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Thermoelectric performance of nanojunctions subjected to microwave-driven spin-orbit coupling
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Coherent charge and heat transport through periodically driven nanodevices provide a platform for studying
thermoelectric effects on the nanoscale. Here we study a junction composed of a quantum dot connected to two
fermionic terminals by two weak links. An AC electric field induces time-dependent spin-orbit interaction in the
weak links. We show that this setup supports DC charge and heat currents and that thermoelectric performance
can be improved, as reflected by the effect of the spin-orbit coupling on the Seebeck coefficient and the electronic
thermal conductance. Our analysis is based on the nonequilibrium Keldysh Green’s function formalism in the
time domain and reveals an interesting distribution of the power supply from the AC source among the various
components of the device.
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I. INTRODUCTION

The interrelation between particle and energy currents is
one of the main issues of quantum thermoelectrics [1–3],
in particular in devices based on charge carriers. In those,
the energy dependence of electronic transport is crucial for
efficient thermoelectric performance. For this reason, exper-
imental studies focus on measurements of the Seebeck (or
Peltier) effect, for instance in molecular junctions [4], or in
quantum-dot heat engines [5] (a large Seebeck coefficient
enhances the thermoelectric efficiency). There are also mea-
surements of the thermal conductance of a single-molecule
junction [6] (smaller thermal conductances favor higher fig-
ures of merit). Other experimental setups aimed at studying
thermoelectric properties of single-atom heat engines realized
on a calcium ion in a tapered ion trap [7], of devices based
on Kondo resonances in quantum dots [8,9], and on a quan-
tum dot embedded into a semiconductor nanowire [10]. A
quantum heat engine was also constructed by an ensemble of
nitrogen-vacancy centers in diamond [11].

The quest for improved performance of thermoelec-
tric electronic devices is an ongoing endeavor (see, e.g.,
Refs. [12–16] and references therein). In a seminal paper,
Mahan and Sofo [17] proposed that high thermoelectric ef-
ficiencies of a two-terminal electronic device are obtained
when the energy-dependent conductance has a sharp structure.
A very interesting structure of the thermopower has been
found in an interacting multilevel quantum dot coupled to two
electronic reservoirs [18]. Reference [19] presented an early,
ingenious way to cool a finite two-dimensional electron gas
(which plays the role of the thermal bath) at low temperatures
by elastic electron transitions to and from the leads. However,
it has been found that quantum mechanics places an upper
bound on both power output and efficiency at any finite power
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[20]. Recall that usual heat engines reach the Carnot limit for
reversible processes, i.e., at zero entropy production, and then
they produce vanishingly small outpower. This convention
was recently defined in Ref. [21], which obtained efficiencies
higher than the Carnot limit with periodically driven chiral
conductors. The surprising result hinges upon using a chiral
(i.e., topological) conductor, which allows electrons moving
in it to sense the effect of an AC external field depending on
their direction of motion. Upon averaging over a single cycle
of the AC field, no net input power is supplied to a heat engine
based on topological conductors. This idea may be related
to Thouless’s paper [22], which showed that a slow periodic
variation of the potential landscape can yield quantized and
nondissipative particle transport in unbiased junctions.

In recent studies of quantum thermodynamics the classical
thermodynamic cycle is replaced by an AC time-dependent
external driving [23–26], in particular, periodic modulations
of the shape of quantum dots or of the potential landscape
of mesoscopic junctions which turns the coherent electronic
transport inelastic [27–32]. The time-dependent variation can
be assigned to the baths, i.e., to the chemical potentials of the
terminals or to their (different) temperatures [33,34], or to the
coherent quantum system (“working substance”) [27]. In this
paper, we consider a quantum dot coupled to two electronic
baths by two weak links in which a spin-orbit interaction is
induced by an external AC electric field. It is well known
that the Rashba interaction [35] can be tuned electrostatically
[36–38]. We propose that making this interaction vary period-
ically with time lends it added value. Put differently, imposing
a periodically varying time-dependent spin-orbit coupling on
a nanostructure thermoelectric device offers another means of
enhancing its performance.

The specific setup we have in mind is depicted in Fig. 1(a):
a single-level (of energy εd ) quantum dot, coupled to two
fermionic reservoirs by spin-orbit active weak links. Had
this spin-orbit coupling been static, it would have had (al-
most) no effect on time-independent electronic (charge and
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FIG. 1. (a) Schematic plot of the model system: a single-level
(of energy εd ) quantum dot is attached by two weak links (of lengths
dL,R) lying along x̂ with two electrons’ baths, denoted L and R. An
electric AC field Uz(t ) along ẑ, the amplitude of which oscillates with
frequency �, induces a Rashba spin-orbit interaction in the links. The
two fermionic terminals are held at different temperatures (TL,R) and
different chemical potentials (μL,R). (b) Upon averaging the charge
and energy fluxes over a period of the AC field, the AC field supplies
the power PL,R to the left (right) terminals.

energy) transport, because spin-orbit interaction preserves
time-reversal symmetry [39]: a static spin-orbit coupling,
which results in a unitary evolution of the spinor wave
function, does not modify the DC transport. However, time-
reversal symmetry is destroyed by time dependence: due to
the Aharonov-Casher effect [40], the tunneling amplitudes on
the weak links attain time-dependent phase factors [41,42],
which are unitary matrices (in spin space) [45].

The Aharonov-Casher phase factor dominating the weak
links in Fig. 1(a) is derived as follows. The Rashba interac-
tion in the weak links is induced by external electric fields,
which can be polarized in various ways. Here we focus on the
simplest configuration of an oscillating (with frequency �)
longitudinal field, Uz(t ), polarized along ẑ. In that case, the
spin-orbit interaction appearing in the weak link is governed
by the Rashba Hamiltonian

HSO(t ) = kSO

m∗ cos(�t )ẑ · σ × k, (1)

where the components of σ are the Pauli matrices, the spin
precession wave vector kSO measures the spin-orbit coupling
strength (in momentum or inverse length units, using h̄ = 1)
induced by the AC field, m∗ is the electron’s effective mass
in the weak link, and k = x̂k is the electron’s wave vector.
Adding the Hamiltonian of a free electron, H0 = k2/(2m∗),
the propagator along the left (right) link [43,44] acquires

Aharonov-Casher phase factors [40], exp[iϕL(R)(t )]:

exp[iϕL(t )] = eikSOdL cos(�t )x̂×ẑ·σ = e−ikSOdL cos(�t )σy ,

exp[iϕR(t )] = eikSOdR cos(�t )ẑ×x̂·σ = eikSOdR cos(�t )σy , (2)

which are unitary matrices in spin space [45].
The Aharonov-Casher phase factors are incorporated into

the tunneling Hamiltonian pertaining to the weak links con-
necting the quantum dot with the electrons’ baths:

Htun(t ) = JL

∑
k

c†
k exp[iϕL(t )]cd

+ JR

∑
p

c†
p exp[iϕR(t )]cd + H.c., (3)

where JL (JR) is the bare (i.e., in the absence of the spin-orbit
coupling) tunneling amplitude in the left (right) weak link.
Here, the spinor c†

k(p) = [c†
k(p)↑ c†

k(p)↓] creates an electron
with wave vector k (p) in the left (right) electrode, and cd =
[
cd↑
cd↓

] is the annihilation spinor of an electron on the dot. The

Hamiltonian describing the entire junction is

H = εd c†
d cd +Htun(t )

+
∑

k

εkc†
kck +

∑
p

εpc†
pcp. (4)

Though the Hamiltonian (4) is quadratic in the spinor oper-
ators, it turns out that the combination of time dependence
and spin-flip terms renders the calculation (in particular, the
energy fluxes) a rather complicated technical task. We, there-
fore, assume for simplicity that the spin-orbit interaction has a
negligible effect on the electronic baths (terminals): although
the tunneling is time dependent, the leads stay at thermal
equilibrium, and their respective Fermi distributions

fL(R)(εk(p) ) =[e(εk(p)−μL(R) )/kBTL(R) + 1]−1 (5)

are characterized by the temperatures TL(R) and chemical
potentials μL(R).

Interesting aspects of the time-dependent particle and en-
ergy fluxes associated with the fermionic terminals concern
the interrelation between the two. In a static two-terminal de-
vice described by a time-independent Hamiltonian, the energy
flux associated with a terminal is just the (energy-resolved)
particle flux there, with the extra power of energy in the
resulting integration. We find in Appendix C that this is not
the case when the Hamiltonian is time dependent (and hence
we differ from, e.g., Ref. [46]). Another point concerns the
separation of the total energy flux into several contributions.
We adopt the straightforward picture of assigning an energy
flux to each element in the Hamiltonian (4); see Sec. II. The
literature, however, offers other options, e.g., conveniently
distributing evenly the energy supplied to the junction from
the AC field among the dot and the links [25]. This again does
not agree with our results.

Our paper is constructed as follows. After introducing
in Sec. II the definitions of the time-dependent particle
and energy fluxes flowing in the junction, we present
(in Appendix A) explicit expressions for the Keldysh
Green’s functions needed in our derivations. Using those we
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examine in Appendix B the sum rules obeyed by the fluxes.
The complete time dependence of these fluxes is worked out in
Appendix C. We use the Keldysh technique of nonequilibrium
Green’s functions [47] combined with Langreth’s rules [48],
within the approximation termed “wide-band limit” [49,50],
which is applied to the fermionic terminals. Essentially in the
wide-band limit the width of the energy band characterizing
the electrons’ baths, rather than its structure, is the important
feature. The main assumption is that the density of states in
the terminals, NL(R), is uniform across the band, namely, it
is assumed that the transport takes place around the common
chemical potential of the two terminals. While this assump-
tion does not cause any harm in calculating the particle flux,
it introduces diverging terms when it comes to the energy
fluxes; however, we demonstrate that these harmful terms are
canceled. These divergencies were noticed in Ref. [25] but
apparently the authors were not aware of their cancellation.

The complete time dependencies of the fluxes in our junc-
tion, presented in Appendix C1, are of use in exploring other
properties of the junction, for instance, various noise spec-
tra. Here, however, we study the particle, energy, and heat
currents, time averaged over one driving period of the os-
cillating field (see Appendix C2). In addition, we confine
ourselves to the regime of weak spin-orbit coupling, assuming
that the spin-orbit coupling kSO rotates the electron spin as it
moves along the weak link (of length d) by a small amount,
i.e., the (dimensionless) quantity kSOd is smaller than 1 (see
detailed numerical estimates at the end of this section and
Ref. [45]). In addition, we present results expanded to second
order in the frequency �, namely, the AC field oscillates very
slowly (see Appendix C2 and estimates below). Technically,
the expansion turns out to be in powers of the dimensionless
�/(εd − μ), multiplied by dimensionless integrals, so that we
need � � (εd − μ), but it is safer to assume that � is smaller
than all the other energy scales in the problem.

We show in Sec. III A that the junction supports a photo-
voltaic effect [42]: When mirror symmetry is broken (which
happens for dL �= dR, i.e., unequal lengths of the weak links)
there appear DC charge and energy currents. The origin of
this photovoltaic effect lies in the different ways inelastic
processes modify the reflection of electrons from the junction
back into the two terminals, which leads to uncompensated
DC transport. The effect, which is even in the AC frequency
� and the spin-orbit coupling parameter kSO, can be detected
by measuring the voltage drop or temperature gradient built
up due to those DC currents. In the present paper, however,
we confine ourselves to the more traditional picture of energy
and charge currents driven by chemical and temperature dif-
ferences [see Fig. 1(a)], and assume for simplicity weak links
of equal length, dL = dR ≡ d/2. This assumption (in addition
to the limits of a slow AC frequency and small spin-orbit
coupling mentioned above) allows us to display the effect of
both the electric-field frequency � and the spin-orbit coupling
kSO in terms of a single parameter (the dimensions of which
are energy squared using h̄ = 1):

KSO = (�kSOd/4)2. (6)

Section III B presents the charge and heat currents in
the linear-response regime, obtained by expanding the Fermi
function to linear order in the chemical potential and

FIG. 2. The Seebeck coefficient (in units of kB/|e|), Eq. (34).
The solid (blue) curves are obtained by calculating the integrals I (�)

n

numerically, for β� = 0.2 and KSO/(εd − μ)2 = 1/16 (thick lines)
or KSO = 0 (thin lines) [42]. In each case, the other two curves are
the approximations of the integrals discussed in Appendix D: dashed
(red) line, low-temperature approximation; dash-dotted (black) line,
high-temperature approximation.

temperature differences. From these expressions, one obtains
the thermoelectric coefficients, the Seebeck coefficient S,
and the electronic thermal conductance κe, Figs. 2 and 3.
These figures also contain results of two approximations, ex-
plained in Appendix D. These approximations are limited to
low or high temperatures, and they differ significantly from
the full numerical calculations. In the figures, S and κe are
drawn versus the dimensionless variable β(εd − μ), where
β = 1/(kBT ), μ is the common chemical potential of the
leads, and εd is the single level on the dot. The assumption of
a single level requires that β(εd − μ) � 1, and in that region
both S and κe are enhanced by the spin-orbit interaction. There
are intermediate regions where one (or both) decreases.

Interestingly, we find that the averaged power supplied by
the AC field appears in the heat currents emerging from the
left and right terminals [see Fig. 1(b) and Sec. III], while not
affecting the energy fluxes in the weak links (which vanish
upon being averaged over a period of the AC field). In this
respect, the results of our analysis differ from previous ones,

FIG. 3. Same as Fig. 2, for κe, the electronic thermal conductance
(divided by the amplitude 4�L�R/π ).
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e.g., Refs. [21,27]. This difference seems to be crucial when it
comes to the precise definitions of efficiencies, as discussed in
Sec. III C, where the conditions on the junction to operate as a
heat engine or as a heat pump are analyzed. The power supply
which forms a part of the heat flux involved with each terminal
is (to leading order) not affected by βL − βR or μR − μL, i.e.,
by the thermoelectric driving forces (see Fig. 1). It follows
that the heat flux of each terminal includes a term independent
of the driving forces. This power term modifies the working
conditions of the junction and confines the possible range of
the driving forces.

Estimates for the magnitude of the Rashba parameter
kSOd which determines the Aharonov-Casher phase factors,
Eqs. (2), can be extracted from the literature. For instance,
for a spin-orbit active weak link in the form of an InAs
nanowire, one may adopt the value kSO = 100 nm−1 mea-
sured in Ref. [51]. A wire length of d = 100 nm would then
give kSOd = 1. For a distance of 200 nm between the side
gates supplying the electric field [51], a microwave-generated
amplitude of 1 V on the side gate [see Fig. 1(a)] would
produce a transverse electric-field amplitude of 50 kV/cm
in the wires, corresponding to a Rashba parameter αR =
h̄2kSO/m∗ ≈ 50 meV Å [52], and, using for the effective mass
m∗ = 0.023me, a Rashba coupling kSO ≈ 20 × 10−3 nm−1

appears in the weak links. With dL ≈ dR ≈ 250 nm one finds
kSOd/2 ≈ 0.5. We choose the microwave frequency to be
2π × 100 GHz so that h̄� ≈ 0.4 meV, which is smaller than
the energy level on the dot [53], εd − μ ≈ 1 meV [μ = (μL +
μR)/2 is the common chemical potential of the junction], so
that KSO/(εd − μ)2 ≈ 1/16.

II. PARTICLE AND ENERGY FLUXES

The time-dependent particle flux associated with the left
electrons’ bath is [54]

ṄL(t ) ≡ d

dt

∑
k

〈c†
k(t )ck(t )〉, (7)

where the angular brackets indicate a quantum average. Ex-
ploiting the Hamiltonian (4) to calculate the time derivative,
one finds

ṄL(t ) = JL

∑
k

Tr{e−iϕL (t )G<
kd (t, t ) − G<

dk(t, t )eiϕL (t )}, (8)

where G<
kd is the lesser Green’s function, e.g.,

G<
kσ,dσ ′ (t, t ′) = i〈c†

dσ ′ (t ′)ckσ (t )〉, (9)

with an analogous expression for G<
dk [55,56]. (The Green’s

functions are matrices in spin space.) The particle flux associ-
ated with the right bath is obtained from Eq. (8) by replacing
L with R and k with p. This scheme (of interchanging L
with R and k with p) pertains to all other fluxes and Green’s
functions encountered below, the derivation of which is given
in Appendix A.

The particle flux associated with the dot is

Ṅd = −iTr{dG<
dd (t, t )/dt}. (10)

We show in Appendix B that

ṄL(t ) + ṄR(t ) + Ṅd (t ) = 0, (11)

i.e., charge is conserved.
The energy flux associated with the dot is obviously

Ėd (t ) = εd Ṅd (t ), (12)

where the particle flux of the dot, Ṅd (t ), is given in Eq. (10).
The energy flux associated with the left reservoir, ĖL(t ),

ĖL(t ) ≡ d

dt

∑
k

εk〈c†
k(t )ck(t )〉, (13)

is derived along the same steps used to obtain ṄL(t ), with the
only (and very crucial) difference that the sum over the wave
vector k contains the energy εk:

ĖL(t ) = JL

∑
k

εkTr{e−iϕL (t )G<
kd (t, t ) − G<

dk(t, t )eiϕL (t )}.

(14)

Finally, the energy flux associated with the left weak link,
ĖL,tun(t ), is

ĖL,tun(t ) ≡ JL

d

dt

∑
k

〈c†
k(t ) exp[iϕL(t )]cd (t )〉 + H.c., (15)

i.e. [see Eq. (9)],

ĖL,tun(t )

= −iJL

∑
k

Tr

{
d

dt
[G<

dk(t, t )eiϕL (t ) + e−iϕL (t )G<
kd (t, t )]

}
.

(16)

We consider in Appendix B the sum of all energy fluxes in
our junction. In particular, we show that this sum vanishes
(i.e., energy is conserved) provided the spin-orbit coupling is
static. The presence of the time-dependent Aharonov-Casher
factors implies that energy is not conserved in the junction:
extra energy is supplied to all parts of the junction by the AC
field via the spin-orbit terms.

III. AVERAGED THERMAL-ELECTRIC TRANSPORT

A. Averaged particle and energy fluxes

As stated above, we examine the thermoelectric properties
of our junction by employing fluxes averaged over a single
oscillation of the microwave field. The averaged particle flux
associated with the left terminal in the weak Rashba coupling
and small � limits is (see Appendix C)

ṄL ≡ �

2π

∫ 2π
�

0
dtṄL(t )

= 8�L�R

∫
dω

2π

(
[ fR(ω) − fL(ω)]D(ω)

+ (kSO�)2

4

[
d2

R fR(ω) − d2
L fL(ω)

]
D′′(ω)

)
, (17)

where

D(ω) = [(ω − εd )2 + �2]−1. (18)

Here, � is the width of the Breit-Wigner resonance formed
on the dot due to the coupling with the terminals. Adding to
Eq. (17) the period average of ṄR(t ) gives zero. It then follows
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that the period average of the particle flux associated with the
dot and the corresponding energy flux [Eq. (12)] vanish. One
notes that particle current is flowing even in the absence of a
bias or a temperature gradient, i.e., when fL(ω) = fR(ω) [42].
The flow direction is fixed by the length ratio of the weak
links. Upon assuming that the lengths of the weak links are
identical, the second term in the circular brackets becomes
KSO[ fR(ω) − fL(ω)]D′′(ω), with KSO given in Eq. (6).

The period average of the energy flux associated with the
left electrons’ bath is obtained by adding together Eqs. (C22)
and (C24). It consists of two parts, i.e.,

ĖL ≡ �

2π

∫ 2π
�

0
dtĖL(t )

= PL + 8�L�R

∫
dω

2π

(
[ fR(ω) − fL(ω)]ωD(ω)

+ (kSO�)2

4

[
fR(ω)d2

R − fL(ω)d2
L

]
ωD′′(ω)

)
. (19)

The second term on the right-hand side is of the ubiquitous
form: it consists of the same frequency integral as the one that
determines the particle flux, Eq. (17), with the extra frequency
power in the integrand. On the other hand, the first term in
Eq. (19) is the flux of energy supplied to the left lead by the
AC field creating the spin-orbit coupling:

PL = 4�L�R(kSO�)2dR(dL + dR)
∫

dω

2π
[− f ′

R(ω)]D(ω),

(20)

which is positive. The extra energy supplied to the left elec-
trons’ bath, even when averaged over the period, is crucial in
forming the thermoelectric properties of the junction.

Adding to Eq. (19) for the corresponding contribution from
the right fermionic terminal one finds

ĖL + ĖR = 4�L�R(kSO�)2(dL + dR)

×
∫

dω

2π
[dR fR(ω) + dL fL(ω)]D′(ω). (21)

This is indeed the period average of the sum of all energy
fluxes [see Eq. (B6)]. Put differently, the period average of the
energy flux associated with each of the weak links vanishes,
i.e., ĖL(R),tun(t ) = 0.

It is interesting to consider the fluxes when the junction is
not biased, i.e., βL = βR and μL = μR. In that case, particle
current, Eq. (17), flows when dL �= dR. At zero temperature,
its magnitude is determined by [42]∫ μ

−∞
dωD′′(ω) = D′(ω)|μ−∞ = 2(εd − μ)

[(εd − μ)2 + �2]2
. (22)

The corresponding quantity in the heat flux is

−
∫ μ

−∞
dω(μ − ω)D′′(ω) = −

∫ μ

−∞
dωD′(ω) = −D(μ).

(23)

Adding this expression to PL (calculated at zero temperature),
we find that the total is half the power supplied to the junction.

In the following, we consider a junction biased by a chem-
ical potential difference, a temperature difference, or both. By

the Clausius relation, the average entropy production, Ṡ, in a
two-terminal junction reads

Ṡ = [ĖL − μLṄL]/TL + [ĖR − μRṄR]/TR. (24)

Written in terms of heat fluxes

Q̇L,R = ĖL,R − μL,RṄL,R, (25)

the Clausius relation becomes

T Ṡ = Q̇L

βL − βR

β
+ ṄL(μR − μL ) + P, (26)

where P = PL + PR = ĖL + ĖR is the total averaged power
supplied by the AC source [which is positive; see Eq. (20)].

B. Linear-response Onsager relations

Thermoelectric properties are intrinsically linked with the
system’s coupling to the external world: the relevant coef-
ficients are defined in response to chemical potential and
temperature differences (in linear order), which implies the
expansion of fL(ω) �= fR(ω). Below we assume for conve-
nience that the weak links are of equal lengths [57], i.e., dL =
dR = d/2, and consequently introduce into the expressions
the spin-orbit coupling in terms of KSO, Eq. (6).

In linear response,

fL(ω) ≈ f (ω) + f ′(ω)

2

[
μR − μL + (ω − μ)

βL − βR

β

]
,

(27)

where D(ω) is defined in Eq. (18),

μ = (μL + μR)/2, β = (βL + βR)/2, (28)

and f (ω) = {exp[β(ω − μ)] + 1}−1. The particle flux,
Eq. (17), then reads

ṄL = I0(μR − μL ) + I1
βL − βR

β
, (29)

where

In = I (0)
n + KSOI (2)

n , n = 0, 1, 2, (30)

with

I (�)
n = 4�L�R

π

∫
dω[− f ′(ω)](ω − μ)nD(�)(ω). (31)

Here D(1)(ω) = D′(ω) and D(2)(ω) = D′′(ω). We present in
Appendix D two approximations for the integrals (30) valid
at relatively high temperatures (valid for β� << 1) and low
temperatures [β(εd − μ) > 1].

The heat flux associated with the left terminal [Eq. (25)],
to linear order in the chemical-potential and temperature dif-
ferences, is

Q̇L = PL + I1(μR − μL ) + I2
βL − βR

β
, (32)

where

PL =16�L�R

π
KSO

∫
dω[− f ′

R(ω)]D(ω) ≈ 4KSOI (0)
0 . (33)

Comparing Eq. (29) with Eq. (32) shows that Onsager’s rela-
tions are fulfilled (in terms of the response to the chemical
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potential and temperature differences). However, the heat
fluxes also include the power supplied by the AC field. In this
sense, our system differs from others studied in the literature,
e.g., Refs. [21,27].

Equations (29) and (32) yield the thermoelectric coeffi-
cients of the junction. The ones crucial for the thermoelectric
performance are the Seebeck coefficient and the electronic
thermal conductance. The Seebeck coefficient, S, is I1/I0, in
units of kB/e (I0 is the electrical conductance, in units of the
quantum conductance). To linear order in KSO (quadratic in
�),

S ∝ I1

I0

= I (0)
1

I (0)
0

1 + KSO
I (2)
1

I (0)
1

1 + KSO
I (2)
0

I (0)
0

≈ I (0)
1

I (0)
0

(
1 + KSO

[
I (2)
1

I (0)
1

− I (2)
0

I (0)
0

])
.

(34)

Figure 2 presents S, Eq. (34), obtained by computing numer-
ically the integrals (31), together with its two approximations
(see Appendix D). The thin curves display the same quantities
in the absence of the spin-orbit coupling, i.e., for KSO = 0.
One observes that, for β(εd − μ) > 6.5, S is increased (con-
siderably) by KSO. This increase is advantageous for good
thermoelectric performance.

The electronic thermal conductance is

κe ∝ I2 − I2
1

I0

≈ κe0 + KSO

(
I (2)
2 − 2I (2)

1 I (0)
1

I (0)
0

+ I (2)
0

[
I (0)
1

I (0)
0

]2)

(35)

(in units of absolute temperature times the quantum con-
ductance divided by the electron charge), where κe0 = I (0)

2 −
[I0

1 ]2/I (0)
0 . Unfortunately, the contribution of the spin-orbit

coupling to the thermal conductance on most of the range is
positive (see Fig. 3). The plot shows a negative contribution
to κe, but only for a narrow region of β(εd − μ) values, where
S is also decreased. Interestingly, for very large values of
β(εd − μ) (very low temperatures) the relative changes in
S and in κe approach the same limit 3/8 as is also given
by the low-temperature approximation (see more details in
Appendix D).

C. Efficiencies

The possible thermoelectric efficiencies of the junction can
be defined in various ways. For example, Ref. [27] (see also
Ref. [21]) defines the efficiency of a junction working as a heat
engine at zero bias (μL = μR), by assuming that heat leaving

the left terminal, −Q̇L (assuming that βL < βR), enables the
electrons to perform work, −P, on the AC source, leading to
ηHE = P/Q̇L. Here we adopt the more “traditional” approach,
namely, the junction supplies electric power,

Pout = (μR − μL )

[
− I0(μR − μL ) + I1

βR − βL

β

]
, (36)

with the working condition

−I0(μR − μL ) + I1
βR − βL

β
> 0 (37)

(when −ṄL > 0 and μR > μL), at the expense of the heat

supplied, −Q̇L, which should be positive:

−I1(μR − μL ) + I2
βR − βL

β
> PL. (38)

Hence,

ηHE =
(μR − μL )

[ − I0(μR − μL ) + I1
βR−βL

β

]
−I1(μR − μL ) + I2

βR−βL
β

− PL

, (39)

provided that the working conditions, Eqs. (37) and (38), are
obeyed.

The junction will work as a heat pump (i.e., a thermoelec-
tric refrigerator) when it cools the left terminal, βR < βL, at
the expense of Joule power supplied to it:

(μL − μR)

[
I0(μL − μR) − I1

βL − βR

β

]
> 0. (40)

The working condition ensuring that the cooling power is
positive reads

I1(μL − μR) − I2
βL − βR

β
> PL. (41)

The corresponding ηHP (sometimes called the coefficient of
performance) is

ηHP =
I1(μL − μR) − I2

βL−βR
β

− PL

(μL − μR)
[
I0(μL − μR) − I1

βL−βR
β

] , (42)

with ηHE = −1/ηHP. The Carnot limit on ηHE is (βR − βL )/β
while that on ηHP is β/(βL − βR). In terms of the entropy

production T Ṡ [Eq. (26)], we find

ηHE = βR − βL

β
+ −T Ṡ+ P

−I1(μR − μL ) + I2
βR−βL

β
− PL

,

ηHP = β

βL − βR

(
1 + −T Ṡ+ P

(μL − μR)
[
I0(μL − μR) − I1

βL−βR
β

]
)

.

(43)

Inspecting Eqs. (43), one may conclude that when the en-
tropy production vanishes both efficiencies exceed the Carnot
limit. However, this does not happen. The entropy production
Eq. (26) can be written in the form

T Ṡ = P + βL − βR

β
PL + I0

(
βL − βR

β

)2

×
[

I0I2 − I2
1

I2
0

+
(

β(μR − μL )

βL − βR

+ I1

I0

)2]
. (44)

In a symmetric junction, PL = PR [since dL = dR; see
Eq. (33)], and then P + PL(βL − βR)/β = PβL/β ≈ P, lead-

ing to a negative value for −T Ṡ+ P. [Recall that (I0I2 −
I2
1 )/I0—the electronic thermal conductance, which is propor-

tional to the inverse of the figure of merit—is positive.]
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IV. SUMMARY

The possibility of enhancing the thermoelectric functional-
ity by employing the spin degree of freedom via the spin-orbit
interaction has appeared recently in the literature, mainly in
connection with two-dimensional layers (see, for instance,
Refs. [58–61]). These works rely on the intrinsic Rashba cou-
pling of the system and generally find that the thermoelectric
performance is improved. Thus, for example, Ref. [59] reports
an enhancement connected with the topological band-crossing
point revealed once elastic scattering is treated beyond the
relaxation-time approximation. (Recall that in Appendix D we
also obtain that within the high-temperature approximation
the thermoelectric performance has deteriorated.) Yuan et al.
[60] discuss theoretically the thermoelectric performance of
bismuth antimony sheets, and find a figure of merit that at
room temperature (significantly) is doubled compared to the
spin-degenerate case.

The Rashba coupling in the junction we study is induced
by an AC field and modifies the thermoelectric coefficients
through a prefactor [KSO, Eq. (6)] that combines the spin-
orbit precession wave vector kSO, the length of the weak link
coupling the quantum dot to the fermionic terminals, and
the frequency (squared) of the AC field. This combination
offers means of varying the effect, and can also serve as a
tool for measuring the spin-precession wave vector in various
materials.
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APPENDIX A: KELDYSH GREEN’S FUNCTIONS

As seen in Eqs. (8), (14), and (16), we need to calculate the
Green’s functions given in Eq. (9). Employing the Keldysh
technique [47,55,56]), one considers the Dyson equations

JLe−iϕL (t )Gkd (t, t ) =
∫

dt ′�k(t, t ′)Gdd (t ′, t ),

JLGdk(t, t )eiϕL (t ) =
∫

dt ′Gdd (t, t ′)�k(t ′, t ), (A1)

where Gdd is the Green’s function of the dot (when coupled to
the terminals), and the self-energy �k(t, t ′) is

�k(t, t ′) = J2
L e−iϕL (t )gk(t, t ′)eiϕL (t ′ ), (A2)

with gk being the Green’s function of the left fermionic termi-
nal (when decoupled from the dot). The Dyson equations (A1)
pertain to all three Keldysh Green’s functions: the retarded
(Gr), advanced (Ga), and lesser (G<) functions.

Dyson’s equation for the Green’s function on the dot reads

Gdd (t, t ′)=gd (t, t ′)+
∫

dt1

∫
dt2gd (t, t1)�(t1, t2)Gdd (t2, t ′),

(A3)

where gd is the Green’s function of the decoupled dot

gr(a)
d (t, t ′) = ∓i�(±t ∓ t ′) exp[−iεd (t − t ′)], (A4)

and

� =
∑

k

�k +
∑

p

�p ≡ �L + �R (A5)

is the total self-energy on the dot, due to the coupling with
the two electronic reservoirs. Assuming for concreteness that
the decoupled dot is empty of electrons, i.e., εd > μ [μ =
(μL + μR)/2], the corresponding lesser Green’s function, g<

d ,
vanishes. One then finds [56]

G<
dd (t, t ) =

∫
dt1

∫
dt2Gr

dd (t, t1)�<(t1, t2)Ga
dd (t2, t ). (A6)

It is rather straightforward to simplify Eq. (A6), exploiting
Langreth’s rules [48] within the wide-band approximation
[56]. One finds

Gr(a)
dd (t, t ′) = ∓i�(±t ∓ t ′)e−iεd (t−t ′ )∓�(t−t ′ ), (A7)

where � is the width of the Breit-Wigner resonance created
on the dot due to the coupling with the electron baths:

� = �L + �R, �L(R) = πJ2
L(R)NL(R), (A8)

with NL(R) being the (constant) density of states in the left
(right) bath. The lesser Green’s function on the dot is needed
at equal times and takes the form [26]

G<
dd (t, t ) =

∫ t

dt ′
∫ t ′

dt ′′(Gr
dd (t, t ′)[�<

L (t ′, t ′′) + �<
R (t ′, t ′′)]Ga

dd (t ′′, t ) + Gr
dd (t, t ′′)[�<

L (t ′′, t ′) + �<
R (t ′′, t ′)]Ga

dd (t ′, t )
)
.

(A9)

Let us examine the part referring to the left electronic terminal (the other part is worked out similarly). Inserting Eq. (A7) yields

∫ t

dt ′
∫ t ′

dt ′′[e−i(εd −i�)(t−t ′ )e−i(εd +i�)(t ′′−t )�<
L (t ′, t ′′) + e−i(εd −i�)(t−t ′′ )e−i(εd +i�)(t ′−t )�<

L (t ′′, t ′)]

= 2i�L

∫
dω

2π
fL(ω)

∫ t

dt ′
∫ t ′

dt ′′[e−i(εd −i�)(t−t ′ )e−i(εd +i�)(t ′′−t )e−iω(t ′−t ′′ )−iϕL (t ′ )+iϕL (t ′′ )

+ e−i(εd −i�)(t−t ′′ )e−i(εd +i�)(t ′−t )e−iω(t ′′−t ′ )−iϕL (t ′′ )+iϕL (t ′ )], (A10)

155402-7



CHOWDHURY, ENTIN-WOHLMAN, AND AHARONY PHYSICAL REVIEW B 109, 155402 (2024)

which after arranging terms becomes

2i�L

∫
dω

2π
fL(ω)

∫ t

dt ′e−2�(t−t ′ )
∫ t ′

dt ′′[e−i(ω−εd −i�)(t ′−t ′′ )−iϕL (t ′ )+iϕL (t ′′ ) + ei(ω−εd +i�)(t ′−t ′′ )+iϕL (t ′ )−iϕL (t ′′ )]. (A11)

It is therefore convenient to define

Gr(a)
L (ω, t ) = ∓i

∫ t

dt ′e±i(ω±i�−εd )(t−t ′ )e±i[ϕL (t )−ϕL (t ′ )], (A12)

and then

G<
dd (t, t ) = 2

∫ t

dt ′e−2�(t−t ′ )
∫

dω

2π

{
�L fL(ω)

[
Ga

L(ω, t ′) − Gr
L(ω, t ′)

] + �R fR(ω)
[
Ga

R(ω, t ′) − Gr
R(ω, t ′)

]}
. (A13)

APPENDIX B: SUM RULES

Here we consider the sum of all particle and energy fluxes in the junction, without resorting to the wide-band approximation.
To verify that charge is conserved in our junction, we rewrite ṄL(t ), Eq. (8), in terms of the Green’s function on the dot, using

Eqs. (A1) and the definitions of the self-energy, Eqs. (A2) and (A5):

ṄL(t ) =
∫

dt ′Tr{�L(t, t ′)Gdd (t ′, t ) − Gdd (t, t ′)�L(t ′, t )}<. (B1)

Then the sum of all particle fluxes in the junction is

Ṅd (t ) + ṄL(t ) + ṄR(t ) = −iTr{dG<
dd (t, t )/dt} +

∫
dt ′Tr{�(t, t ′)Gdd (t ′, t ) − Gdd (t, t ′)�(t ′, t )}<. (B2)

The time derivative idG<
dd (t, t )/dt is obtained by using the Dyson equations

i
∂Ga

dd (t2, t )

∂t
= −δ(t − t2) − εd Ga

dd (t2, t ) −
∫

dt ′Ga
dd (t2, t ′)�a(t ′, t ),

i
∂Gr

dd (t, t1)

∂t
= δ(t − t1) + εd Gr

dd (t, t1) +
∫

dt ′�r (t, t ′)Gr
dd (t ′, t1), (B3)

leading to the relation

i
dG<

dd (t, t )

dt
=

∫
dt ′Tr{�(t, t ′)Gdd (t ′, t ) − Gdd (t, t ′)�(t ′, t )}<, (B4)

thus verifying Eq. (11).
Consider now the sum of all energy fluxes in our junction. An alternative expression for ĖL,tun(t ) is obtained by working out

the commutators in Eq. (15), yielding

ĖL,tun(t ) = JL

∑
k

Tr{[εk − εd + ϕ̇L(t )][eiϕL (t )G<
dk(t, t ) − e−iϕL (t )G<

kd (t, t )]}

− JLJR

∑
k,p

Tr{eiϕL (t )−iϕR (t )G<
pk(t, t ) − ei(ϕR (t )−iϕL (t )G<

kp(t, t )}. (B5)

It follows that the sum of all energy fluxes [see Eqs. (12), (14), and (16)] is

ĖL,tun(t ) + ĖR,tun(t ) + Ėd (t ) + ĖL(t ) + ĖR(t )

= JL

∑
k

Tr{ϕ̇L(t )[eiϕL (t )G<
dk(t, t ) − e−iϕL (t )G<

kd (t, t )]} + JR

∑
p

Tr{ϕ̇R(t )[eiϕR (t )G<
dp(t, t ) − e−iϕR (t )G<

pd (t, t )]}. (B6)

The right-hand side in Eq. (B6) vanishes when the spin-orbit interaction is static, and then energy is conserved. The time
dependence of the induced Aharonov-Casher phase factors implies that energy is supplied by the AC field.

APPENDIX C: EXPLICIT EXPRESSIONS FOR THE FLUXES

1. Complete time dependence

The explicit expression of the particle flux, within the wide-band limit, has been derived repeatedly in the literature (see, for
instance, Refs. [47,55,56]). The new element in our paper is the time dependence of the self-energy, e.g., Eq. (A2), embedding
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the Aharonov-Casher phase factors. To quantify the effect of those, we return to Eq. (B1) and apply on it Langreth’s rules:

ṄL(t ) = J2
L

∫
dt ′Tr

{
�r

L(t, t ′)G<
dd (t ′, t ) + �<

L (t, t ′)Ga
dd (t ′, t ) − Gr

dd (t, t ′)�<
L (t ′, t ) − G<

dd (t, t ′)�a
L(t ′, t )

}
. (C1)

In the wide-band limit, this expression takes the form

ṄL(t ) = − 2i�LTr{G<
dd (t, t )} + 2i�L

∫
dω

2π
fL(ω)Tr

{
Ga

L(ω, t ) − Gr
L(ω, t )

}
, (C2)

where explicit expressions for the various Green’s functions are to be found in Eqs. (A12) and (A13).
We next turn to the energy flux associated with the left electrons’ bath, Eq. (14). Exploiting the Dyson equations for Gkd and

Gdk to express them in terms of Gdd , and then applying the Langreth rules, one finds

ĖL(t ) = J2
L

∑
k

εk

∫
dt ′Tr

{
e−iϕL (t )gr

k(t, t ′)eiϕL (t ′ )G<
dd (t ′, t ) + e−iϕL (t )g<

k (t, t ′)eiϕL (t ′ )Ga
dd (t ′, t )

− Gr
dd (t, t ′)e−iϕL (t ′ )g<

k (t ′, t )eiϕL (t ) − G<
dd (t, t ′)e−iϕL (t ′ )ga

k(t ′, t )eiϕL (t )
}
. (C3)

It is straightforward to work out the two terms involving g<
k . Indeed [47],∑

k

εkg<
k (t, t ′) = 2i

�L

J2
L

∫
dω

2π
e−iω(t−t ′ )ω fL(ω), (C4)

and therefore these two terms yield [see Eq. (A12)]

2i�L

∫
dω

2π
fL(ω)ωTr

{
Ga

L(ω, t ) − Gr
L(ω, t )

}
. (C5)

The other two terms in Eq. (C3) pose a difficulty, since
∑

k εkgr(a)
k (t, t ′) diverges within the wide-band approximation. However,

exploiting the relations [47]

εkgr
k (t, t ′) = −i

∂gr
k (t, t ′)
∂t ′ − πδ(t − t ′), εkga

k (t ′, t ) = i
∂ga

k (t ′, t )

∂t ′ − πδ(t − t ′) (C6)

shows that the terms involving the delta functions δ(t − t ′) are canceled, leaving

J2
L

∫
dt ′ ∑

k

Tr

{
e−iϕL (t )

(
− i

∂gr
k (t, t ′)
∂t ′

)
eiϕL (t ′ )G<

dd (t ′, t ) − G<
dd (t, t ′)e−iϕL (t ′ )

(
i
∂ga

k (t ′, t )

∂t ′

)
eiϕL (t )

}

= �LTr

{
dG<

dd (t ′, t )

dt ′ − dG<
dd (t, t ′)
dt ′

}∣∣∣∣
t ′=t

+ 2i�LTr{ϕ̇L(t )G<
dd (t, t )}. (C7)

Within the wide-band limit, and exploiting Eq. (A6),

�L

[
dG<

dd (t ′, t )

dt ′ − dG<
dd (t, t ′)
dt ′

]∣∣∣∣
t ′=t

= 2�L

∫
dω

2π

{
�L fL(ω)

[
Ga

L(ω, t ) + Gr
L(ω, t )

] + �R fR(ω)
[
Ga

R(ω, t ) + Gr
R(ω, t )

]}
− 2i�Lεd G<

dd (t, t ). (C8)

Collecting all contributions, the time-dependent energy flux associated with the left bath is

ĖL(t ) = 2i�L

∫
dω

2π
fL(ω)ωTr

{
Ga

L(ω, t ) − Gr
L(ω, t )

} − 2i�LTr{G<
dd (t, t )[εd − ϕ̇L(t )}

+ 2�LTr

{
�L

∫
dω

2π
fL(ω)

[
Ga

L(ω, t ) + Gr
L(ω, t )

] + �R

∫
dω

2π
fR(ω)

[
Ga

R(ω, t ) + Gr
R(ω, t )

]}
. (C9)

Here again, by exploiting Eqs. (A12) and (A13) one obtains an explicit expression for the time-dependent energy flux in the left
terminal, ĖL(t ).

Finally, we consider the energy flux associated with the left weak link, Eq. (16), which upon using Eqs. (A1) becomes

ĖL,tun(t ) = −iTr

{
d

dt

∫
dt ′[Gdd (t, t ′)�L(t ′, t ) + �L(t, t ′)Gdd (t ′, t )]<

}

= −2i�L

∫
dω

2π
fL(ω)Tr

{
d

dt

∫ t

dt ′[e−i(εd −i�)(t−t ′ )e−iω(t ′−t )−iϕL (t ′ )+iϕL (t ) − e−i(εd +i�)(t ′−t )e−iω(t−t ′ )−iϕL (t )+iϕL (t ′ )]

}

= 2�L

∫
dω

2π
fL(ω)Tr

{
d

dt
[Ga(ω, t ) + Gr (ω, t )]

}
, (C10)
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where we have used the expressions in Appendix A.

2. Weak Rashba interaction, small �

In the present paper, we confine ourselves to quantities averaged over the oscillation period of the external field, that are
calculated for weak spin-orbit coupling. In that case [see Eq. (2)],

Gr(a)
L (ω, t ) = ∓i

∫ t

dt ′e±i(ω±i�−εd )(t−t ′ )
(

1 − (kSOdL )2

2
[cos(�t ) − cos(�t ′)]2 ∓ iσykSOdL[cos(�t ) − cos(�t ′)]

)
. (C11)

Changing t ′ = t − τ one obtains

Gr(a)
L (ω, t ) = ∓ i

∫ ∞

0
dτe±i(ω±i�−εd )τ

(
1 − (kSOdL )2

2

{
cos2(�t )[1 − cos(�τ )]2 + sin2(�t ) sin2(�τ )

− sin(2�t ) sin(�τ )[1 − cos(�τ )]

}
∓ iσykSOdL

{
cos(�t )[1 − cos(�τ )] − sin(�t ) sin(�τ )

})
. (C12)

This result implies that the period average of ĖL,tun(t ), Eq. (C10), vanishes.
Period averaging Eq. (C12) gives

�

2π

∫ 2π
�

0
dtTr

{
Gr(a)

L (ω, t )
} = ∓2i

∫ ∞

0
dτe±i(ω±i�−εd )τ

(
1 − (kSOdL )2

2
[1 − cos(�τ )]

)

≈ 2

(
1 + (kSOdL�)2

4

∂2

∂ω2

)(
∓ i

∫ ∞

0
dτe±i(ω±i�−εd )τ

)
= 2

(
1 + (kSOdL�)2

4

∂2

∂ω2

)
1

ω − εd ± i�
,

(C13)

which yields

�

2π

∫ 2π
�

0
dtTr

{
Ga

L(ω, t ) − Gr
L(ω, t )

} ≈ 4i�

(
D(ω) + (kSOdL�)2

4
D′′(ω)

)
,

�

2π

∫ 2π
�

0
dtTr

{
Ga

L(ω, t ) + Gr
L(ω, t )

} ≈ 4

(
(ω − εd )

[
D(ω) + (kSOdL�)2

4
D′′(ω)

]
+ (kSOdL�)2

2
D′(ω)

)
, (C14)

where [see Eq. (18)] D(ω) = (ω − εd )2 + �2]−1. Likewise,∫ t

dt ′e−2�(t−t ′ )Gr(a)
L (ω, t ′) = ∓ i

∫ ∞

0
dτ ′e−2�τ ′

∫ ∞

0
dτe±i(ω±i�−εd )τ

(
1 − (kSOdL )2

2
{[cos(�t ) cos(�τ ′) + sin(�t ) sin(�τ ′)]2

× [1 − cos(�τ )]2 + [sin(�t ) cos(�τ ′) − cos(�t ) sin(�τ ′)]2 sin2(�τ )

− [sin(2�t ) cos(2�τ ′) − cos(2�t ) sin(2�τ ′)] sin(�τ )[1 − cos(�τ )]}
∓ iσykSOdL{[cos(�t ) cos(�τ ′) + sin(�t ) sin(�τ ′)][1 − cos(�τ )]

− [sin(�t ) cos(�τ ′) − cos(�t ) sin(�τ ′)] sin(�τ )}
)

, (C15)

leading to

�

2π

∫ 2π
�

0
dt

∫ t

dt ′e−2�(t−t ′ )Tr
{
Ga

L(ω, t ′) − Gr
L(ω, t ′)

} ≈ 2i

(
D(ω) + (kSOdL�)2

4
D′′(ω)

)
, (C16)

and

− �

2π

∫ 2π
�

0
dt

∫ t

dt ′e−2�(t−t ′ )Tr
{[

Ga
L(ω, t ′) − Gr

L(ω, t ′)
]
σy� sin(�t )

}
= −kSOdL�

∫ ∞

0
dτ ′e−2�τ ′

∫ ∞

0
dτ (e−i(ω−i�−εd )τ − ei(ω+i�−εd )τ ) cos(�τ ′) sin(�τ )

≈ −�2

2�
kSOdL

∫ ∞

0
dττ [e−i(ω−i�−εd )τ − ei(ω+i�−εd )τ ])

= −i
�2

2�
kSOdL

d

dω

∫ ∞

0
dτ (e−i(ω−i�−εd )τ + ei(ω+i�−εd )τ ) = −i�2kSOdLD′(ω). (C17)

155402-10



THERMOELECTRIC PERFORMANCE OF NANOJUNCTIONS … PHYSICAL REVIEW B 109, 155402 (2024)

Exploiting these results leads to Eq. (17) for the averaged particle flux.
The period average of ĖL(t ), Eq. (C9), is found as follows. Employing the second of Eqs. (C14),

2�L

�

2π

∫ 2π
�

0
dtTr

{
�L

∫
dω

2π
fL(ω)

[
Ga

L(ω, t ) + Gr
L(ω, t )

] + �R

∫
dω

2π
fR(ω)

[
Ga

R(ω, t ) + Gr
R(ω, t )

]}

= 8�L

∫
dω

2π

(
[�L fL(ω) + �R fR(ω)](ω − εd )D(ω) + (kSO�)2

4

[
�L fL(ω)d2

L + �R fR(ω)d2
R

] d2

dω2
[(ω − εd )D(ω)]

)
, (C18)

while Eq. (C16) gives

−2i�Lεd Tr{G<
dd (t, t )} = 8�Lεd

∫
dω

2π

(
[�L fL(ω) + �R fR(ω)]D(ω) + (kSO�)2

4

[
�L fL(ω)d2

L + �R fR(ω)d2
R

]
D′′(ω)

)
, (C19)

so that the sum of these two contributions is just

8�L

∫
dω

2π

(
[�L fL(ω) + �R fR(ω)]ωD(ω) + (kSO�)2

4

[
�L fL(ω)d2

L + �R fR(ω)d2
R

]
[ωD′′(ω) + 2D′(ω)]

)
. (C20)

Adding to it the contribution of the first term on the right-hand side of Eq. (C9),

2i�L

∫
dω

2π
fL(ω)ω

�

2π

∫ 2π
�

0
dtTr

{
Ga

L(ω, t ) − Gr
L(ω, t )

} = 2(2i�L )(2i�)
∫

dω

2π
fL(ω)ω

(
D(ω) + (kSO�)2

4
d2

LD′′(ω)

)
, (C21)

one obtains

8�L�R

∫
dω

2π

(
[ fR(ω) − fL(ω)]ωD(ω) + (kSO�)2

4

[
fR(ω)d2

R − fL(ω)d2
L

]
ωD′′(ω)

)

+ 4�L(kSO�)2
∫

dω

2π
D′(ω)

[
�L fL(ω)d2

L + �R fR(ω)d2
R

]
. (C22)

It remains to consider

−2i�L

�

2π

∫ 2π
�

0
dtTr{ϕ̇L(t )G<

dd (t, t )} = −2i�LkSOdL

�

2π

∫ 2π
�

0
dtTr{σy� sin(�t )G<

dd (t, t )}, (C23)

which using Eqs. (A13) and (C17) becomes

−2�L(�kSO)2dL

∫
dω

2π
D′(ω)[2�L fL(ω)dL − 2�R fR(ω)dR]. (C24)

APPENDIX D: LINEAR-RESPONSE COEFFICIENTS

The coefficients that determine the thermoelectric transport
in the linear-response regime are given by Eq. (30), repro-
duced here for convenience:

In = I (0)
n

(
1 + KSOI (2)

n /I (0)
n

)
, n = 0, 1, 2, (D1)

where I (�)
n Eq. (31), expressed in dimensionless units, is

I (�)
n [β(εd − μ)] = β�−n 4

π
β2�L�R

∫ ∞

−∞
dxFn(x)

× d�

dx�

1

[β(εd − μ) − x]2 + (β�)2
,

Fn(x) = xn

4 cosh2(x/2)
, � = 0, 2. (D2)

For plotting Figs. 2 and 3 it is convenient to use dimension-
less parameters. The prefactor in Eq (D2) implies that KSO
is multiplied by β2 times a dimensionless ratio of integrals.
However, multiplying this ratio by [β(εd − μ)]2 yields an
expansion in KSO/(εd − μ)2, which is temperature indepen-
dent. Fixing this parameter at 1/16 (see end of Sec. I) implies
that the temperature of the results is included in the abscissa

β(εd − μ) and in β� (fixed at the small value 0.2). Since we
include only a single level on the dot, we must have � <<

εd − μ and β(εd − μ) � 1. Therefore, one should ignore the
small values of β(εd − μ) in the figures.

1. High-temperature approximation

Focusing on thermoelectric transport in quantum dots (in
the absence of AC driving and spin-orbit coupling, i.e., for
KSO = 0), a ubiquitous approximation in the literature [18,19]
(see also Ref. [53]) is based on a (relative) high-temperature
approximation, assuming that β� << 1:

1

[β(εd − μ) − x]2 + (β�)2
≈ π

β�
δ[β(εd − μ) − x]. (D3)

When applied to the integrals resulting from the effect of the
spin-orbit coupling, it yields

I (�)
n [β(εd − μ)] = β�−n 4β2�L�R

β�

d�

du�
Fn(u)|u=β(εd −μ),

� = 0, 2. (D4)
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Using these results in Eq. (D1), one finds

I0 ≈ 4β�L�R

�
Fn=0(u)[1 + β2KSOF ′′

n=0(u)/Fn=0(u)]|u=β(εd −μ),

I1 ≈ 4�L�R

�
Fn=1(u)[1 + β2KSOF ′′

n=1(u)/Fn=1(u)]|u=β(εd −μ),

I2 ≈ 4�L�R

β�
Fn=2(u)[1 + β2KSOF ′′

n=2(u)/Fn=2(u)]|u=β(εd −μ).

(D5)

The Seebeck coefficient is determined by

S = I1

I0

= (εd − μ)
1 + β2KSOF ′′

n=1(u)/Fn=1(u)

1 + β2KSOF ′′
n=0(u)/Fn=0(u)

∣∣∣∣
u=β(εd −μ)

,

(D6)

with

F ′′
n=1(u)/Fn=1(u) − F ′′

n=0(u)/Fn=0(u) = 2F ′(u)/[uF (u)],
(D7)

which is negative. The effect of the spin-orbit coupling is to
reduce the Seebeck coefficient.

The thermal conductance is given by

κe = I2 − I2
1

I0

= 4�L�R

β�

{
Fn=2(u)

(
1 + β2KSO

F ′′
n=2(u)

Fn=2(u)

)

− F 2
n=1(u)

Fn=0(u)

1 + 2β2KSOF ′′
n=1(u)/Fn=1(u)

1 + β2KSOF ′′
n=0(u)/Fn=0(u)

}∣∣∣∣
u=β(εd −μ)

,

(D8)

with

Fn=2(u) = F 2
n=1(u)/Fn=0(u),

F ′′
n=2(u)

Fn=2(u)
− 2

F ′′
n=1(u)

Fn=1(u)
+ F ′′

n=0(u)

Fn=0(u)
= 2/u2. (D9)

Hence,

κe = 8�L�R

β�

KSO

(εd − μ)2
. (D10)

It follows that in this approximation the effect of the spin-orbit
coupling is detrimental—it reduces the Seebeck coefficient
and enhances the thermal electronic conductance.

Unfortunately, we had difficulties with the numerical in-
tegrations (using MATHEMATICA) for β� < 0.2. However, we
note that all our numerical integrals do approach their high-
temperature approximations as β� decreases. Values of β� <

0.2 may shift the high peaks in the plots and modify our
quantitative conclusions.

2. Low-temperature approximation

On the other hand, one may assume [42] low enough
temperatures, such that β(εd − μ) > 1. Expanding the sec-
ond factor in the integrals (D2) to linear order in x, one

obtains

1

[β(εd − μ) − x]2 + (β�)2
≈ 1

[β(εd − μ)]2 + (β�)2

+ 2xβ(εd − μ)

{[β(εd − μ)]2 + (β�)2}2
,

for � = 0, (D11)

and

d2

dx2

1

[β(εd − μ) − x]2 + (β�)2

= 6[β(εd − μ) − x]2 − 2(β�)2

{[β(εd − μ) − x]2 + (β�)2}3

≈ 6[β(εd − μ)]2 − 2(β�)2

{[β(εd − μ)]2 + (β�)2}3

+ 24β(εd − μ)x
[β(εd − μ)]2 − (β�)2

{[β(εd − μ)]2 + (β�)2}4
, for � = 2.

(D12)

Then, using ∫ ∞

−∞
dx

1

4 cosh2(x/2)
= 1,

∫ ∞

−∞
dx

x2

4 cosh2(x/2)
= π2/3, (D13)

one finds

I0 = 4

π
β2�L�RD(u)[1 + β2KSOD′′(u)/D(u)]|u=β(εd −μ),

I1 = −4π

3
β�L�RD′(u)[1 + β2KSOD′′′(u)/D′(u)]|u=β(εd −μ),

I2 = 4π

3
�L�RD(u)[1 + β2KSOD′′(u)/D(u)]|u=β(εd −μ).

(D14)

[Note that the derivatives or D are changed from being with
respect to x to being with respect to β(εd − μ).]

The Seebeck coefficient is

S = −π2

3β

D′(u)

D(u)

(
1 + β2KSO

[
D′′′(u)

D′(u)
− D′′(u)

D(u)

])∣∣∣∣
u=β(εd −μ)

= 2π2

3β

u

u2 + (β�)2

(
1 + β2KSO

6u2 − 10(β�)2

[u2 + (β�)2]2

)∣∣∣∣
u=β(εd −μ)

.

(D15)

In this approximation, the effect of the spin-orbit coupling is
to enhance the Seebeck coefficient.

The electronic thermal conductance comprises the
combination

κe = I2 − I2
1 /I0. (D16)

This expression obviously should be positive. As our ap-
proximation is based on β(εd − μ) > 1, this implies that for
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KSO = 0(
D2(u) − π2

3
[D′(u)]2

)∣∣∣∣
u=β(εd −μ)

> 0

⇒ 4π2

3

u2

[u2 + (β�)2]2

∣∣∣∣
u=β(εd −μ)

< 1. (D17)

In the presence of the spin-orbit coupling, at linear order in
β2KSO, the thermal conductance is

κe = 4π

3
�L�R

{
D(u)

(
1 + β2KSO

D′′(u)

D(u)

)
− π2

3

[D′(u)]2

D(u)

×
(

1 + β2KSO

[
2

D′′′(u)

D′(u)
− D′′(u)

D(u)

])}∣∣∣∣
u=β(εd −μ)

= 4π

3
�L�R

{
1

u2 + (β�)2

(
1 + β2KSO

6u2 − 2(β�)2

[u2 + (β�)2]2

)

− π2

3

4u2

[u2 + (β�)2]3

×
(

1 + β2KSO
18u2 − 22(β�)2

[u2 + (β�)2]2

)}∣∣∣∣
u=β(εd −μ)

. (D18)

It follows that the effect of the spin-orbit coupling on the
electronic thermal conductance depends on parameters. For
example, ignoring (β�) compared to u one finds that κe will
be reduced by the spin-orbit coupling when 1 < 4π/u2 < 3.
For larger values of u the spin-orbit coupling enhances κe and
then the figure of merit is deteriorated.
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