ρa3

∑
i=x,y,z

cos kia, (3.1)

where ρ is the mass density, and K is the spring constant. We
model the temperature profile in the wire in the continuum
limit given by

βn → β(x) = β0eγ x/L, (3.2)

with

T0 = √
TH TC, eγ = TH

TC
. (3.3)

In the small γ limit, to linear order in γ , this corresponds
to a uniform temperature gradient across the length of the
wire, which we take to be the x direction. We note that in
a clean strictly one-dimensional wire, the temperature profile
remains flat in the bulk, any changes occurring only at the
edges [21,22]. However, measurements on thin nanowires
show a temperature profile similar to above [23]. For these
nanowires, the process to achieve a temperature gradient
due to the phonon anharmonicity, phonon-impurity scatter-
ing, and/or electron-phonon interactions and for the particles
to reach nonequilibrium steady states after the attachment
of two leads with different temperature could be compli-
cated. However, after the temperature gradient is formed,
the perturbation brought by the temperature inhomogeneity
contributes to the phonon Green’s functions in first order,
compared to the second-order contribution from the other
scattering sources mentioned above. We therefore start from
a free-phonon model and treat the temperature inhomogeneity
as the dominant perturbation term. The second-order effects
can be included in the future, adding to the contribution from
the temperature inhomogeneity alone. In any case, an exact
temperature profile is not important to illustrate the applicabil-
ity of our framework; we therefore choose the simplest case,
leaving a more accurate account of the temperature profile
for future work. Figure 1 shows the system being considered,
where �T = TH − TC is not necessarily small (for example,
TC = 300 K, �T = 30 K), allowing us to develop a perturba-
tive framework with γ ∼ �T/TC � 1 (γ = 0.1 in the above
example) being the expansion parameter.
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In the continuum limit the quadratic part is

H0 = 1

2

∫
�dr

[
u̇(�r)u̇(�r) + V

2
u(�r){u(�r − �a) + u(�r + �a)}

]
,

(3.4)

where the overdot represents a time derivative. Here, V =
K/ρa3, u = √

ρU , U being the displacement of the atoms
from the equilibrium positions, and �a are the lattice vectors.
In the simplest case, the perturbative pseudointeraction term
generated by the temperature gradient along x is

Hpert = γ

2L

∫
�dr x

[
u̇(�r)u̇(�r)

+ V

2
u(�r){u(�r − �a) + u(�r + �a)}

]
. (3.5)

Note the explicit x-dependent terms reflecting the thermal
inhomogeneity of the system, where we chose the midpoint
of the wire as the origin x = 0. The most interesting part is
the term with �a along x, and we will illustrate our method
with a focus on this term. Note also that the interaction term
is proportional to γ /L, not just γ .

We note that the linearized temperature profile β(x) =
β0[1 + γ x/L] looks similar to the position-dependent field

that particles couple to in the Luttinger formalism [24] with
β(r) = β0[1 + ψ (r)] as discussed in Ref. [25]. Our frame-
work, derived directly from the exact density matrix, clarifies
the physical meaning of the fictitious “mechanical” field
ψ , and with the explicit form of the field coming out of
the temperature profile, one can conveniently go beyond the
linear-response regime.

The phonon Green’s function can be written as

D(1, 2) = −i Tr
[
ρ(t0)T uHp (1)uHp (2)

]
. (3.6)

Here, we have used the phonon displacement fields instead of
the raising and lowering operators since the interaction (3.5)
has an explicit x dependence. In addition, it is useful to define
a correlation function

C0(1, 2) = Tr[ρ(t0)T uH0 (1)u̇H0 (2)]. (3.7)

The zeroth-order phonon Green’s functions D0( �p, t − t ′) are
well known and the correlation functions C0( �p, t − t ′) can be
easily calculated. The first-order contribution to the phonon
Green’s function induced by the temperature gradient via the
pseudointeraction term HI , with �a along x, is then given by

δ(1)D(x, x′, �k; t, t ′)

= (−i)
γ

2L

∫
dt1 dq δ(q)

(
eiqx

{
(ix + ∂q)

[
ω2

k D0(�k + �q, t − t1)D0(�k, t1 − t ′) − C0(�k + �q, t − t1)C0(�k, t1 − t ′)
]}

+ eiqx′{
(ix′ + ∂q)

[
ω2

k D0(�k, t − t1)D0(�k − �q, t1 − t ′) − C0(�k, t − t1)C0(�k − �q, t1 − t ′)
]}

+ aV sin kxa D0(�k, t − t1)D0(�k − �q, t1 − t ′)
)
. (3.8)

After the q integral, and going to the frequency space, one
can identify the retarded self-energy up to linear order in γ by
comparing with the Dyson expansion (DR = D0R
RDR) as


R(x, x′; �k, ω) = γ

L

[
x + x′

2

{
ω2

k − (ω + iδ)2}− ia
V

2
sin kxa

]
.

(3.9)

The corresponding retarded phonon Green’s function takes the
form

DR = Z

(ω + iδ)2 − ω2
k + i γ a

L Z V
2 sin kxa

,

Z ≡ 1

1 + γ

L
x+x′

2

. (3.10)

Note that the imaginary part in the denominator of DR is
proportional to γ a/L, where γ � 1 is already a small param-
eter. In addition, we assume L � a so that the combination
γ a/L = γ /N � γ can be considered negligible in the large N
limit. While the specific form of the imaginary part in (3.10)
is model dependent, the prefactor γ a/L (in the leading-order
perturbation theory) ensures that the imaginary part remains
negligible. Thus the final result for the Green’s function, to

first order in γ and in the large N limit, becomes

DR/A = Z

(ω ± iδ)2 − ω2
k

. (3.11)

It is interesting that the numerator Z defined in (3.10) mimics
the quasiparticle weight factor in the standard equilibrium
fermionic many-body quantum field theory. Note that at
this level of approximation, the consistency relations be-
tween various self-energies (retarded, advanced, greater, and
lesser) remain valid: 
R = (
A)∗, 
R − 
A = 
> − 
<.
We should emphasize that the consistency relations may not
be automatically satisfied at each order within our perturbative
formulation with the small parameter γ � 1 alone; the addi-
tional small parameter a/L � 1 (equivalently N � 1) in our
current example is critical. On the other hand, these relations
should be valid if an exact summation to all orders is available.
The first-order corrections to the lesser and greater Green’s
functions then have the same common Z factor,

D≷ = ZD0≷ = −iZ
π

ωk

× [(Nk + 1)δ(ω ∓ ωk ) + Nkδ(ω ± ωk )], (3.12)

where Nk are the Bose distribution functions.
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In particular, the phonon number density given by

n(�r) = i G<(�r′ → �r, t ′ → t )

=
∫

d�k
(2π )3

1

1 + γ x/L
Nk, (3.13)

where G refers to the phonon Green’s function involving the
raising and lowering operators instead of the displacement
fields. Equation (3.13) has the simple interpretation that the
hotter parts (x < 0) have more phonons than the cooler parts
(x > 0).

IV. THERMAL CONDUCTANCE

The usual definition of thermal conductivity assumes a
linear-response regime with �T = (TH − TC ) → 0. In a ther-
moelectric device we want �T to be large. The general
frequency-dependent steady state thermal current across such
a wire is given by [26,27]

J (ω) = ω

4

∫
d�r1d�r2

{[
D(c)>

L (�r1, �r2; ω)
<
L (�r2, �r1; ω)

−D(c)<
L (�r1, �r2; ω)
>

L (�r2, �r1; ω)
] − [L → R]

}
.

(4.1)

Here, the superscript (c) on the phonon Green’s function D
refers to the central region (the wire), with subscripts L and
R referring to the ends connecting the left and right leads,
respectively. The subscripts L and R on the self-energy 
 refer
to the left and right leads, respectively, and �r1, �r2 lie in the
lead-central interface. For simplicity, we consider a quasi-one-
dimensional wire with independent channels in the lead and
compute the contribution from one channel. This simplifies
the calculation by allowing us to ignore the spatial integrals.
(A proper evaluation including all channels would change the
prefactor to reflect the fraction of the incoming waves being
transmitted/reflected across the two barriers that connect the
leads with the wire but should be generally independent of γ .)
The greater/lesser Green’s functions in the central region are
available from the previous section, Eq. (3.12), and the lead
self-energy is defined to be proportional to lead’s free Green’s
function, i.e.,



≷
L/R ∝ D0≷

L/R = −i
π

ωk

[(
NL/R

k + 1
)
δ(ω ∓ ωk )

+ NL/R
k δ(ω ± ωk )

]
. (4.2)

Now writing the real space Green’s functions in terms of their
Fourier components and doing the k integral, the frequency-
dependent current can be written as

Jγ (ω) ∝ n2(ω)

ω

[
1

1 − γ

2

NL(ω) − 1

1 + γ

2

NR(ω)

− γ

1 − γ 2

4

N0(ω)

]
�(ω) + (ω → −ω), (4.3)

where n(ω) is the phonon density of states, N (ω) is the Bose
distribution function, and �(ω) is the step function; the super-
script 0 refers to the midpoint inverse temperature β0, while
L and R refer to the temperatures at the left and right leads.

FIG. 2. The ratio �K/K0 = [Kγ (ω) − K0(ω)]/K0(ω) obtained
from (4.4), plotted as functions of the parameters γ and β0ω.

The midpoint temperature β0 appears in Jγ only in the com-
bination β0ω via the Bose distributions. The proportionality
factor involves the coupling of the leads to the wire, which
will depend on the system. To compare with experiments, a
nonlinear thermal conductance has been proposed in Ref. [5],
given by

κnl =
∫

K (ω)dω, K (ω) ≡ J (ω)

�T
. (4.4)

In the following, we choose a constant phonon density of
states to obtain the thermal current in (4.3) from acoustic
phonons. Figure 2 shows the ratio

�K

K0
= [Kγ (ω) − K0(ω)]

K0(ω)
, K0 = lim

γ→0
Kγ . (4.5)

FIG. 3. The ratio �κnl/κ
0
nl = [κγ

nl − κ0
nl]/κ

0
nl obtained from (4.4),

plotted as functions of �T/TC and TC .
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Figure 3 shows the ratio

�κ

κ0
=

[
κ

γ

nl − κ0
nl

]
κ0

nl

. (4.6)

Note that in this case, contributions to κnl derive primar-
ily from the ω � 1/β0 region of the current in Fig. 2. On
the other hand, contributions from optical phonons with fre-
quency ω ∼ 20/β0, according to Fig. 2, would result in much
larger changes in κnl. Note that thermal conductivity could be
defined in a similar fashion, with an added length dependence.
However, since we evaluate the ratio K/K0, the results will
be valid for both conductance and conductivity. These predic-
tions can be verified experimentally.

V. SUMMARY AND DISCUSSION

We have developed a perturbative framework within the
standard nonequilibrium quantum field theory to study ther-
mal current in a nanowire connected to hot and cold leads
with arbitrary but fixed temperatures TH and TC , respec-
tively. The framework allows us to consider the case �T =
(TH − TC ) not necessarily small, which results in a finite-
temperature gradient across the wire and conventional field
theory with a fixed temperature cannot be applied directly. The
framework relies on starting from a temperature-dependent
pseudo-Hamiltonian equivalent to an exact density matrix.
While we choose to work with a uniform gradient of tempera-
ture in a long wire to show the need for and the effectiveness of
our method, the framework should be adaptable to more com-
plicated systems, including electrons, with different types of
inhomogeneities in temperatures. Of course the method would
be practically useful if a small parameter can be identified to

develop a perturbation theory, or if the pseudo-Hamiltonian is
exactly soluble.

Based on this framework, we evaluate the frequency-
dependent thermal current Jγ (ω) and the nonlinear thermal
conductance κ

γ

nl in a wire due to the temperature difference
�T , to leading order in γ . In the absence of a theoreti-
cal framework to incorporate temperature inhomogeneities,
experimental works so far have focused primarily on the
linear-response regime, with �T → 0; we hope that our re-
sults would encourage experiments in the finite �T regime
relevant for thermoelectric devices. If experiments involve
larger γ , higher order in perturbation or a self-consistent cal-
culation might be needed.

In real systems the wire would have other sources of scat-
tering that might complicate the interpretation of the results.
Although it is known that the effects of bulk disorder on ther-
mal conductivity is negligible in the linear-response regime,
the situation is different in the presence of surface disor-
der, which generates randomly positioned localized phonons
[28–31]. It would therefore be important to include the surface
disorder effects in this framework to study the effects of any
coupling between the phonons generated by surface disorder
and those arising from temperature inhomogeneities. In addi-
tion, the framework can be easily adapted to investigate the
effects of finite �T on charge transport, needed to study the
efficiency of thermoelectric devices.
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