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Recent findings indicate that orbital angular momentum (OAM) has the capability to induce the intrinsic
orbital Hall effect (OHE), which is characterized by orbital Chern number in the orbital Hall insulator. Unlike the
spin-polarized channel in the quantum anomalous Hall insulator, the OAM is valley locked, posing challenges in
manipulating the corresponding edge state. Here we demonstrate the sign-reversal orbital Chern number through
strain engineering by combing the k · p model and first-principles calculation. Under the manipulation of strain,
we observe the transfer of nonzero OAM from the valence band to the conduction band, aligning with the
orbital contribution in the electronic structure. Our investigation reveals that electrons and holes with OAM
exhibit opposing trajectories, resulting in a reversal of the orbital Hall conductivity. Furthermore, we explore the
topological quantum state between the sign-reversible OHE.
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I. INTRODUCTION

The orbital Hall effect (OHE) occurs in response to a
transverse electric field, wherein carriers with orbital angular
momentum (OAM) undergo longitudinal displacement, lead-
ing to an observable electrical response [1–5]. It is regarded
as the orbital analog of the spin Hall effect (SHE) [6–10].
However, unlike SHE, the OHE can be observed in materials
with weak spin-orbit coupling (SOC) [1,11,12]. In contrast
to the spin and anomalous Hall effects, directly detecting the
accumulation of OAM faces inherent limitations, restricting
the advancement of the OHE. Recent developments in exper-
iments have revealed pronounced OHE in light metals, with
validation achieved through the magneto-optical Kerr effect
(MOKE) [1]. This discovery not only underscores the chal-
lenges associated with probing OAM but also marks a pivotal
milestone in exploring the OHE and its topological properties.

OAM [9,13–15], referred to as orbital magnetic moment
[7,8,16–19] or orbital texture [4,20,21], plays a pivotal role
as the source of the OHE—an observation substantiated
through both experimental and theoretical avenues. In two-
dimensional (2D) transition metal dichalcogenides (TMDs),
the presence of nonzero OAM with opposite signs in two
valleys, under the protection of C3 symmetry, gives rise to a
topologically protected OHE [7,13,20,22,23]. This intriguing
behavior is expressed through the topological invariant known
as the orbital Chern number (CL). Remarkably, carriers ex-
cited in the K valley exhibit positive OAM, moving in the
opposite direction to those in the K′ valley carrying negative
OAM [3,13,24,25]. The unique electronic motion gives rise
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to topologically protected quantum states, reminiscent of the
purely spin-polarized currents observed in the quantum spin
Hall effect [26,27].

Furthermore, within TMDs, there exist other topological
quantum states, such as the quantum anomalous Hall effect
(QAHE), which manifests specifically in ferromagnetic sys-
tems [28–34]. A single spin-polarized electronic structure
near the Fermi level leads to spin-polarized edge states in
QAHE. Changing the magnetic moment direction in TMDs
can induce a reversal of the conductive channel at the edge
[31]. However, in the context of OHE, the OAM is valley
locked, making it impossible for carriers excited in the K val-
ley to carry negative OAM [7,16,20,25,35]. Modifying the CL

by manipulating OAM in the valley is thus deemed unfeasible.
The following issue arises: can the edge states of OHE be
manipulated and is it possible to alter the direction of motion
for carriers with OAM?

Here we close this gap by using a strain engineering to in-
vestigate the interplay between the OAM and CL. Combining
the k · p model with first-principles calculations, we show that
nonzero OAM patterns can switch between the valence and
conduction bands under strain. With the application of strain,
the band gap within the valley undergoes a gradual closure and
subsequent reopening. Concurrently, the orbital contributions
on the valence band shift from magnetic quantum numbers
±2 to 0. We prove that there are three different topological
quantum states in this process, corresponding to OHE, QAHE,
and OHE, respectively, and their CL of +1, 0, and −1. Subse-
quently, we explore the transport behavior under various CL.
It becomes evident that the OAM patterns in both the valence
and conduction bands dictate the types of charge carriers with
nonzero OAM, thereby leading to the different topological
phase transitions.
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II. TWO BAND k · p ANALYSIS

Traditional TMD monolayers, such as H-VSe2 [34,36–
39] breaking the spatial and time reversal symmetry, have
been demonstrated to be an ideal platform to investigate
OHE. The unique and clean valley model at K and K′ points
has a nonzero valley Chern number at the basis of ψτ

v =
(|dx2−y2〉 + iτ |dxy〉)/

√
2 and ψτ

c = |dz2〉, where the index τ =
+1 (−1) represents the K (K′) valley and v/c denotes the
valence/conduction state. The corresponding effective Hamil-
tonian Heff can be written as below [40–43]:

Heff = vF (τ σ̂xkx + σ̂yky) + �

2
σ̂z − τ ŝzλv

σ̂z − 1

2
. (1)

Here, vF is the massless Fermi velocity of the Dirac
electrons; σ̂i and ŝi (i = 0, x, y, z) are Pauli matrices for pseu-
dospin and spin, respectively. In addition, the band gap of
the system is represented by � and λv is the SOC parameter
for the valence band. The interface engineering is an effec-
tive method to manipulate the electrical properties of TMDs
[28,29,31,34,44–47]. In our k · p model, an additional term Hε

has been added to Eq. (1),

Hε = −D

2
εŝ0σ̂z, (2)

which can apply a biaxial in-plane strain ε = (a − a0)/a0 to
TMD, where a and a0 denote strained and equilibrium lattice
constants and D is the deformation potential.

The spin channels at the top of the valence band for
two valleys are spin up. The spin index is +1 and the
Hamiltonian eigenvalues are expressed as E± = 1

2 [τλv ±√
4v2

F k2 + (�τ − Dε)2 ], where �τ = � − τλv . In addition,
k2 is equal to k2

x + k2
y . The Berry curvature (BC) �τ,z

n (k) and

orbital Berry curvature (OBC) �
τ,L̂z
n (k) at the valley can be

written as

�τ,z
n (k) = −2h̄2

∑
n �=n′

Im〈ψnk|v̂x|ψn′k〉〈ψn′k|v̂y|ψnk〉
(En′ − En)2

,

�τ,L̂z
n (k) = −2h̄

∑
n �=n′

Im〈ψnk|v̂x|ψn′k〉〈ψn′k|Ĵy|ψnk〉
(En′ − En)2

, (3)

where v̂i (i = x, y) is the velocity operator along the ki di-
rection and the OAM operator Ĵy is defined as Ĵy = 1

2 (v̂yL̂z +
L̂zv̂y). L̂z is the z component of the OAM operator. In the
k · p model, there are two different descriptions to represent
the OAM operator: the Bloch state orbital magnetic moment
L̂tot

z [13,16,17,25] and the intra-atomic approximation L̂intra
z

[3,4,6,7,11]. Here, we focus on the second description: the
intra-atomic approximation, where the source of the orbital
magnetic moment neglected the intersite circulation current,
which has been demonstrated to be effective and accurate in
the study of OHE [3,4,6,7,11]. Based on the basis function of
ψτ

c and ψτ
v defined above, the OAM operator can be chosen

as L̂z = diag(0, 2h̄τ ) for the analytical solution of OHE. The
BC and OBC at special valley can be simplified as

�τ,z
n (k) = τ × �τ,L̂z

n (k)

= 2τv2
F (�τ − Dε)[

4v2
F k2 + (�τ − Dε)2

]3/2 . (4)

FIG. 1. Schematic diagrams of the topological quantum state
calculated by a two band k · p model. The other parameters are set as
� = 0 eV, vF = 1 eV, and D = 1 eV. s and l are the spin and orbital
angular moment, respectively. The nonzero orbital Chern number CL

and Chern number C represent the orbital Hall (OH) insulator and
quantum anomalous Hall (QAH) insulator. With the gradual increase
in the parameter ε, the system sequentially transitions through phases
of OH insulator, QAH insulator, and back to OH insulator, corre-
sponding to CL of +1, 0, and −1, respectively. We depict the orbital
angular momentum (OAM) in the OH insulator, where the colors
blue and red represent ±2h̄.

The values of BC and OBC are closely related to the band gaps
and have extreme values on the two valleys. It is interesting
that the symbol of OBC on the K′ (τ = −1) valley is the
opposite of BC, while it is the same on the K (τ = 1) valley.
This means that, when integrating BC and OBC near the
K′ valley, the corresponding Chern numbers are negative to
each other. The quantum anomalous Hall (QAH) insulator
has a chiral, nondissipative spin channel at the edge of the
bulk state, which has an integer multiple of Chern number.
In our description, the Chern number can be written as C =
1
2

∑
τ τ × sgn(�τ − Dε). In addition, the orbital Hall (OH)

insulator is a topological insulator whose currents across two
valleys carry opposite OAM. The orbital Chern number CL̂z

=
1
2

∑
τ sgn(�τ − Dε) is a topological invariant to characterize

OH insulators.
We plot a topological quantum diagram of the SOC pa-

rameter λv as a function of biaxial strain ε in Fig. 1. For
a system without considering λv and ε, both valleys simul-
taneously close, exhibiting a topologically trivial state. The
application of strain can open the band gap, giving rise to the
OHE with a topological invariant CL = ±1. This indicates that
the generation of OHE does not require SOC, aligning with
the conclusions of previous studies [1,4,20]. Subsequently,
when λv �= 0 without strain, the system is a QAH insulator
with |C| = 1. When |ε| > |λv|, the system transitions from
QAHE to OHE with valley polarization. This corresponds to
a topological index CL = ±1. Interestingly, for ε < 0, CL =
+1, while for ε > 0, CL = −1. These two types of OHE with
opposite topological indices are intriguingly associated with
the sign of ε. To investigate the change in CL, we calculate the
OAM in the valley,

〈L̂z,k〉 = 〈ψk|L̂z,k|ψk〉. (5)
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FIG. 2. First-principle calculations of 1L VSi2N4. (a) The atomic structure of 1L VSi2N4. Up and down panels are the top and side view,
respectively. (b) The electronic and (c) orbital band structure for 1L VSi2N4, where m and 〈L̂z〉 represent the magnetic quantum number
and orbital angular moment. Here, m = ±2 is used to represent the dxy and dx2−y2 orbitals, while m = 0 is employed to signify the dz2

orbital. The anomalous Hall conductivity and orbital Hall conductivity are plotted in (d), which are represented by red and black lines,
respectively.

The expectation values of OAM in both valleys are ±2h̄.
Notably, under the condition of ε < 0, 〈L̂z〉 = ±2h̄ occurs
at the top of the valence band, while for ε > 0, it is ob-
served at the bottom of the conduction band. This observation
suggests that, while maintaining a constant OAM, strain en-
gineering has the capability to manipulate the edge states
of electrons and holes in OH insulators. The CL emerges
as an effective descriptor delineating these distinct edge
states.

III. DFT-BASED CALCULATIONS

A. OHE and OAM for VSi2N4

To realize the tunable topological quantum states, we pro-
pose a family of the OH insulator, VA2Z4 (A = Si, Ge; Z = N,
P, As) in Fig. 2(a) [28,32,34,44], which has been extensively
employed in the investigation of both the QAHE and the
valley Hall effect. Note that, despite the fact that VSi2N4 is
not a TMD (MX2), in a stoichiometric sense, it is ruled by
a similar low-energy theory. In this work, taking VSi2N4 as
an example, we investigate the strain-dependent topological
phase transition. The electronic structure plotted in Fig. 2(b)
is a direct gap semiconductor with the shape of the valley.
Due to the non-negligible SOC in transition metals, the valley
splitting of VSi2N4 at the two valleys occurs in the valence
band occupied by dxy and dx2−y2 . In addition, in Fig. 2(c),
we display the OAM-resolved band structure by calculating
the expectation value of L̂z. By comparing the results of the
k · p model and DFT, we find that nonzero magnetic quan-
tum numbers (dxy and dx2−y2 ) can produce large OAMs at
two valleys. At two valleys, the expectation value 〈L̂z〉 can
reach ∼± 2h̄. When an in-plane electric field is applied to
VSi2N4, the carriers generated in the valley carry not only the
spin angular momentum but also the OAM, which is AHE
and OHE, respectively. For a 2D system, the anomalous Hall
conductivity σ AH

xy and orbital Hall conductivity σ OH
xy can be

calculated by

σ AH
xy = −e2

h̄

∑
n

∫
BZ

d2k

(2π )2
fnk�

z
n(k),

σ OH
xy = e

h̄

∑
n

∫
BZ

d2k

(2π )2
fnk�

L̂z
n (k). (6)

Here, �z
n(k) and �

L̂z
n (k) are Berry curvature and orbital Berry

curvature, respectively. Moreover, BZ represents the Brillouin
zone and fnk is the Fermi-Dirac distribution. Figure 2(d)
shows the AHE and OHE of VSi2N4. Within the band gap,
the anomalous Hall conductivity (AHC) vanishes, while the
orbital Hall conductivity (OHC) occurs with the value of
1.1e/2π . Combined with k · p analysis, we observe C = 0,
while CL̂z

= +1, indicating that VSi2N4 is an OH insulator.
The giant OHC arises from dxy + dx2−y2 orbitals and nonzero
OAM.

B. Interface engineering

Interface engineering, such as strain, is an effective method
for tuning the electronic and orbital structures of 2D mate-
rials. In order to manipulate the topological quantum states
in VSi2N4, we apply biaxial strain to it without altering the
spatial symmetry in Fig. 3(a). In the first-principle calcula-
tions, the biaxial strain can be applied by changing the lattice
constant with the equation ε = (a − a0)/a0, where a and a0

are the strained and equilibrium lattice constant. We observe
a linear trend in the change of band gap with strain, consistent
with the conclusion drawn in Fig. 1 (see details on electronic
structures and fitting results in the Supplemental Material
[48]). When the strain reaches 2.4%, the band on the K point
closes and it reopens as the strain further increases. At this
point, there is a band inversion, with the conduction band
contributed by dxy and dx2−y2 orbitals, while the valence band
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FIG. 3. Transport property of 1L VSi2N4 with the first-principle
calculations combining Wannier function. (a) The band gaps at two
valleys as a function of strain. The blue and red lines are the K and
K′ valleys. There is a band reversal near the strain of 2.5%. We
choose 0% (black line), 2.5% (red line), and 5% strain (blue line)
as three different cases to investigate the topological quantum state.
The corresponding orbital Hall conductivity (OHC) and anomalous
Hall conductivity (AHC) are plotted in (b). In addition, we analyze
(c) the normalized orbital Berry curvature and (d) the Berry curvature
through the first Brillouin zone.

is contributed by the dz2 orbital. When the strain reaches 2.7%,
a similar transition occurs in the K′ valley.

According to the k · p model, we categorize VSi2N4 under
strain into three cases, corresponding to OH, QAH, and OH
insulators as outlined in Fig. 1. The detailed orbital contri-
bution can be obtained in the Supplemental Material [48].
Subsequently, we calculate the AHE and OHE for the three
cases in Fig. 3(b). A significant OHC accompanying CL = ±1
is observed when the strain is 0% and 5%. Since there are not
only two bands contributing near the Fermi level, OHCs are
not equal to zero in all three cases. In particular, the OHC is
about −0.4e/2π for the 5% strain, which is mainly because
the k · p model can only describe the situation near the Fermi
level and cannot characterize the electrical properties on all
energy levels. As supported by Fig. S4 in the Supplemental
Material [48], as the number of energy levels considered in
the OHC calculation increases, the value of OHC tends to
converge. We find that the contribution of OHC in the band
gap is still dominated by the two valleys, similar to the case
in OBC in Fig. 3(c). By fitting the first-principles calculation
with the k · p model, we confirm that 1L VSi2N4 is an OH
insulator with the CL = −1 at the strain of 5%. Moreover, at
2.5% strain, VSi2N4 becomes a QAH insulator with |C| = 1.
Tensile strain induces changes in the band structure, leading
to alterations in the topological quantum states. Figures 3(b)
and 3(c) illustrate the BC and OBC. In the strain of 0% and
5%, the sign of the BC is opposite in the two valleys, leading
to the disappearance of AHE. The OBC, on the other hand,
exhibits a different behavior. In both cases, the OBC has the
same sign, indicating that carriers with opposite OAM in the
two valleys have opposite trajectories, resulting in a nonzero
CL. At this point, VSi2N4 becomes an OH insulator. When
the case switches to 2.5% strain, the conclusions are reversed

(a) (b)

(c) (d)

0% Strain, vb 0% Strain, cb

5% Strain, cb5% Strain, vb

K′ K

K′ K K′ K

K′ K

FIG. 4. Orbital angular moment (OAM) distribution of (a) va-
lence band (vb) at 0% strain, (b) conduction band (cb) at 0% strain,
(c) vb at 5% strain, and (d) cb at 5% strain. The blue/red dot
represents 〈L̂z〉 = +2/ − 2h̄. The OAM distribution of 1L VSi2N4

is calculated by the first-principle calculations combining Wannier
function.

compared to the above. Therefore, under the modulation of
a strain field, VSi2N4 exhibits rich electronic properties and
topological quantum states.

C. OAM for different topological quantum states

Although VSi2N4 returns to OHE under strain, it is inter-
esting to note that the topological index is not the same as
that without strain. As we can see from Fig. 3(b), the strain
changes the direction of movement of the carriers in two
valleys, resulting in OHC with opposite signs. The different
orbital Chern numbers, namely −1 and +1, are observed.
Interestingly, the OAM in the k · p model is locked to the
valley (〈L̂τ

z 〉 = 2h̄τ ). This means that the OAM of VSi2N4

under strain does not change. However, the CL shifts from
+1 to −1, indicating a reversal in the direction of motion for
carriers carrying OAM. To understand the underlying princi-
ples, we investigate the OAM among different quantum states.
Detailed OAM for the valence band and conduction band is
depicted in Fig. 4. In the absence of strain, the OAM on the
valence band is ∼± 2h̄, while the OAM near the conduction
band valley is approximately 0h̄. When applying an electric
field, the motion of holes on VSi2N4 is topologically protected
due to the nonzero OAM. Subsequently, we shift our focus
to a 5% strain, where there is a reversal in the orbital con-
tributions of the valence and conduction bands. This results
in 〈L̂vb

z 〉 ∼ 0h̄ in the valence band and 〈L̂cb
z 〉 ∼ ±2h̄ in the

conduction band near the valley. The electrons excited in
the OH insulator carry OAM of ±2h̄ in opposite directions
compared to 0% and this process is topologically protected.
In both cases, the different transport modes of electrons and
holes carrying OAM lead to a shift in the CL from +1 to
−1. In addition, we summarize the OAM patterns of three
cases in Fig. S3 in the Supplemental Material [48]. We ob-
served distinct OAM patterns for different quantum states.
Under strain engineering, the unique OAM patterns serve as
a distinguishing feature for discerning the topological quan-
tum states. Currently, directly detecting current with OAM in
experiments remains challenging. Our work provides another
perspective for exploring OHE.
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IV. CONCLUSION

In summary, we have established the connection between
the OHE and OAM for 2D TMDs. The types of carriers with
nonzero OAM can effectively influence the CL of OH insula-
tors. Additionally, based on the band inversion under strain,
we propose an effective method to manipulate the OAM and
CL of the system. Taking VSi2N4 as an example, we demon-
strate the changes in AHC and OHC under strain and observe
topological phase transitions from OHE to QAHE to OHE.
However, applying tensile strain does not revert VSi2N4 to its
initial topological state, as the CL becomes opposite to that
without strain. The OAM patterns in the valence and conduc-
tion bands reveal that 〈L̂z〉 = ±2h̄ transitions from the valence
to the conduction bands. The different OAM patterns can
give us another perspective to understand and manipulate the
OH insulator. In experiments, the detection and verification

of intrinsic OHC and its topological invariant still face great
challenges. Our work shows that distinct OAM patterns can
produce different topological quantum states. Therefore, for
TMD materials, we propose such an idea to solve the above
problems. By employing optical and electrical methods to
detect the OAM patterns on the valleys of valence and con-
duction bands, we can definitively confirm the presence of the
OH insulator.
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