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Geometry of the dephasing sweet spots of spin-orbit qubits
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The dephasing time of spin-orbit qubits is limited by the coupling with electrical and charge noise. However,
there may exist “dephasing sweet spots” where the qubit decouples (to first order) from the noise so that the
dephasing time reaches a maximum. Here we discuss the nature of the dephasing sweet spots of a spin-orbit qubit
electrically coupled to some fluctuator. We characterize the Zeeman energy E; of this qubit by the tensor G such
that E; = upv BTGB (with pp the Bohr magneton and B the magnetic field), and its response to the fluctuator
by the derivative G’ of G with respect to the fluctuating field. The geometrical nature of the sweet spots on the
unit sphere describing the magnetic field orientation depends on the sign of the eigenvalues of G'. We show that
sweet spots usually draw lines on this sphere. We then discuss how to characterize the electrical susceptibility
of a spin-orbit qubit with test modulations on the gates. We apply these considerations to a Ge/GeSi spin-qubit
heterostructure, and discuss the prospects for the engineering of sweet spots.

DOLI: 10.1103/PhysRevB.109.155406

I. INTRODUCTION

Hole spin qubits in semiconductor quantum dots [1-3]
have attracted much attention as possible building blocks for
quantum computers and simulators [4—15]. They can indeed
be manipulated electrically without extrinsic elements such as
micromagnets owing to the strong spin-orbit coupling (SOC)
in the valence band of semiconductor materials [16]. More-
over, the group IV elements such as silicon and germanium
can be isotopically purified in order to get rid of the nuclear
spins that may interact with the hole spins and spoil the co-
herence [17-23]. Nonetheless, the electrical addressability of
such “spin-orbit” qubits comes along with a stronger sensitiv-
ity to electrical and charge noise.

It has, however, been demonstrated theoretically and exper-
imentally that hole spin qubits can feature “dephasing sweet
spots” as a function of the bias voltages and/or magnetic field
orientation, where the Larmor frequency becomes insensitive
(to first order) to one or more source(s) of electrical noise
[14,24-28]. The dephasing time 7,* then reaches a maximum
near these sweet spots. For example, the echo time 7,° of a
hole spin qubit in a rectangular silicon channel could be ex-
tended up to 88 us by selecting the magnetic field orientation
where the Larmor frequency is least sensitive to the control
gate voltages, hence to in-plane electric field fluctuations [27].
Interestingly, the optimal Rabi frequency (Rabi “hot spot”)
may also lie near one of the sweet spots thanks to reciprocal
sweetness relations between dephasing (longitudinal spin sus-
ceptibility) and driving (transverse spin susceptibility) [28].
This allows in principle a joint optimization of both the de-
phasing and manipulation times.

Charge traps in the amorphous gate oxide materials are
believed to be the main source of electrical noise in semicon-
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ductor spin qubits [29-33]. This strengthened the interest in
Ge/GeSi heterostructures, where the quantum dots are shaped
by field effect in a thin Ge well embedded in thick expitax-
ial GeSi barriers [8—10,14,34]. The amorphous gate oxides
are thus shifted at the surface of the heterostructure tens of
nanometers away from the dots, which reduces the level of
charge noise and disorder. Germanium hole spin qubits have
actually seen outstanding progress in the past few years with
the demonstration of a four-qubit processor [10] and of charge
control in an array of 16 dots [35].

Whatever the host materials, it has become extremely im-
portant to understand the properties of the sweet spots of hole
spin qubits in order to engineer dephasing times and achieve
more resilient designs. In this work, we address the nature of
these sweet spots from a general perspective. We demonstrate
that the sweet spots of a given electrical fluctuator are most
often “sweet lines” on the unit sphere describing the magnetic
field orientation, as evidenced in Refs. [27,28,33]. We also
argue why the measurement of the derivative of the Larmor
frequency with respect to the gate voltages provides a valuable
assessment of the robustness of the qubit to electrical noise
and helps locate operational sweet spots. Finally, we model
a germanium hole spin qubit in a Ge/GeSi heterostructure
[36-38] similar to a recent experiment [14] as an illustration.
We discuss the nature and location of the sweet spots as a
function of the symmetry (circular, squeezed [39], etc.) of
the dot. We also analyze the impact of the inhomogeneous
strains resulting from the contraction of the metal gates upon
cooldown [37,40,41].

The theory of sweet spots is discussed in Sec. II, and the
application to a Ge/GeSi spin qubit in Sec. III.

II. NATURE OF THE DEPHASING SWEET SPOTS

In this section, we discuss the dephasing sweet spots of
a spin-orbit qubit electrically coupled to one or more fluc-
tuators. We first briefly review the g-matrix formalism used

©2024 American Physical Society
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for that purpose, and introduce the longitudinal electric spin
susceptibility (LSES) that characterizes the response of the
Larmor frequency to electrical perturbations. We next analyze
the geometrical nature of the dephasing sweet spots of a single
fluctuator, then discuss the generalization to multiple fluctua-
tors. We finally address the experimental characterization of
the LSES.

A. Review of the g-matrix formalism

In general, the effective Hamiltonian of a spin qubit in a
homogeneous magnetic field B can be written

H=luso gB, (1)

where o = (01, 02, 03) are the Pauli matrices in a given
{I ™), 1 U)} basis set for the two-level subspace, and g is the
gyromagnetic matrix [6,42,43]. We emphasize that g depends
on the choice of the {| {}'), | {})} basis set and of the x, y, 7 axes
for the magnetic field. It is not, in general, symmetric, but can
always be factorized as

g=Ugv", 2

where g = diag(g, g2, g3) is a diagonal matrix whose ele-
ments are the “principal” g factors g1, g2, and g3, and U, V are
real unitary matrices with determinants det U = detV = +1.!
The columns of V' define the principal magnetic axes vy, v,
and v3, while U can be associated with a rotation R(U ) in the
two-level subspace, thus with two basis states |f}) = R(U)| 1)
and |l) = R(U)| ) [43]. With (B;, B>, B3) the coordinates
of the magnetic field in the {v;, v,, v3} axes, the Hamiltonian
simply reads in the {|f}), |{)} basis set

H= %MB(nglal + 82B202 + 83B303). (€)

More generally, a change of axes for the magnetic field results
in a transformation g — gPT, and a change of two-level basis
set in a transformation g — Qg, with P and Q real unitary
matrices [43].

The Hamiltonian (1) can also be written

H = dupg'Bo™, @

where B = |B|, g* = |gb| is the effective gyromagnetic factor
for a magnetic field oriented along the unit vector b = B/B,
and o* = o - u is the matrix of an effective spin along the unit
vector u = gb/g*. The eigenenergies are therefore

and the Zeeman splitting is Ez = g*upB. We can thus intro-
duce the Zeeman tensor

G=g'g (©6)

I'This factorization can be achieved, e.g., with a singular value
decomposition. The constraint det U = detV = +1 is applied to get
right-handed axes {v;, v,, v3} and to associate U with a rotation
R(U) in the two-level subspace along note 38 of Ref. [43]. The sign
of either detU or detV can be changed by reversing the sign of a
principal g factor g; and of the corresponding column of either U or
V. The signs of both det U and det V can be changed by reversing the
sign of the same column of U and V, or by swapping two principal g
factors g; as well as the corresponding columns of U and V.

such that g* = vbTGb [6,43]. Contrary to g, G is always
symmetric, and depends only on the choice of axes for the
magnetic field (as a transformation g — Qg leaves G invari-
ant). Its eigenvalues are the squares g7 of the principal g
factors, and its eigenvectors are the principal magnetic axes
{vi, v2, v3}:

G=V@EV. (7

The effective gyromagnetic factor is hence simply g* =
v, gzlb% +g%b% ~|—g§b§ in the principal magnetic axes. The
Zeeman tensor is an observable that can be constructed from
a measurement of the Zeeman splitting in at least six orienta-
tions of the magnetic field (since there are six independent
matrix elements in G). The sign of the principal g factors
may, nonetheless, remain ambiguous as the diagonalization of
G only provides the g2’s. As discussed below, the dephasing
rate of a spin qubit electrically coupled to some noise can be
expressed as a function of G and its derivative with respect
to the noisy parameter. The g matrix itself (and more so its
derivatives) are much more difficult to reconstruct from exper-
imental data [6], as the working two-level basis set {| ), | 1)}
can hardly be made explicit. The g matrix is, however, a very
useful asset for modeling, as it can be easily obtained from
first-order perturbation theory once states | f}) and | {}) have
been computed [43].

B. Longitudinal spin susceptibilities

Let us now introduce a fluctuator characterized by some
stationary random signal A(¢) (a fluctuating gate voltage,
charge, or dipole, for example). This fluctuator can induce
decoherence [44] through relaxation and dephasing (usually
dominant in spin qubits and the focus of this work?). De-
phasing results from the modulations of the Larmor frequency
fL(A) = Ez(A)/h by the fluctuator (with & the Planck con-
stant). The phase accumulated over time ¢ is indeed

Q(r) = 277/ dt' fL(A(t) = 2x fL(0)t + AD(),  (8)
0

where the phase shift A®(¢) with respect to free precession
reads as, to first order in A,

Ad(t) = 2nfL’(0)f dr'At"). ©)
0

This phase shift is therefore proportional to f] = dfi /dA,
the longitudinal spin susceptibility (LSS) with respect to the
perturbation A. As an illustration, we consider random signals
A(t) with a power spectrum Ss(f) o< 1/f over a frequency
bandwidth f € [fmin, fmax] (but the theory can easily be ex-
tended to other classes of noises). The coherence then decays

>The random signal A(t) may indeed induce transitions between
the spin states and thus contribute to the relaxation rate I'y = 1/T;
[44]. This contribution to I'; is, to lowest order, proportional to the
power spectrum Sy (fi.) of A(¢) at the Larmor frequency fi. [whereas
the dephasing rate is most sensitive to the low-frequency tail S4(f <
fu)]. We assume throughout this work that decoherence is dominated
by dephasing (which is usually the case in spin qubits coupled to 1/ f
noise).
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as exp[—(/ Tz*)z] when ¢ < 1/ fnax [45], with the pure de-
phasing time 7" given by
Iy = L = V™ 0) (10)
2
and A™ the root-mean-square (rms) fluctuations of A(r).?
The LSS f{(0) and A™ hence completely characterize the
dephasing rate I'; to first order in A.

The LSS may result from modulations of the Zeeman
tensor G (for electrically coupled fluctuators) or from mod-
ulations of the magnetic field B (for magnetically coupled
fluctuators). In hole spin qubits, most relevant fluctuators
primarily couple electrically to the hole charge, then to the
hole spin through SOC (one exception being nuclear spins,
however absent in isotopically purified materials [17,18,23]).
The LSS is then a longitudinal spin electric susceptibility
(LSES), which can be related to the Zeeman tensor G and its
derivative G’ = dG/dA:

B bTG'(0)b B
i Ob _ mByrciom. an
2h \/BTGO)b  2hg*

=

Note that G’ is also symmetric by design. G'(0) can, therefore,
be diagonalized and factorized as

G0)=wGwWT, (12)

where the elements of G’ = diag(G/, G}, G}) are the eigen-
values of G’ and the columns {w;, w», w3} of W are the
corresponding eigenvectors (that may differ from vy, v,, and
V3).

For the purpose of analysis, we can further split
G =T"+ Z’ in two matrices:

9%
r'= Visz, (13a)
0A
\%
E' = —2°VT + transpose. (13b)

0A

" accounts for the modulations of the principal g factors g,
g2, and g3, and &’ for the modulations of the principal axes
V1, V2, and v3. Moreover, since V' is a unitary matrix,

0 T o9V
oA V'v)y=0=V <8A> + transpose, (14)

so that the matrix

_ otV
Z—v (BA), (15)

which is independent on the choice of magnetic axes, is
antisymmetric (ZT = —Z) and has thus diagonal elements
Z;; = 0. It then follows from Egs. (13) that

3 o
g = diag(G}), (16)

3This expression provides a fair account of the contribution of 1/f
noise to decoherence when I'; >> fi.x (since it only holds for “short”
times ¢ < 1/ fmax). There are, in particular, logarithmic corrections
beyond this regime. For a complete discussion, see for example
Ref. [45].

TABLE 1. Geometrical nature of the sweet spot orientations as
a function of the sign of the eigenvalues of G'(0) given in the first
column. The second column is the geometrical nature of the solu-
tions of Eq. (18a), and the third column the geometrical nature of
their intersection with the unit sphere, which defines the sweet spot
orientations.

Solutions of Sweet spot
Signs of the G, bTG'(0)b =0 orientations
0, 0, 0) Whole space Unit sphere
0, 0, +)
0, 0, —) 1 plane 1 sweet line
O, +, +)
o, —, -) 1 line 2 sweet points
o, +, —-) 2 planes 2 sweet lines
(+, +, —)
(=, — +) 2 cones 2 sweet lines
+, + +)
(= = =) b=0 None

where G}, = VTG'V is the derivative of G in the principal
magnetic axes, and that

7, = G

g =8
This enables a full reconstruction of the derivatives of
principal g factors and principal magnetic axes from the mea-
surement or calculation of G’ (at least when the glz.’s are
nondegenerate, otherwise the principal magnetic axes of G
are not uniquely defined). As discussed in Sec. III, G’ actually

provides valuable information about the spin-orbit coupling
mechanisms at work in the device.

i (17)

C. Dephasing sweet spot classification

There may exist particular bias points and/or orientations
of the magnetic field where the LSS f{ is zero and the qubit
precession decouples (to first order) from the fluctuator. At
these first-order “sweet spots,” the pure dephasing time 7.
from Eq. (10) diverges; it gets practically limited by second-
or higher-order couplings to the noise and thus reaches a max-
imum in the close vicinity of the sweet spot if these residual
couplings are small enough.

According to Eq. (11), the first-order sweet spots for elec-
trically coupled fluctuators are the solutions of bTG'(0)b = 0.
This defines a set of magnetic field orientations; the compo-
nents (b, by, b}) of b in the principal axes {w;, w», w3} of
G’(0) must actually satisfy

Gib + Gbf + GybT = 0,
by +b5 + b5 =1.

(18a)
(18b)

The sweet spot orientations are thus at the intersection be-
tween the quadric surface defined by Eq. (18a) and the unit
sphere. Depending on the signs of the eigenvalues G, this
intersection can take different shapes, listed in Table I. The
second column is the geometrical object defined by Eq. (18a),
and the third one is the shape of its intersection with the
unit sphere. There are no sweet spots if all G)’s have the
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same sign; on the contrary there may be “global” sweet spots
(independent on the magnetic field orientation) at the specific
bias points where G'(0) is identically zero [25,28]. For hole
spin qubits, the G;’s usually take different signs when the
fluctuator reshapes the wave function, so that the sweet spots
generally lie on one or a couple of lines, as evidenced in
Refs. [27,28,33]. This leaves, in principle, more opportunities
for optimal operation of the qubit. Whatever their geometry,
the sweet spots must be invariant by the inversion b — —b.

Moreover, we can express G’ as a function of the matrices
g and ¢ computed in the same (but arbitrary) {| 1), | {})} basis
set for the two-level subspace:

G =) g+g" @) (19)

This provides a geometrical interpretation of the sweet spot
condition bTG’(0)b = 0 [28]. Indeed, a sweet spot results
from the achievement of either

(i) £(0)b = 0 (no modulations of g for a particular orien-
tation of the magnetic field),

(i1) g(0)b L g(0)b (the modulations of the Larmor vector

2 = gB are orthogonal to the latter).
The second case is typical of sweet lines and the most usual in
practice. We will further discuss its significance in Sec. II E.
The case g(0)b = 0 does not necessarily give rise to a sweet
spot owing to the denominator of Eq. (11) and is little relevant
since there is no Zeeman splitting.

Finally, we would like to emphasize that there is generally
no exact sweet spot when there are two or more fluctuators
in the vicinity of the qubit unless symmetries constrain the
matrix G’. Indeed, each fluctuator comes with its own sweet
spots that may not coincide. The sweet lines of two fluctuators
may still intersect at a few sweet points, but the intersection of
23 such lines is usually void. Nevertheless, the sweet spots of
fluctuators located near the same symmetry elements remain
usually close one to each other (e.g., the sweet spots of charge
traps located under the same gate, as illustrated in Appendix).
The existence of reliable “quasi”’-sweet spots with improved
performance thus depends on material- and device-specific
conditions such as the nature of the dominant noise and the
broadness of the sweet features (with respect to the magnetic
field orientation and bias voltages). This will be discussed in
more detail for Ge/GeSi devices in Sec. III. In any case, the
above considerations enable a meaningful characterization of
each individual fluctuator, and an analysis of the prospects for
design optimizations aiming to bring the sweet spots as close
as possible to each other in order to maximize the coherence
time.

D. The LSES of the gates as prototypical responses to the noise

The electrostatics of a spin qubit is strongly constrained by
the gate layout. The gates indeed shape the quantum dots, set
the symmetries, and pattern the electric field created by, e.g.,
charge defects. It is, therefore, useful to introduce the LSES
of each gate

0
LSES(G,) = i (20)
Vg,
computed at the working bias point (Vg, being the voltage
on gate G,). These LSES probe the response of the qubit to
representative electrical perturbations with specific symme-

tries. They can be measured experimentally by monitoring the
Larmor frequency as a function of gate voltages, and are thus
very helpful in the exploration of the sweet spots and in the
understanding of spin-orbit coupling in a device [14,27].

The dependence of the dephasing rates on the magnetic
field orientation can even be possibly reconstructed from the
LSES of the N gates. Assuming again 1/ f-like noise with rms
fluctuations V5™ on the different gates, the total dephasing
rate reads as

N
1
3= = =Var | 3" [SVELSES@G)]". @)
2

n=1

Each §VE™ can be fitted to experimental data and must then
be understood as an effective modulation that lumps the con-
tributions from many fluctuators whose electric field shares
close symmetry with that of the gate.* In Ref. [27], the de-
phasing times of a silicon qubit were successfully analyzed
along these lines. The long coherence achieved for a specific
magnetic field orientation was, in particular, explained by the
existence of nearby sweet spots for all gates. The relevance of
Eq. (21) depends on how far gate noise can mimic the main
fluctuators. We further address this question on a Ge/GeSi
spin qubit in Sec. III and in the Appendix. We emphasize
that for 1/f noise I'; is proportional, as are the LSES, to the
magnetic field amplitude B (the LSES must actually be zero
when B = 0 because an electric field can not couple to the
spin if time-reversal symmetry is not broken).

E. Quality factor

To go further, we can characterize the efficiency of single-
qubit gates by the quality factor

Q; = 2T (22)

with fr the Rabi frequency of the qubit. This quality factor
is nothing else than the number of 7 rotations that can be
achieved within the dephasing time 7,". Other metrics, in-
volving for example the Rabi dephasing time T,R*! (relevant
for a continuously driven qubit), or the fidelity of single- and
two-qubit gates may give a more accurate picture of the per-
formances of the device, but require the introduction of extra
device-specific parameters (e.g., the complete noise spectrum)
unsuitable for a general discussion.

Sweet spots may result from an overall decoupling of the
hole and electric fields that comes along with a concomitant
reduction of f, thus (at best) a constant Q5. Such sweet spots
may be used to protect the qubit against dephasing while being
idle [25,28], at the cost of tuning the qubit to a different bias
point for manipulation (if possible). Also, an enhancement
of T,' is a priori always beneficial for two-qubit gates. Yet
the Rabi “hot spots” (maximum fr) of a given gate usually
lie near a dephasing sweet spot (and, in particular, along
the sweet lines) of that gate owing to “reciprocal sweetness
relations” between the longitudinal and transverse response

“Ensemble of fluctuators are actually a prerequisite for 1/f-like
noise; the power spectrum of a single, telegraphic two-level fluctua-
tor is Lorentzian [33,64].
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FIG. 1. Sketch of the device used to simulate a single hole spin
qubit in a GeSi heterostructure. The 16-nm-thick Ge quantum well
(red) is grown on a thick Ge( gSio» buffer and topped with a 50-nm-
thick GeggSig barrier (blue). The dot is shaped by the five Al gates
C/L/R/T/B (gray). They are 20 nm thick and embedded in 5 nm
of Al,O3. The yellow contour is the isodensity surface that encloses
90% of the ground-state hole charge at bias Vo = —40 mV (side gates
grounded). The orientation of the magnetic field B is characterized
by the angles 0 and ¢ in the crystallographic axes setx = [100],y =
[010], and z = [001].

of the spin discussed in Ref. [28]. It is hence possible to
enhance both the dephasing time and the Rabi frequency,
thus to maximize Qj;. Indeed, the Rabi frequency can also be
related to the derivative ¢’ of the g matrix with respect to the
driving gate voltage [6,43,46]:

MBBVac
2hg*

with V,. being the amplitude of the drive. Therefore, whenever
fi is zero because gb is orthogonal to g'b (see Sec. IIC),
these vectors are best oriented for Rabi oscillations. We em-
phasize that Eq. (23) captures the contributions from both the
coupling between the motion and deformation of the dot and
the Zeeman Hamiltonian (the so-called g-tensor modulation
resonance or g-TMR [46]), and the effects of the Rashba-
Dresselhaus SOC [37,43].

fr=

|(gb) x (g'b)

: (23)

III. APPLICATION TO GERMANIUM
HETEROSTRUCTURES

We now apply the above considerations to a hole spin
qubit in a Ge/GeSi heterostructure. We consider the proto-
typical device of Fig. 1, identical to Ref. [37]. It comprises a
16-nm-thick Ge well grown on a Ge gSip, buffer and buried
under a 50-nm-thick GeygSip, barrier. A quantum dot is
shaped in the Ge well by the bias voltages applied to the
top C/L/R/T/B gates. The diameter of the central C gate is
d = 100 nm, and the gates are deposited on (and encapsulated
in) a 5-nm-thick Al, O3 oxide.

We solve Poisson’s equation for the electrostatic potential
of the gates with a finite-volumes method, then compute the

hole wave functions in this potential with a finite-difference
discretization of the four-band Luttinger-Kohn Hamiltonian
[47,48]. The latter describes the heavy holes (HH) and light
holes (LH) manifold and accounts for the effect of the mag-
netic field on the orbital and spin degrees of freedom. We
calculate the g matrix of the ground-state doublet and its
derivatives with respect to the gate voltages along the lines of
Ref. [43], then the Zeeman tensor G = g' g and its derivatives
G =(g)g+g"(&)

We assume a residual in-plane strain &y, = ¢€,, = 0.26%
in the Geg gSig, buffer [37,49]. The biaxial strains in the Ge
well are, therefore, &, = &y, = —0.61% and &, = +0.45%.
We may, additionally, account for the inhomogeneous strains
transferred to the heterostructure by the thermal contraction
of the metal gates upon cooldown. The spatial extent of
these strains is commensurate with the dot and they can give
rise to strong spin-orbit interactions [37]. They are computed
with a finite-elements discretization of the continuum elastic-
ity equations. All material parameters (Luttinger parameters,
elastic constants, etc.) can be found in Ref. [37].

In the following, we discuss the impact of the symmetry of
the dot on the location of the sweet spots. Therefore, we con-
sider two paradigmatic cases: (i) A highly symmetric circular
(CR) quantum dot at bias Vo = —40 mV with all side gates
grounded. The radius of this dot (in homogeneous strains)
is rp = /(%) + (»*) =27 nm. (i) A “squeezed” dot (SQD)
reshaped by side gates biases Vi, = —Vg =2 mV, Vr =95
mV, and Vg = 70 mV. The extensions of this dot are ¢, =
Vv (x2) — (x)2 =23 nm and ¢, = \/(y*) — (y)?> = 14 nm, and
it is shifted from the center of the C gate by (x) = +8 nm
and (y) = —6 nm. The size of the SQD dot is similar in
inhomogeneous strains, but its dot moves further to the right
({(x) = +13 nm) as the potential along the major x axis is
pretty shallow.

We first analyze the g factors of these two dots, then the
structure of the sweet spots.

A. g factors

As discussed in Refs. [36,37], the g factors of a HH quan-
tum dot strongly confined along z = [001] are

~ 2\ 47[.,.2
2 ~ +3g+ —— (Mp2) = 2(p3)) (24a)
~ _ _ 6 2\ 47,2
gy~ g — e (Mp) = Alp). (24b)
27
8: ~ 6Kk + 59~ 2yn + 8¢ (24¢)

Here A = kyy —2muys =~ —12.2 and ) = kyr — 2np00y3 &
—5.3, with k =3.41 and g = 0.06 the isotropic and cubic
Zeeman parameters, y; = 13.38, y» =4.24, and y; = 5.69
the Luttinger parameters of bulk Ge, and Ary &~ 70meV the
HH-LH band gap. y, ~ 2.62 and n, =~ 0.41 are factors that
depend on vertical confinement and describe the action of the
magnetic vector potential on the orbital motion of the holes
[50]. ¢ is a correction of order (p3)/ ALy and (p3)/ Ay [51].
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FIG. 2. The normalized LSES (df1./dV,)/fL, for all gates a € {C,

L, R, T, B}, in circular (CR) and squeezed (SQD) dots with homo-

geneous (HOM) and inhomogeneous (INHOM) strains. The sweet spots are highlighted by the purple lines. A map over half the unit sphere

0 <6 <180° —90° < ¢ < 90° is given in the Supplemental Material

The expectation values of the squared momentum operators
p? and p§ are computed for the ground-state HH envelope.
These expressions account for the effects of the HH-LH mix-
ing by lateral confinement and magnetic field to first order in
1/ApLn. We have assumed (p,py) = (pxp;) = (pyp:) = 0.
The gyromagnetic factors of the HH ground state are
therefore expected to be highly anisotropic, with g, ~ —g, ~
3¢ =0.18, and g ~ 16. In the CR dot, where (p?) = (p3),
HH-LH mixing by magnetic confinement slightly decreases
lgx| and |gy| since A — A" < 0 [52]. We indeed compute g, =
—gy =0.13 and g, = 13.7 in homogeneous strains from the
numerical g matrix of the CR dot (hence to all orders in
1/Arn). The gyromagnetic anisotropy is enhanced in ger-
manium by the large « and the small HH-LH mixings. The
latter are indeed limited by the wide HH-LH band gap Ay
in compressive biaxial strains [36,37,49]. The g factors are
typically much more isotropic in (unstrained) silicon quantum
dots [6,27,41,50]. Squeezing the dot along y shall, according
to Eq. (24), increase g, and decrease g,. We actually get
principal g factors g, = 0.26 and g,» = 0.03 in the SQD dot.
The dot is, therefore, squeezed enough to change the sign of
gy (which has thus a zero at a nearby bias point). The principal
magnetic axes Y ~ x,x’ & yand 7/ & z are, moreover, slightly
rotated by an angle 66 = 0.16° around u ~ x as the dot does

[53].

not occupy a symmetric position any more.> The principal
g factors of the SQD dot are roughly comparable to those
reported in Ref. [14] (although it is not possible to tell whether
gy has actually changed sign in this experiment). The g factors
of the CR and SQD dots are almost the same in inhomoge-
neous as in homogeneous strains, but the principal axes of the
SQD dot rotate around a different axisu ~ (x +y)/ /2. This
results from the action of the shear strains, which enhance
nondiagonal elements in the g matrix [37].

B. Sweet lines

The maps of the normalized LSES (9 f../0V,)/fL are plot-
ted as a function of the orientation of the magnetic field in
Fig. 2, for all gates o € {C, L, R, T, B}, and for the circu-
lar and squeezed dots in homogeneous (HOM) as well as
inhomogeneous (INHOM) strains. As both fi and 9 f/9V,
are proportional to B, this normalized LSES is independent
on the magnetic field strength, and is the relevant quantity

5This results, as for g, and g., in Eq. (27), from the nonseparability
of the in-plane and vertical confinements giving rise to nonzero g,
(pyp:) and gz o< (pxp:) [36].
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when the device is operated at constant Larmor frequency,
as is usually the case. Since Ge spin qubits are typically run
with in-plane magnetic fields (where the hole best decou-
ples from hyperfine noise [17,18,54] and the Rabi frequency
is maximum [36-38]), the normalized LSES is plotted over
the range 80° < 6 < 100°, —90° < ¢ < 90°. The maps over
half the unit sphere 0 < 6 < 180°, —90° < ¢ < 90° can be
found in the Supplemental Material [53]. The other half of the
unit sphere follows from the invariance by the transformation
B — —B.

These maps typically show either no sweet spots or two
sweet lines, whose position is, however, highly dependent on
the symmetry of the devices and on the SOC mechanisms at
work. We analyze these features first for the circular dot, then
for the squeezed dot.

1. Circular dot

The central and side gates act differently on the device.
Noise on the C gate does not break any symmetry and results
in the “breathing” of the dot (modulations of the in-plane ra-
dius r with weaker modulations of the vertical confinement).
Although the electric field created by the C gate is essentially
vertical [36], the dot is actually much more sensitive to the
smaller in-plane component given its large radius ry. Prac-
tically, charge trap fluctuators at the GeSi/Al,O; interface
below the C gate shall induce such a breathing of the dot. The
LSES of the side gates describes, on the other hand, the effects
of lateral electric field fluctuations that break the symmetry of
the dot (only leaving one mirror plane). The maps of the L
and R gates are the same, and differ from those of the B and
T gates by a rotation of 90° around z, as expected from the
device layout.

As shown on Fig. 2, there are no sweet spots with respect
to fluctuations on the C gate, and two sweet lines with respect
to fluctuations on the side gates. The sign of the eigenvalues of
G’ in Table 1 is, therefore, either “(4+, +, —)” or “(—, —, +)”
for the side gates.

As a matter of fact, the high symmetry of the dot constrains
the shape of the matrices g/, = dg/dV, and G, = 9G/dV,
[43]. The Bloch functions of the heavy holes can be mapped
onto the J, = :I:% components of aJ = % angular momentum;

choosing | ) = | + %) and | ) =|— %) as the states with
main J, = :I:% character, respectively, the g matrix reads as in
the principal magnetic axes x, y, z

& 0 0
§=|0 & O (25)
0 0 g

with g, = —g, and g, given (to lowest order in 1/Ary) by
Egs. (24). For the C gate on the one hand, g then takes the
form [36]

g 0 0 8x8, 0 0
ge=10 g 0]=G.=2| 0 gg 0|,
0 0 g 0 0 88,

(26)

while for the left (or right) gate on the other hand,

g/x 0 gxz gxg; 0 %G)/cz
=10 g 0]=G=2[ 0 gg 0|,
g;x 0 g,z %G;x 0 gzé/z
(27

with G, = G, = g.g,, + 8.8, The matrices for the B and
T gates ‘are 31m11ar with instead nonzero g Voo g’,v, and G/ =
G, = &g, + 8:&,,- In the following, we label G, = ZngJX,
G’ = 2gyg’ and G’ = 2g.g. the diagonal elements of the G’
matrices.

The matrix G is purely diagonal, which means that the
C gate modulates the principal g factors but not the principal
magnetic axes. All the diagonal elements of G. take the same
positive sign when the dot breathes in the electric field of
the C gate (G, = G, =0.18V~!, G, = 174.3V~"). There is,
therefore, no sweet spot with respect to fluctuations of the
C gate voltage. In principle, G, may change sign at negative
enough Vo = V¢ 4w, when the increase of the overlap between
the HH and LH envelopes that enhances cubic Rahsba SOC
is compensated by the opening of the HH-LH band gap [24].
This would bring two sweet points along z at Vo = V¢ 4w, then
two sweet lines swirling around z at Vg < V. However,
the vertical electric field needed to reach this sweet spot is
presumably of the order of 20 mV/nm [24,55], far beyond
the maximum ~3 mV/nm that the Ge well can sustain be-
fore the hole gets pulled out by the electric field [36]. We
can therefore conclude that there are no sweet spots with
respect to vertical electric field fluctuations and breathing in
the operational gate voltage range. The normalized LSES of
the C gate is maximal for in-plane magnetic fields because
g./8x and g’y/ gy are particularly sensitive to breathing, as
highlighted by Eqs. (24). Even though G/, = g. ¢/ is the largest
diagonal element of G’, g, actually shows the smallest relative
variations g./g. = G./(2g2). Moreover, g, rapidly dominates
the Zeeman splitting once the magnetic field goes out of plane,
as g;/1gxy| ~ 100. This gives rise to a sharp in-plane peak in
the normalized LSES with full width at half-maximum

-12
G/
5bZ=2(1+g—§—2—z> ~ 2

8x

8z

~0.021, (28)

G
or equivalently §6 =~ 1.2°.
The electric field from a side gate (or a side defect) deforms
the dot and breaks the disk-shape symmetry. As a result, G,
and G| are of opposite sign according to Egs. (24), which
gives rise to two sweet lines crossing the equatorial plane at

four points. For the L and R gates, G, = —0.33V~!, G, =
0.25V~!, and G; = —35.8V~!, so that the sweet lines swirl
around y if G, = 0. Correspondingly, the sweet lines swirl

around x for the B and T gates if G|, = 0. The sweet lines are,
however, tilted by the nonzero G/, hnd G, that track down the
rotations of the principal magnetlc axes [see Egs. (13)]. The
components of b = (by, by, b;) must, for example, fulfill on
the sweet line of the L or R gate:

G.b; + G\b; + G.b? + 2G, bib, = 0. (29)
The cubic Rashba SOC [16,24,56-58] gives rise to nonzero

but opposite g.g,, ~ —g:g,, and g,g}, ~ —g.g,, [36,37], thus
to negligible G|, and G/_. In homogeneous strains, g, and
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gzy essentially result from the coupling between the in-plane
and vertical motions of the hole in the nonseparable potential
of the gates (namely, this potential is not the simple sum
of an homogeneous electric field along z and of a harmonic
confinement along x and y) [36]. The dot thus “rocks” out
of plane while moving in plane, which gives rise to a ro-
tation {x, y, z} — {x/, ¥/, 2’} of the principal magnetic axes
around x (g, # 0) or y (g,, # 0). The effect of this rotation
on the Zeeman splitting is strongly amplified by the large g,
(G}, ~ g8, and G}, ~ g.g. ) because small excursions of the
magnetic field around the principal (x'y’) plane can result in
large variations of g2b2 (with respect to grb% + g3b ~ g ).
The magnitude of G}, and G|, remains, however, 10 times
smaller than |G’|. In inhomogeneous strains, g, and g, pick
an additional contribution from the motion of the hole in the
gradients of shear strains ¢,, and &, that modulate the HH-LH
mixings [37]. G,, = G|, =45.7 V™! then outweigh G, and
G; by two orders of magnitude and are comparable to G.
According to Eq. (29), the sweet lines of the L and R gates
shallbeb L xand b L zin the limit |G},| > |G|, IGyl, |G,
while those of the B and T gates shallbe b Ly and b L z
(at large enough |G/_|). In practice, the sweet lines always
run close to the equatorial plane in inhomogeneous strains
(despite the comparatively large G’) because G, and G, have
no effect when b, = 0 and because |G| (or |G}, |) are much
greater than |G| and |G[|.

As for the C gate, the sensitivity to lateral electric field
fluctuations is stronger near in-plane magnetic fields. The
sharpness of the in-plane features is again a consequence
of the large g./|g. | ratio [36,37], which gives rise to fast
variations of both fi and f{ around b, = 0. In particular, the
LSES rapidly changes sign around the equatorial plane in
inhomogeneous strains as a result of the action of G|, and G_.

Interestingly, ,/|G}./G;| ~ 1 for all side gates, so that their
sweet lines cross the equatorial plane near (but not exactly at)
b = (£x £ y)/+/2, in both homogeneous and inhomogeneous
strains.

2. Squeezed dot

The normalized LSES of the SQD dot are quantitatively
different from those of the CR dot. First of all, the four side
gates now play nonequivalent roles, so that their LSES maps
are not related any more by symmetry operations. Moreover,
squeezing the dot along y (thus increasing ( pg)) increases both
gx and g, according to Egs. (24). In the present case, the dot
is squeezed enough to change the sign of g, (now positive),
hence of G| = 2g,g), (unless g, also changes sign). As a con-
sequence, the R gate map lacks sweet spots in homogeneous
strains (where the effects of the off-diagonal element G/ do
not yet prevail). On the other hand, the C gate map now shows
two sweet lines around &y, but only in inhomogeneous strains
(because g, also changes sign in homogeneous strains®). The
axes of these sweet lines are shifted from y by the shear

strains, which give rise to nonzero G, G;,Z, and jSy even for

5The squeezed dot does not breath homothetically in the x and y
directions and the sign of g, becomes highly dependent on the shift
(y) of the dot with respect to the central axis of the C gate.

the C gate as the squeezed dot has moved with respect to the
symmetry axis of the strains (the z axis). Another consequence
of the change of sign of G/ is that there are most often no
sweet spots in the equatorial plane any more: the sweet lines
do not cross that plane and run slightly above or below.

The magnitude of the normalized LSES looks much larger
in the SQD than in the CR dot, especially around y (except for
the C gate in inhomogeneous strains). Indeed, the denomina-
tor of the normalized LSES is o(g*)? and is thus very small
along that direction in the SQD dot (namely, a given g, results
in much larger relative variations of the Larmor frequency in
the SQD than in the CR dot). The raw LSES (at constant field)
stand on more comparable scales (see Supplemental Material
[53]). Those of the L and R gates are actually larger in the
SQD than in the CR dot, while those of the T and B gates are
smaller because the SQD dot is more responsive to electric
fields along its major than along its minor axis. Nonetheless,
the LSES of the CR and SQD dots are qualitatively similar in
inhomogeneous strains where the physics is dominated by the
large G/, and G, brought by the shear strains &, and &,..

3. Discussion

The above analysis demonstrates how the LSES of the
gates highlight general properties of the dephasing rates and
electrical sweet spots of Ge/GeSi spin qubits. First of all, the
LSES of all gates show strong variations near the equatorial
plane owing to the large ratio between g, and g, ,, which
reverses the balance between the oB, , and o<B, components
of the Zeeman splitting over a degree around that plane.
Moreover, any change of the shape of the hole wave function
results in large relative variations of the small g, and g,, which
are strongly dependent on the orbital motion of the holes [the
o1/ Arg correction in Egs. (24)]. The normalized LSES of the
C gate peaks within the equatorial plane and usually shows
no exploitable sweet spots. This underlines that the dot can
hardly be protected against breathing in a noisy environment,
as |g.| and |g,| then show similar variations. On the other
hand, the LSES of the side gates, which describe the response
to lateral electric fields, typically shows sweet lines crossing
the equatorial plane as |g,| and |g,| vary in opposite ways
(unless the dot is squeezed enough to change the sign of one
in-plane g factor). In inhomogeneous cooldown strains, the
fluctuations of the Zeeman splitting are ruled by the motion
of the dot in the shear strains, which give rise to rotations
of the principal magnetic axes. The effects of these rotations
are again amplified by the large |g./g, | ratio. In that regime,
the LSESs of the side gates are qualitatively less dependent
on the symmetry of the dot. They show sweet lines running
very close to the equatorial plane 6 = 90°; however, these
features are very sharp and enclosed between nearby “hot”
lines where the absolute LSES gets maximum. As an example,
the splitting between the two hot spots on either side of the
sweet line in the (xz) plane (¢ = 0) of Figs. 2(g) and 2(k) is

8x
8z
or 860 ~ 1.17°. This splitting is, like Eq. (28), limited by the
small |g,/g.|, which squeezes sweet and hot features within a
very narrow angular range.

g, 2
8b, ~ 2 1+ (—) ~ 0.020 (30)

X
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These clusters of sweet and hot spots practically call for a
very accurate alignment of the magnetic field. Moreover, there
are no common sweet spots between the different side gates,
which further complicates the engineering of dephasing times.
The variations of the LSES shall be much smoother in systems
with more homogeneous principal g factors such as silicon
[27] or light-hole [59] quantum dots. This shall provide in
principle more opportunities for design optimizations aimed
at bringing the sweet spots as close as possible to maximize
dephasing times, as discussed in Ref. [27].

The above analysis also shows that the LSES of the gates
can convey a lot of information about the spin-orbit coupling
mechanisms prevailing in the device, in lieu of or in comple-
ment with the measurement of the Rabi frequencies of the
same gates [60]. The measurement of the LSES is, more-
over, easier in principle than the measurement of the Rabi
frequencies. The main characteristics of the LSES computed
in this work are compatible with the experimental findings of
Ref. [14]. Yet the LSESs of the side gates of Ref. [14] reveal
additional rotations of the principal magnetic axes in the (xy)
plane (evidenced by a large G, ). These rotations result most
likely from the motion of the dot in the nonseparable in-plane
potential or shear strains &,, [37,50], whose effects are en-
hanced by the lower symmetry of the gate layout.

In the Appendix, we show that the LSESs of the gates
reproduce the main features of the LSESs of individual charge
traps at the GeSi/Al,O3 interface. We further discuss how far
the LSESs of the gates provide a comprehensive description of
the response to electrical and charge noise. In the following,
we address the total dephasing rate and quality factors in a
simple approximation.

C. Dephasing times and quality factors

Our purpose is to draw general (rather than device-specific)
conclusions about dephasing times and quality factors in
Ge/GeSi spin qubits. We hence assume as a simple but
illustrative example that dephasing is dominated by direct
electrical noise on the gates and by the exchange of carriers
between the gates and traps in the oxide below [33]. We also
consider isotopically purified materials and discard hyperfine
interactions. In these assumptions, the LSES of the gates shall
provide a reasonable description of the response of the qubit
(see Appendix). We thus estimate the total dephasing rate
I'; with Eq. (21), assuming 1/f-like noise with the same
V™ =10 uV on all gates. I'; is hence directly proportional
to V™ and f; .

The maps of the resulting I'; are plotted around the equa-
torial plane in Fig. 3, for the CR and SQD devices in both
homogeneous and inhomogeneous strains. These maps are
calculated at constant Larmor frequency fi, = SGHz (maps
on the half unit sphere are also provided in the Supplemental
Material [53]). We recover on these plots the main features
highlighted on the LSES of the single gates. The dephas-
ing rate of the circular dot in homogeneous strains peaks in
the equatorial plane; yet it shows local optima in that plane
near ¢ = £45° that are the fingerprints of the sweet spots
of the side gates. These features may not, however, survive
if the in-plane electric field noise is more “isotropic” (not
specifically oriented along the gate axes, see Appendix). In
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FIG. 3. Total dephasing rate I'; (MHz) at constant Larmor fre-
quency fi = 5GHz in circular (CR) and squeezed (SQD) dots with
homogeneous (HOM) and inhomogeneous (INHOM) strains. I'} is
computed with Eq. (21) assuming the same §V™ = 10 uV on all
gates.

inhomogeneous strains, the dephasing peak gets broader, but
is split by a thin dip in the equatorial plane as a result of the
structure of the LSES of the side gates, with sweet lines run-
ning close to (and crossing) that plane flanked by two peaks.
The dephasing rate of the squeezed dot also shows a broad
peak around the equatorial plane, and is maximum near B || y
(essentially because the magnetic field must be raised there to
keep the Larmor frequency constant). There is no particular
structure standing out from I'; in homogeneous strains as the
sweet lines of the different gates are too far apart. However,
a faint dip does appear on the bottom side of the main peak
in inhomogeneous strains as a result of the interplay between
the different sweet lines running close to the equatorial plane.
Despite very different LSES, the total dephasing rates remain
comparable in homogeneous and inhomogeneous strains.
Finally, we plot on Fig. 4 the Rabi frequencies fr and
quality factors Q5 = 2frT," achieved in all four cases when
driving the L gate with an AC signal Vi (1) = V. sin(2x fL.1).
The Rabi frequencies are computed for Ve =1 mV and
at constant Larmor frequency fi = SGHz. The quality fac-
tors are actually independent on f; and are proportional
to Vi /8V™ since fi o VocB but T, o 1/(6V™B) for 1/f
noise. The Rabi frequencies peak in plane owing to the spin-
orbit coupling mechanisms at work and to the large g./|gx |
ratio that leads to a strong increase of fr & B around the
equatorial plane [36,37]. The Rabi oscillations for in-plane
magnetic fields essentially result from the same mechanisms
as the LSES, which couple the motion of the dot to the
Zeeman Hamiltonian of the hole and promote g-TMR [46].
For the circular dot in homogeneous strain, they are primarily
driven by the deformations of the dot in the inhomogeneous
AC electric field of the L gate, which give rise to nonzero
g, and g and to the two peaks at ¢ ~ £45° [36]. Owing to
the reciprocal sweetness relations discussed in Sec. I E, these
Rabi “hot spots” lie close to the sweet lines of the left gate [see
Fig. 2(e)]. This remains true in inhomogeneous strains, even
though the Rabi oscillations are now primarily driven by the
motion of the dot in the shear strains ¢, (resulting in nonzero
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FIG. 4. (a)-(d) Rabi frequencies fr and (e)—(h) quality factor Q3 = 2fr T, when driving with the L gate, for circular (CR) and squeezed
(SQD) dots in homogeneous (HOM) and inhomogeneous (INHOM) strains. The Rabi frequencies are calculated at constant Larmor frequency
fL = 5GHz, and the amplitude of the AC signal on the L gate is V,. = 1 mV.

&) [37]. The small oscillations of the principal magnetic axes
are indeed converted in an efficient g-tensor modulation by the
large g.. In the squeezed dot, the maximum Rabi frequencies
are shifted toward the y axis. This results from the small
8y, which again leads to a strong enhancement of fg o< B at
constant Larmor frequency. While squeezing the dot gives rise
to the emergence of linear Rashba spin-orbit interactions [39],
they remain too small to help spin manipulation. Driving with
the C gate is also possible, but usually slower (see Supple-
mental Material [53]) [29,37]; the Rabi frequency maps are
similar (up to a rotation) for the R/T/B gates in the circular
dot, but the T and B gates are less efficient in the squeezed dot
that is little polarizable along its minor axis y.

The quality factor Q} also peaks near the equatorial plane,
even though both fr and I'; decrease out of this plane. This
can be understood from the dependence of fr on b, as given
by Eq. (23) with Eq. (27) for g; . For magnetic fields in the
(xz) plane, for example,

1 / / / /
fr g—*|<gzgx — 8:8)bib, + g8 b2 — g.8.b2|. (3D

Therefore, fr o |g,.b:| atlarge |b;| > |b,|, while 'S o |g.b.|
with (g,)? the average (gz)2 of all gates, so that Q5 o |g/./Z.|.
Whereas g, picks a significant contribution from the defor-
mation of the wave function, g’)CZ exclusively results from
cubic Rashba SOC [36] in homogeneous strains. The lat-
ter is, however, little efficient at low vertical electric fields
[24,57,58], and thus Qj is small at large b,. This means that
the Larmor vector 2 = gB gets locked on the z axis and shows
stronger longitudinal (LSES) than transverse (Rabi) suscep-
tibility. The situation is more favorable in inhomogeneous
strains, which give rise to a linear Rashba contribution to g’xZ
that enhances the out-of-plane Rabi frequencies and quality
factors [37]. In homogeneous strains, the best quality factors
are achieved along two lines running slightly above and below
the equatorial plane as a result of the competition between

faster Rabi oscillations but also larger dephasing rates when
approaching that plane. In inhomogeneous strains, these lines
merge because the large g/, and g} brought by shear strains
make purely transverse contributions when b, = 0 (that is,
give rise to fast Rabi oscillations but do not contribute to the
LSES). This is also why the maximal in-plane quality factors
are typically larger in inhomogeneous than in homogeneous
strains [37]. This in-plane feature is, however, very thin as the
same g, and g’zy start to make large longitudinal contributions
(described by G, and G’yz) once the magnetic field goes out
of plane. It is also slightly shifted away from the equatorial
plane in the squeezed dot owing to the small rotation of the
principal axes preexisting in the undriven dot. The Rabi hot
spots and dephasing sweet spots near ¢ ~ +45° are clearly
visible in homogeneous strains.

These data suggest that the optimal point operation of
Ge/GeSi hole spin qubits shall be sought in or near the equa-
torial plane, but is expected to be very sharp. This may give
rise to a large variability that will complicate the management
of arrays of spin qubits, especially when the principal axes
get misaligned by electric fields (deforming the dots) and
strains [61], and/or when the dominant source of noise differs
from device to device. Although hole spin qubits are highly
tunable in principle, there are practically limited margins for
adjustment as the same gates are used to confine the holes and
drive one- as well as two-qubit operations. It can, therefore,
be difficult to find a single magnetic field orientation that will
be suitable for all qubits (e.g., where the performance metrics
are at least half of the optimum). In Ge/SiGe heterostruc-
tures, out-of-plane quality factors may still be significant (and
more uniform) in inhomogeneous strains, at the price of a
much slower manipulation. More generally, the management
of sweet spots in large arrays of qubits shall be easier in mate-
rials with more homogeneous g factors, such as silicon, where
the sweet features are expected broader [27]. However, holes
at the Si/Si0O, interface suffer from stronger scattering by
the charged defects in the amorphous SiO; [29]. The g-factor
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anisotropy in Ge/SiGe may also be alleviated by materials
and device engineering, using, e.g., uniaxial stressors to in-
crease |ex, — &y (thus |gy + gy]) [37] or, on the opposite,
working with weakly strained Ge wells to enhance the HH-LH
mixing.

IV. CONCLUSIONS

We have investigated the dephasing times and sweet spots
of a spin-orbit qubit electrically coupled to a fluctuator. For
that purpose, we have characterized the Larmor frequency
fL = upvBTGB/h of this qubit by a Zeeman tensor G, and
the coupling to the fluctuator by its derivative G’ with respect
to the fluctuating field. We have shown that the geometri-
cal nature of the sweet spots on the unit sphere describing
the magnetic field orientation depends on the sign of the
eigenvalues of G'. In most cases, the sweet spots of a sin-
gle fluctuator draw a couple of lines on this sphere (rather
than simple points), which affords more opportunities for
optimal operation of the qubit. We have also discussed how
the measurement of the derivatives G’ with respect to gate
voltages gives valuable insights into spin-orbit coupling, and
provides a meaningful characterization of the sensitivity of the
device to electrical and charge noise. We have then applied
this framework to a model hole spin qubit in a Ge/GeSi
heterostructure. We have analyzed the arrangement of the
sweet lines of the different gates, and their relations with
the physics of the device (spin-orbit coupling mechanisms at
work, symmetry of the dot, gyromagnetic factors anisotropy,
etc.). The sweet structures in Ge/GeSi heterostructures appear
very thin owing to the strong anisotropy of the g factors, which
calls for a careful alignment of the magnetic field and may be
a significant source of device-to-device variability in arrays
of spin qubits. The engineering of sweet spots and dephasing
times shall be easier in materials with a smaller anisotropy,
thus broader sweet features. This work actually provides the
tools to explore the relevance of design optimizations aiming
at extending coherence. Finally, we would like to point out
that the g-matrix formalism used in this work to compute
Rabi frequencies and dephasing rates is not only a powerful
tool for single qubits, but finds natural extensions to two-qubit
systems, as illustrated in Ref. [62].
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APPENDIX: LSES OF CHARGE TRAPS
AT THE GeSi/Al,O; INTERFACES

In this Appendix, we discuss how far the LSES of the gates
provides a faithful description of the response of the quantum
dot to noise. For that purpose, we compute the normalized
LSES of single charge traps at the GeSi/Al,O; interface,

defined as

a1
I _ 0)— fi(—1
70 9g 0 [fL(0) — fL(=1)]

=1_g(_1), (AD)
g (0)

where fi (¢q) and g*(g) are the Larmor frequency and gyro-
magnetic factor when the trap holds a charge g. We consider
negative charge traps, but the results are similar for positive
ones. If we model charge capture or release as a random
telegraph noise with switching rate v, [33], the coherence
decays with an exponential envelope exp(—I'5t) [44,63,64],
where

T %)2 (A2)

I=v|l—-Re/l—|—
: l <Vt dq
In the limit v, 3> 7 dfi./0q, namely, when the charge fluctu-
ator is fast with respect to the Larmor frequency shift, this
expression simplifies to

% T 2 < d f L )2
N~ —=).
AV V7]
The dephasing rate then decreases as 1/v, as the Larmor
frequency behaves as a Gaussian random variable whose fluc-
tuations progressively average out on timescale (3 f/dg)~".
On the other hand, in the opposite limit v, < 7d fr./dq (slow
fluctuator), I'; gets upper bounded by v; because dephasing
can not be faster than the average time between two switches
of the trap. We emphasize that the Gaussian (fast fluctuator)
regime always holds around the sweet spots of a given trap. I';
scales as B? in this regime, as expected from Bloch-Redfield
theory [which reproduces Eq. (A3)] [44]. The transition to
1/ f-like noise is believed to result from the interplay between
many traps with switching rates v distributed as 1/v; [64].

The LSESs of traps located at six different positions are
plotted on Fig. 5 for the circular dot in homogeneous strains.
The LSES of trap 0, located along the axis of the C gate,
and the LSES of traps 1 and 5, located along the axes of
the L and T gates, resemble those of the corresponding gate
in Fig. 2. They feature approximately the same sweet lines
with two sweet points near ¢ = £45° in the equatorial plane.
The LSES of traps 2, 3, and 4, which occupy less symmetric
positions around the dot, are qualitatively similar to that of
trap 1, but appear rotated by the same angle as their radius
vector makes with y. The sweet points in the equatorial plane
are, in particular, shifted away from ¢ ~ +£45°. Although this
could be expected from the high symmetry of the quantum
dot, similar conclusions hold for the squeezed dot (in both
homogeneous and inhomogeneous strains): the LSESs of the
impurities resemble those of the gates but are rotated accord-
ing to the impurity position around the dot.

This underlines that the LSES of the gates may, practically,
not be able to probe all relevant perturbations. In particular,
none of the gates can give rise to (and probe) a large G, in
the present layout. If the most limiting charge fluctuator(s)
are located below the gates (where they can easily exchange
carriers with the latter) [33], then the LSES of the gates shall
capture the most important features of the dephasing rates.

(A3)
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FIG. 5. (b)—(g) LSES of single traps at the different locations displayed in (a), for the CR dot in homogeneous strains. The LSES of single

traps is defined by Eq. (A1).

If, on the contrary, the most limiting fluctuator(s) are located
between the gates (where they are presumably slower, but
unscreened), the dephasing rates may appear rotated by 45°
with respect to the LSES of the gates. The orientation of the
minimum in-plane dephasing rate is typically orthogonal to
the dominant electric field noise. However, for a broad dis-
tribution of traps without strongly dominant fluctuator(s), the
angular dependence of Figs. 5(b)-5(f) will likely be averaged
out, so that the dephasing rates shall look like Fig. 5(b) (or
equivalently like the LSES of the C gate).

In the Supplemental Material of Ref. [37], we have dis-
cussed the LSES of the circular dot with respect to joint

gate voltage modulations §Vg = —&VL.. Such modulations in-
deed break exactly the same symmetries as a homogeneous
in-plane electric field oriented along x, a standard test per-
turbation in simple models for quantum dot spin qubits. This
LSES is nothing else than the sum of Figs. 2(e) and 2(i)
or 2(g) and 2(k). It shows two sweet lines b, = 0 (in-plane
magnetic fields) and b, = 0, because g, = gy =g, =0 for
perturbations with this symmetry [36,43]. However, such joint
modulations seem little representative of the actual noise in
real devices with uncorrelated charge fluctuators all around
the qubits. We have, therefore, discarded joint modulations in
this study.
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