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Photon statistics of resonantly driven spectrally diffusive quantum emitters
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In the solid state, a large variety of single-photon emitters present high-quality photophysical properties
together with a potential for integration. However, in many cases, the host matrix induces fluctuations of the
emission wavelength in time, limiting the potential applications based on indistinguishable photons. A deep
understanding of the underlying spectral diffusion processes is therefore of high importance for improving the
stability of the light emission. Here, we theoretically investigate the photon statistics of an emitter driven by
a resonant laser, and subject to either of two qualitatively different stationary spectral diffusion processes—a
continuous diffusion process and a process based on discrete spectral jumps, both of which are known to
model the spectral diffusion of various solid-state emitters. We show that the statistics of light emission carries
several experimentally accessible signatures that allow us to discriminate between the two classes of models,
both at short times in the intensity correlation function, and at long times in the fluctuations of the integrated
intensity. These results establish that resonant excitation combined with photon statistics offers a rich access
to the spectral diffusion processes, yielding information that goes beyond the bare characterization of the
inhomogeneous shape and noise correlation time. Incidentally, our findings shed light on recent experimental
results of spectral diffusion of B centers in hexagonal boron nitride, providing more insight into their spectral
diffusion mechanisms.
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I. INTRODUCTION

Solid-state single-photon sources, such as self-assembled
quantum dots and color centers in wide gap crystals, are
widely seen as major actors in the emerging quantum tech-
nologies [1–3]. They can act like individual atoms trapped in
a solid matrix, which enables integration into devices. In turn,
these quantum emitters are also sensitive to the solid-state
environment, which can manifest itself in decoherence and
spectral diffusion (SD) of the emitter transition. The inves-
tigation of SD processes is therefore crucial for understanding
and improving the performance of solid-state single-photon
emitters for applications. In particular, fluctuations of the
emitter wavelength limit the number of indistinguishable pho-
tons emitted by an artificial atom.

SD is associated with a stochastic process where the ran-
dom variable h̄ω(t ) describes the spectral position of the
center energy. This varying emission line can be character-
ized using a variety of experimental techniques, depending
on the amplitude and timescale of the fluctuations. When the
characteristic time of SD is faster than the inverse count rate,
spectroscopy falls short, such that more complex techniques
have to be envisaged. Among the possible strategies, pho-
ton correlation Fourier spectroscopy [4–6] and sublinewidth
filtering [7,8] can be used, albeit with intrinsic limitations
in either temporal or spectral resolution. Delay-dependent
Hong-Ou-Mandel interference can also be performed [9], but
is limited to SPEs emitting close-to-indistinguishable photons
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and require us to integrate coincidences separately for each
time delay, which in many cases can turn out experimentally
impractical.

Recently, we have experimentally demonstrated that a
combination of resonant laser excitation and photon corre-
lations allows us to establish the presence of SD as well
as some of its characteristics [10]. Indeed, this technique
simultaneously provides very high spectral and time resolu-
tions. The resonant laser drive converts spectral fluctuations
into intensity fluctuations, yielding photon bunching that can
be measured through the intensity autocorrelation function
g(2)(τ ). It offers the advantage to probe more than ten orders
of magnitude of timescales in a single take and does not need
indistinguishable photons, nor is it limited to zero-phonon-
line emission. Such experimental work would benefit from a
detailed theoretical investigation of the statistics of the emitted
light and its connection with the microscopic process causing
SD. Photon correlations are indeed well-known as a powerful
tool to reveal rich signatures of a large variety of fundamental
microscopic phenomena involving quantum emitters, such as
single photon emission [11], indistinguishability [12], entan-
glement [13], superradiance [14], blinking [15], and phase
transitions [16].

In the present paper, we investigate the relation between the
SD process of a quantum emitter and the associated photon
statistics under resonant excitation. We consider two em-
blematic stationary Markovian processes that yield Gaussian
inhomogeneous broadening: the Ornstein-Uhlenbeck (OU)
process and the Gaussian random jump (GRJ) process. While
the former depicts a continuous SD of some solid-state emit-
ters, the latter models emitters undergoing discrete spectral
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jumps. Section II describes the theoretical framework of these
two SD mechanisms. Section III is devoted to the analysis
of relevant statistical properties of resonantly scattered light
when the emitter is subject to either stochastic process. We
identify several experimentally measurable signatures that
allow us to identify and characterize the diffusion process.
Finally, in Sec. IV we discuss the obtained results and pro-
vide some insights into the SD process of B centers in
hBN [17–19]. The framework and methods developed in the
present paper can be straightforwardly extended to other SD
models and other experimental protocols, as we also discuss
in Sec. IV and in the Supplemental Material. Note that some
quantum emitters can, in principle, also be affected by blink-
ing. In most of the present paper, we disregard such cases.
However, blinking can also affect photon statistics and should
therefore be included in the model when applicable, as dis-
cussed in the Supplemental Material (Sec. S4).

II. MODELS FOR SPECTRAL DIFFUSION PROCESSES

In the solid state, the frequency fluctuations of an emit-
ter can have various origins depending on the nature of the
emitter, the properties of the host material and its dimension-
ality. When it comes to processes yielding a static Gaussian
inhomogeneous distribution, two main classes of noise are
commonly identified, depending on whether the variations of
the transition energy are continuous in time or experiences
discrete spectral jumps at random times. These two models
are described in the following.

A. Continuous spectral diffusion:
The Ornstein-Uhlenbeck process

In a wide range of physical systems, continuous diffusion
can be well described by a OU process. The OU process
is a Markovian and stationary Gaussian process and, as
such, is completely characterized by its correlation function
〈ω(t + τ )ω(t )〉 = �2e−τ/τSD , where � is the standard de-
viation of the associated Gaussian probability distribution
function. Originally derived in the frame of nuclear magnetic
resonance by Kubo and Anderson [20,21], it has been shown
to also describe both charge noise and spin noise in self-
assembled quantum dots [22–24] as well as SD in other con-
densed matter systems, such as ions or molecules embedded
in solid-state matrices [25,26]. This process emerges when the
light source is coupled to a large ensemble of identical and
independent two-level fluctuators [Fig. 1(a)] and is equivalent
to the Wiener model of Brownian motion at short times.

Figure 1(b) shows an energy trajectory generated numer-
ically using the stochastic differential equation dω = ω −
dt (ω − ω0)/τSD + �

√
t/2τSDWt , where h̄ω0 is the center en-

ergy of the inhomogeneous distribution, τSD the spectral
diffusion correlation time, and Wt is the Wiener process
(the continuous-time stochastic process that describes stan-
dard Brownian motion [27]). The numerical integration is
performed based on the Euler-Maruyama method [28]. An
example of a sample path is shown Fig. 1(b). The trajectories
exhibit a continuous drift such that, after a time larger than the
correlation time τSD, the energy position is randomly found
within a Gaussian envelope of standard deviation �.
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FIG. 1. (a) Sketch of an emitter coupled to a fluctuating envi-
ronment modeled by an ensemble of identical two-level systems,
yielding a OU diffusion process. (b) Numerically generated spectral
trajectory.

B. Gaussian random jump model

Spectral diffusion can also take the form of discrete jumps,
occurring at random times governed by a Poisson process,
and sampling a Gaussian distribution of standard deviation �.
Such stochastic process is termed GRJ model by Spokoyny
et al. [29]—we also adopt this terminology in the present
paper. This process is also a Markovian and stationary pro-
cess with correlation function 〈δω(t )δω(0)〉 = �2e−t/τSD , and
therefore cannot be distinguished from the OU model on the
sole basis of its probability density function (PDF) and its
correlation function. It has been used to describe spectral fluc-
tuations of nitrogen-vacancy centers in nanodiamonds [30],
molecules in crystalline matrices [31], color centers in hBN
[29], nitride quantum dots [32], perovskite [33], and CdSe
nanocrystals [6]—although, in the latter case, it is the spectral
shifts (and not the spectral positions) that sample a Gaussian
distribution, which makes little difference at short times but
yields an additional long-time diffusion. Discrete jumps in
SD typically emerge when an emitter is coupled to a low
number of carriers migrating in a manifold of heterogeneous
trap states [Fig. 2(a)] or a low number of neighboring systems
whose configuration alternates within a continuum of states,
such as ligand configurations in nanocrystals [6].

The generation of a spectral trajectory is conceptually
simple. The emitter energy h̄ω(t ) has a constant probability
dt/τSD to undergo a spectral jump during dt . When a jump
occurs, the new frequency position is randomly drawn based
on a Gaussian distribution of center energy h̄ω0 and standard

155308-2



PHOTON STATISTICS OF RESONANTLY DRIVEN … PHYSICAL REVIEW B 109, 155308 (2024)

Ω

| 〉

| 〉
( )

(a)

(b)

FIG. 2. (a) Sketch of an emitter coupled to a fluctuating envi-
ronment modeled by a charge hopping between various trap states.
(b) Numerically generated spectral trajectory.

deviation �. An example of a numerically generated trajec-
tory is shown Fig. 2(b), where the discrete character of the
spectral fluctuations is clear: ω(t ) is piecewise constant and
changes values at intervals of order τSD.

In the following section, we investigate the impact of these
microscopic SD processes on the photon correlations of reso-
nantly driven two-level emitters.

III. PHOTON STATISTICS OF RESONANCE
FLUORESCENCE

In the absence of SD, the population of a two-level atom
driven by a laser close to resonance reaches a steady-state
given by [34]

ρee = 1

2

�2
RT1/T2

(ω − ωL )2 + T −2
2 + �2

RT1/T2
, (1)

where �R is the laser Rabi frequency, h̄ωL its position in
energy, T1 the emitter lifetime, T2 its coherence time, and ω

its center frequency.
The rate of scattered photons in the steady-state Css(ω)

is proportional to ρee, such that the intensity response to
the laser excitation is a Lorentzian of linewidth �ωhom =
2
√

1 + �2
RT1T2/T2. Conveniently, the laser power provides an

external knob to tune the linewidth of the homogeneous line
shape through �R, a phenomenon known as power broaden-
ing.

(a)

(b)

FIG. 3. (a) Intensity time trace generated with the OU model.
(b) Intensity time trace generated with the GRJ model.

In the following, unless explicitly stated, we suppose
τSD � T1, 1/�. This corresponds to cases where the spectral
fluctuations are slower than both the emitter lifetime and the
inverse inhomogeneous linewidth. Most experimental studies
of solid-state emitters are consistent with these conditions, at
the exception of some recent work demonstrating the achieve-
ment of fast SD that yields phenomena such as motional
narrowing [22,35–37]. Out of these specific regimes, a con-
tinuously driven emitter is supposed to reach its steady state
faster than the spectral fluctuations occur. This justifies the
adiabatic approximation, in which the time-dependent inten-
sity writes C(t ) = Css[ω(t )].

Figure 3 shows two examples of intensity time traces
generated with both a continuous and a jump process. In
both cases, the signal exhibits an alternation of bright pe-
riods [when ω(t ) ≈ ωL] and dark periods, albeit with a
qualitatively different time dependence. Experimentally, these
time-intensity curves are impossible to measure as long as the
count rate is smaller than the inverse timescale of the intensity
fluctuations, which is the case in many practical situations.
This justifies a general approach based on photon statistics.

A. Intensity autocorrelation

In this section, we focus on the intensity autocorrelation
function g(2)(τ ), defined as

g(2)(τ ) = 〈C(t )C(t + τ )〉t

〈C(t )〉2
t

= 〈Css[ω(t )]Css[ω(t + τ )]〉t

〈Css[ω(t )]〉2
t

,

(2)
where 〈...〉t denotes the time averaging and quantum effects at
τ � T1 are neglected. As evidenced in prior work [10], reso-
nantly driving a spectrally diffusive emitter leads to bunching,
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FIG. 4. Example of g(2)(τ ) generated from a time trace shown
Fig. 3. The gray dashed line depicts the Poissonian limit g(2)(τ ) = 1.

owing to the fact that detection of a photon at time t1 informs
on a close proximity between the emitter center frequency
ω(t1) and the laser frequency ωL. Therefore, the photon de-
tection rate at time t2 ≈ t1 is enhanced with respect to an
uncorrelated case where |t2 − t1| � τSD, which translates into
bunching.

Figure 4 shows an example of the g(2) function gener-
ated with an OU process. As expected, we observe g(2)(0) >

g(2)(τ ), indicating a bunching behavior resulting from the in-
tensity fluctuations that originate from the SD. The asymptotic
limit g(2)(t → ∞) is equal to 1 in the absence of additional
random processes affecting the intensity stability, such as
blinking. We define the degree of bunching B(τ ) = g(2)(τ ) −
1 and the normalized degree of bunching B̃(τ ) = B(τ )/B(0),
which decays from 1 to 0 as τ increases. We also define the
bunching time τb such as B̃(τb) = 1/e. In the following, we
will establish the relation between τb and τSD for the two
classes of SD processes, after having reviewed some useful
properties of the short-time bunching B(0).

1. Short-time bunching

The short-time bunching can be deduced from the steady-
state distribution of the emitter frequencies, independently of
the underlying SD model [10]:

g(2)(0) = 〈I2〉
〈I〉2

=
∫

dωP (ω)Css(ω)2[∫
dωP (ω)Css(ω)

]2 , (3)

where P (ω) is the PDF associated with the inhomogeneous
distribution. In the case of an inhomogeneous linewidth
largely exceeding the natural linewidth, this further simplifies
to

g(2)(0) = 1

P (ωL )

∫
dωCss(ω)2[∫
dωCss(ω)

]2 = 1

P (ωL )

1

π�ωhom,
(4)

where we have used Eq. (1) to express the count rate Css of
a resonantly driven two-level system. When the PDF P (ωL )
is a Gaussian distribution, as is the case in the two models
considered, we then obtain

g(2)(0) = 1

2
√

π ln 2

�ωinhom

�ωhom
exp

[
4 ln 2

(
ωL − ω0

�ωinhom

)2
]
, (5)

where ω0 denotes the center of the inhomogeneous dis-
tribution and �ωinhom its full width at half maximum
(�ωinhom = 2

√
2 ln 2�). At zero detuning, we then simply

obtain g(2)(0) = 1
2
√

π ln 2
�ωinhom
�ωhom

. This expression can be inter-
preted intuitively since, in two-photon correlations, the first
detection informs that the spectrally diffusing emitter is close
to resonance—which at random times has a likelihood given
by the ratio of homogeneous to inhomogeneous linewidth.
This leads to an increased likelihood of detecting a second
photon, which is maintained until SD shifts the emitter spec-
tral position out of resonance. Remarkably, this result shows
that it is possible to infer the homogeneous linewidth—-and
therefore the coherence time of the emitter—from a simple
measurement of the inhomogeneous (static) line shape and the
amount of bunching at a fixed laser detuning. Moreover, this
estimation does not require any assumptions about the nature
of the microscopic mechanism yielding SD. This result is all
the more interesting as it is generally difficult to extract in-
formation about homogeneous properties in inhomogeneously
broadened quantum systems, which can require complex ex-
perimental procedures such as spectral hole burning [38] and
dynamical decoupling [39,40]. We note that, while Eq. (5)
is derived in the limit of Gaussian inhomogeneous spectra,
Eq. (3) provides �ωhom in the general case, where any ex-
perimental time-averaged line shape can be accounted for
numerically. We further discuss some of these considerations
in the Supplemental Material (Sec. S2).

To illustrate the dependence of the short-time bunching on
the homogeneous linewidth, in Fig. 5(a), we plot B(0) as a
function of the laser power. The decrease of the amount of
bunching as power increases, already observed experimen-
tally [10], is a consequence of power broadening yielding a
larger homogeneous response, as discussed in the previous
section. The dependence of B(0) on the laser detuning is
plotted on Fig. 5(a). In this situation, bunching increases with
the detuning due to the decreasing likelihood for the emitter
to be resonant with the laser when the detuning increases.
More examples of calculations are given in the Supplemental
Material (Sec. S2). In both cases, we verify numerically that,
as expected, the observed behavior is independent of the SD
mechanism and correlation time. This is, however, not the case
of the bunching decay, as we expose in the following section.

2. Bunching decay

Since the amount of bunching B(0) is independent of the
model and only depends on the laser detuning and power, we
now focus on the normalized bunching B̃(τ ) and we fix the
laser frequency to the center of the inhomogeneous distribu-
tion (ωL = ω0). We first investigate the normalized intensity
correlation function in the case of a continuous SD governed
by a OU process. Figure 6 shows a numerical calculation of
B̃(τ ) for various laser powers above saturation. Two important
characteristics can be observed: First, the decay is not expo-
nential. Second, the characteristic time τb increases with the
power. This latter observation demonstrates that the bunching
timescale τb is, in general, not equal to the correlation time
τSD. Since the considered model is continuous, τb represents
the characteristic time during which the emitter stays near
resonance with the laser before SD detunes it significantly.

155308-4



PHOTON STATISTICS OF RESONANTLY DRIVEN … PHYSICAL REVIEW B 109, 155308 (2024)

(a)

(b)

FIG. 5. (a) Zero-time bunching B(0) as a function of the laser de-
tuning. (b) B(0) as a function of the laser power. In both simulations,
�ωhom/�ωinhom = 2.2 × 10−2.

In presence of power broadening, it is therefore expected that
the increased linewidth prolongs this duration when the laser
power increases.

To gain more quantitative insight, we calculate the correla-
tion function analytically, based on the following expression:

FIG. 6. Normalized bunching B̃(τ ) as a function of τ in units of
τSD for various laser powers.

FIG. 7. Plain curves (dashed curves): Numerical simulation [an-
alytical calculation using Eq. (8)] of B̃(τ ) as a function of τ in units
of τSD for two laser powers. Dotted gray lines: Exponential fits of the
simulations.

g(2)(τ ) = 1

N

∫∫
dωdω′P (ω)Css(ω)P(ω′, t + τ |ω, t )Css(ω

′),

(6)
where N = [

∫
P (ω)dωCss(ω)]2. We have introduced the SD

kernel [41]

P(ω′, t ′|ω, t ) =
exp

(
− ω′ − ωe−(t ′−t )/τSD

2�2(1 − e−2(t ′−t )/τSD )

)
√

2π�
√

1 − e−2(t ′−t )/τSD
, (7)

which expresses the conditional PDF for the emitter frequency
to be found at position ω′ at time t ′ given position ω at time t .
In the limit where �ωinhom � �ωhom, the intensity correlation
then reads

g(2)(τ ) = 1

2
√

π ln 2

�ωinhom

�ωhom
f

(
2�ωhom

√
ln 2

�ωinhom

√
1 − e−2τ/τSD

)
,

(8)
with

f (x) = √
πxex2

erfc(x). (9)

Figure 7 displays the analytical result of Eq. (8) together
with the numerical simulation for two different powers (and
therefore two different values of �ωhom/�ωinhom). An expo-
nential fit is also plotted to indicate the clear deviation from
the exponential behavior. Based on Eq. (8), we can infer an
approximate expression for τb in the limit �ωinhom � �ωhom,
which provides

τb = K

(
�ωinhom

�ωhom

)2

τSD, (10)

with K ≈ 18. This expression for τb can be understood in-
tuitively. At short times, the OU process is equivalent to the
Wiener process of Brownian motion. Therefore, an emitter
close to resonance at t = 0 probes a spectral range grow-
ing as σ (t ) ≈ �

√
t/τSD. It then escapes resonance when the

standard deviation of SD becomes comparable to its homoge-
neous linewidth, i.e., for σ (t = τb) ∼ �ωhom, yielding τb ∝
τSD(�ωhom/�ωinhom )2.
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FIG. 8. Bunching time τb as a function of the laser power for
�ωhom/�ωinhom ≈ 130. Blue line: Numerical simulation. Orange
dashed line: Calculation from Eq. (10). Gray dashed line: High power
asymptote τb = τSD/2.

Figure 8 shows the bunching time τb as calculated numer-
ically as a function of the laser power. At low powers, it is
constant, given by Eq. (10). Above saturation, τb increases
due to power broadening prolonging the duration of bright
periods, and then saturates when the homogeneous linewidth
exceeds the width of the inhomogeneous distribution, with in
this case τb = τSD/2. The factor 1/2 originates from the fact
that, in the limit �ωhom � �ωinhom, the system is first-order
insensitive to SD [24]. Therefore, at second order, fluctuations
of ω(t ) at a frequency f yield fluctuations of C(t ) at a fre-
quency 2 f and thus the associated decay time is halved.

We now consider the GRJ model. Figure 9 shows the nu-
merically calculated B̃(τ ) at various laser powers. Contrarily
to the OU case, here the bunching decay time and shape do not
vary with the power. This can be seen intuitively: if the emitter
is on resonance with the laser at t = 0, it stays so on average
during τSD, independently of the laser power, before a spectral
jump detunes the emitter transition energy. The laser power
only acts on the bare probability to be close to resonance at a
given time, and therefore on B(0), as discussed in the previous
section. As a consequence, B̃(τ ) directly inherits its time
dependence from the SD correlation function 〈ω(t + τ )ω(t )〉

FIG. 9. Normalized bunching B̃(τ ) as a function of τ in units of
τSD for various laser powers.

and exhibits an exponential decay of characteristic time τb =
τSD, as verified in our simulations.

These observations establish that the long-time g(2)(τ )
carries clear experimentally accessible signatures of the un-
derlying SD stochastic process: In the case of the OU model,
g(2)(τ ) decays nonexponentially according to Eq. (8), and the
decay time increases with the laser power above saturation.
In the case of a GRJ mechanism, g(2)(τ ) decays exponentially
and the bunching time is independent of the power. Only in
the latter case do we have τb = τSD.

We observe that a power-independent decay of g(2)(τ )
is a general signature of discrete jumps of the emitter to
uncorrelated spectral positions within the inhomogeneous dis-
tribution. The decay of g(2)(τ ) is then directly inherited from
the time statistics of the jumps and is exponential in the case
of Poissonian jumps. On the opposite, a power-dependent
decay time indicates that intermediate spectral positions of the
emitter are probed increasingly as power broadens the emitter,
and therefore constitutes a general signature of continuous SD
mechanisms.

In the Supplemental Material (Secs. S4 and S5), we
provide examples of emitters subject to more complex mech-
anisms, such as a combination of two SD components, as
well as a contribution from blinking, thereby showing that our
approach can, in principle, be generalized to a wide range of
experimental situations.

B. Intensity fluctuations

In this section, we investigate additional consequences of
SD on the photon statistics of resonance fluorescence. We
show that the long-time photon statistics are affected by SD
in a way that is inherited from the microscopic model.

1. Standard deviation of the intensity distribution

At a fixed laser detuning, the average intensity—or count
rate—that the emitter scatters is simply given by 〈C(ωL )〉 =∫

dωP (ω)C(ω). The count rate is typically measured by inte-
grating the photon number over a macroscopic time T . This
measured intensity fluctuates because of shot noise, with a
relative intensity noise given by �IT /〈I〉T = 1/

√〈N〉T , where
〈N〉T is the average number of photons detected during T .
These Poissonian fluctuations can be mitigated by optimizing
the photon collection efficiency. Additional sources of noise
can cause the variance VT of the photon number during T to
exceed the Poisson limit VT = 〈N〉T . The Mandel parameter
Q = VT /〈N〉T − 1 relates the long-time intensity fluctuations
to the second-order intensity correlation via the following
relation [42–45]:

Q = 〈N〉T

T

∫ T

−T
dτ

(
1 − |τ |

T

)(
g(2)(τ ) − 1

)
. (11)

If g(2)(τ ) = 1, we have Q = 0 and the intensity noise is
given by the shot noise. As can be seen from Eq. (11), the
presence of finite bunching increases the intensity noise above
the Poisson limit. Since SD is associated with photon bunch-
ing, as discussed in the previous sections, it is also expected
to yield additional intensity fluctuations at macroscopic times
(T � τSD).
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FIG. 10. Relative intensity noise as a function of the integration
time T . Blue (orange) dots: Simulations for the GRJ (OU) model.
Blue (orange) dashed lines: Calculation for the GRJ (OU) model
using Eq. (14) [Eq. (13)]).

To isolate the contribution of SD to the intensity noise, we
now consider the high intensity (or high photon collection)
limit where the shot noise can be neglected (〈N〉T � 1). Since
the latter is statistically independent from the SD noise, it
can be reintegrated at a later step (see Supplemental Material
Sec. S3 [46]). In this limit, the relative intensity fluctuations
take the form

�IT

〈I〉T
=

[
1

T

∫
B(τ )dτ

] 1
2

, (12)

which, when the laser is fixed at the center of the inhomoge-
neous distribution, writes

�IT

〈I〉T
=

[
1√

π ln 2T

�ωinhom

�ωhom

∫
B̃(τ )dτ

] 1
2

. (13)

In the case of GRJ model, Eq. (13) further simplifies to

�IT

〈I〉T
=

√
1√

π ln 2

�ωinhom

�ωhom

τSD

T
. (14)

In the case of SD based on OU process, the integral in
Eq. (13) has, to the best of our knowledge, no analytical
solution. We therefore perform a numerical evaluation of this
expression. Figure 10 shows the result of these calculations
together with a numerical simulation for varying integration
time, at low power. The simulations and the analytical calcu-
lations are in good agreement, in particular, for T � τSD. The
intensity fluctuations for the OU process are smaller than in
the GRJ case, due to the fact that B(τ ) decays much faster
in the former case. On the other hand, both have identical
dependence on the integration time T . Therefore, the intensity
noise at a given power is not sufficient to identify the SD
process without prior knowledge of τSD.

Figure 11 shows the power dependence of the relative
intensity noise, as calculated from Eq. (13). In both cases,
the fluctuations decrease with increasing power. However, in
the case of the GRJ model, the reduction occurs around the
saturation power, while in the OU model, the reduction occurs
at a power such that �ωhom ∼ �ωinhom, which is much higher
in many practical situations where �ωinhom � 1/T2. The

FIG. 11. Relative intensity noise as a function of the excitation
laser power.

example of Fig. 11 is taken with �ωinhom/�ωhom ≈ 50, lead-
ing to a twofold decrease at P ≈ 103Psat in the OU case.
Therefore, knowing the saturation power, the power depen-
dence of the intensity fluctuations constitutes a macroscopic-
time manifestation of the underlying microscopic SD mecha-
nism.

2. Skewness of the intensity distribution

Another informative aspect carried in the long-time inten-
sity fluctuations is the skewness of the intensity distribution.
The skewness quantifies the asymmetry of a distribution and
is defined as

γ1 =
〈(

I − 〈I〉T

�IT

)3
〉
. (15)

For a Poisson distribution, γ1 = �IT /〈I〉T . Figure 12 plots
the skewness of the time trace used in the previous section,
normalized by the intensity noise. In the OU model, we obtain
a close to Poissonian skewness γ1 ≈ �I/I for all bin sizes. On
the contrary, in the GRJ model, we observe super-Poissonnian
skewness γ1 ≈ 2�I/I , demonstrating an additional impact of
the SD mechanism on the statistics of the integrated intensity.

The super-Poissonian skewness of the intensity distribu-
tion in the case of the GRJ model can be well understood

FIG. 12. Relative skewness as a function of the integration time.
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(a)

(b)

FIG. 13. (a) Intensity time trace with integration time T =
100τSD. (b) Blue curve: Histogram of the intensities. Orange curve:
Fit using a gamma distribution.

considering that the duration of the stable periods—as de-
fined as the time between two jumps—is exponentially
distributed, an elementary property of Poisson processes.
During the time Tbin, there are, on average, Tbin/τSD sta-
ble periods. The fraction of them which are bright (i.e.,
ω ≈ ωL) is ∼�ωhom/2

√
π ln 2�ωinhom, where we have sup-

posed a Gaussian PDF and zero detuning (ωL = ω0). The
average number of bright stable periods during Tbin is Nb =
(Tbin/τSD)�ωhom/2

√
π ln 2�ωinhom. By making the approx-

imation that the number of bright periods is independent
of their duration—which is only valid asymptotically—the
intensity can then be written as a sum of exponentially dis-
tributed random variables. Therefore, the intensity is itself a
random variable whose distribution is a gamma distribution
of parameters Nb and τc. This distribution has a skewness
of γ1 = 2�I/I . Figure 13(a) shows an intensity trace, where
the occurrence of short periods of brightness sizably higher
than average can be observed as a manifestation of the asym-
metry of the intensity distribution. Figure 13(b) shows the
histogram of the integrated intensities over a long period,
together with a fit using the gamma distribution, showing the
excellent agreement with the simulation. Such a histogram
can provide an estimation of the SD time, based on prior
knowledge of �ωhom/�ωinhom. By using Eq. (14) together
with the relation γ1 = 2�I/I valid for any gamma distribu-
tion, we obtain τSD = √

π ln 2 �ωinhom
�ωhom

T (γ1/2)2, which we have
verified provides back the input value used in the simula-
tion, within 10%. For comparison, we also simulate a time

(a)

(b)

FIG. 14. (a) Intensity time trace generated using the OU model.
(b) Blue curve: Histogram of the intensities. Orange curve: Fit using
a Poisson distribution.

trace [shown in Fig. 14(a)] and the corresponding intensity
histogram [Fig. 14(b)] in the case of the OU model. The latter
can be best fitted with a Poisson distribution, consistent with
the Poissonian skewness discussed above. Note the nonzero
intercept in this case as opposed to the GRJ case. These
observations suggest that measurement of super-Poissonian
skewness in intensity traces provides evidence for a jump-
based SD process, as well as an estimation of the SD time.

IV. DISCUSSION AND CONCLUSION

We have provided a general framework to describe and
analyze the photon statistics of spectrally diffusive emitters
resonantly driven by a cw laser. Our simulations, supported by
analytical calculations, have evidenced several experimentally
accessible signatures of the discrete or continuous nature of
the stochastic process governing the variations of the emitter
transition energy in time. Two of these characteristic signa-
tures are associated with the intensity correlation function g(2).
As a general rule, a decrease in the amount of bunching that
is not accompanied by an increase in the bunching decay time
is characteristic of discrete jumps to uncorrelated positions.
In this regard, a recent experimental study has established
the presence of power-dependent bunching in the g(2) of a
B center in hBN [10]. In light of the results exposed in
the present paper, we can attribute the SD mechanism of B
centers to a discrete jump process, owing to the fact that the
bunching timescale is almost independent of the power above
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saturation (up to P ≈ 100Psat). This observation is consistent
with what has been demonstrated with other color centers in
hBN based on photon correlation Fourier spectroscopy [29].
In the latter reference, the GRJ process is evidenced by a
direct measurement of the spectral correlation function, which
would not be possible in the case of B centers due to their
much narrower homogeneous and inhomogeneous widths. As
a property of the GRJ model that we have established in
Sec. III, the bunching time is equal to the SD time, which
in the case of B centers has been measured to be ∼30 µs
[10]. The present paper provides guidelines for a more in-
depth investigation of SD in these systems, as well as in a
large variety of other single-photon sources. It can be readily
extended to other potential microscopic models, as well as
to other experimental processes. As an example, an alterna-
tive method that does not require resonant excitation is to
filter the emitter fluorescence with a bandwidth narrower than
the inhomogeneous linewidth. In the Supplemental Material
(Sec. S1) [46], we investigate the statistical properties of light
filtered from nonresonantly excited emitters. We show that it
shares some similarities with resonance fluorescence, where
the spectral selectivity is implemented by the resonant laser. It
therefore carries analogous signatures. For instance, observa-
tion of a bunching time independent of the filter width implies
discrete jumps to the whole inhomogeneous distribution. In

addition, the bunching time associated with continuous diffu-
sion is also shorter than the SD time, which possibly modifies
the conclusions of prior work using this technique [8]. We
also present examples of more complex situations, where the
emitter subject to blinking (Sec. S4), or where the emitter
subject to more than one SD mechanism (Sec. S5) illustrating
thereby the versatility of our approach. We note that, in the
presence of blinking, more detailed studies will be needed
to properly disentangle the effect of both mechanisms in the
photon statistics.

Given the ubiquity of SD processes in condensed matter
as well as the importance of resonance fluorescence in the
study and control of solid-state quantum emitters, we expect
our paper to play a helpful role in the general understanding
and technological development of quantum dots and color
centers, with applications to quantum computing and quantum
networks.
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[11] P. Michler, A. Imamoğlu, M. D. Mason, P. J. Carson, G. F.
Strouse, and S. K. Buratto, Quantum correlation among pho-
tons from a single quantum dot at room temperature, Nature
(London) 406, 968 (2000).

[12] C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y.
Yamamoto, Indistinguishable photons from a single-photon de-
vice, Nature (London) 419, 594 (2002).

[13] N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D.
Gershoni, B. D. Gerardot, and P. M. Petroff, Entangled photon
pairs from semiconductor quantum dots, Phys. Rev. Lett. 96,
130501 (2006).

[14] F. Jahnke, C. Gies, M. Assmann, M. Bayer, H. A. M. Leymann,
A. Foerster, J. Wiersig, C. Schneider, M. Kamp, and S. Höfling,
Giant photon bunching, superradiant pulse emission and exci-
tation trapping in quantum-dot nanolasers, Nat. Commun. 7,
11540 (2016).

[15] T. Schröder, S. Bange, J. Schedlbauer, F. Steiner, J. M. Lupton,
P. Tinnefeld, and J. Vogelsang, How blinking affects photon
correlations in multichromophoric nanoparticles, ACS Nano 15,
18037 (2021).

[16] T. Fink, A. Schade, and S. Höfling, C. Schneider, and A.
Imamoglu, Signatures of a dissipative phase transition in photon
correlation measurements, Nat. Phys. 14, 365 (2018).

155308-9

https://doi.org/10.1038/nphoton.2016.186
https://doi.org/10.1038/s42254-021-00398-z
https://doi.org/10.1038/s42254-023-00583-2
https://doi.org/10.1364/OE.14.006333
https://doi.org/10.1103/PhysRevA.76.033824
https://doi.org/10.1103/PhysRevLett.111.177401
https://doi.org/10.1038/nphoton.2010.174
https://doi.org/10.1103/PhysRevB.86.115330
https://doi.org/10.1103/PhysRevLett.116.033601
https://doi.org/10.1103/PhysRevB.107.195304
https://doi.org/10.1038/35023100
https://doi.org/10.1038/nature01086
https://doi.org/10.1103/PhysRevLett.96.130501
https://doi.org/10.1038/ncomms11540
https://doi.org/10.1021/acsnano.1c06649
https://doi.org/10.1038/s41567-017-0020-9


DELTEIL, BUIL, AND HERMIER PHYSICAL REVIEW B 109, 155308 (2024)

[17] C. Fournier, A. Plaud, S. Roux, A. Pierret, M. Rosticher, K.
Watanabe, T. Taniguchi, S. Buil, X. Quélin, J. Barjon, J.-P.
Hermier, and A. Delteil, Position-controlled quantum emitters
with reproducible emission wavelength in hexagonal boron ni-
tride, Nat. Commun. 12, 3779 (2021).

[18] A. Gale, C. Li, Y. Chen, K. Watanabe, T. Taniguchi, I.
Aharonovich, and M. Toth, Site-specific fabrication of blue
quantum emitters in hexagonal boron nitride, ACS Photonics
9, 2170 (2022).

[19] B. Shevitski, S. M. Gilbert, C. T. Chen, C. Kastl, E. S. Barnard,
E. Wong, D. F. Ogletree, K. Watanabe, T. Taniguchi, A. Zettl,
and S. Aloni, Blue-light-emitting color centers in high-quality
hexagonal boron nitride, Phys. Rev. B 100, 155419 (2019).

[20] R. Kubo, Note on the stochastic theory of resonance absorption,
J. Phys. Soc. Jpn. 9, 935 (1954).

[21] P. W. Anderson, A mathematical model for the narrowing of
spectral lines by exchange or motion, J. Phys. Soc. Jpn. 9, 316
(1954).

[22] A. Berthelot, I. Favero, G. Cassabois, C. Voisin, C. Delalande,
P. Roussignol, R. Ferreira, and J. M. Gérard, Unconventional
motional narrowing in the optical spectrum of a semiconductor
quantum dot, Nat. Phys. 2, 759 (2006).

[23] A. Berthelot, C. Voisin, C. Delalande, P. Roussignol, R.
Ferreira, and G. Cassabois, From random telegraph to Gaus-
sian stochastic noises: Decoherence and spectral diffusion in a
semiconductor quantum dot, Adv. Math. Phys. 2010, 494738
(2010).

[24] A. Kuhlmann, J. Houel, A. Ludwig, L. Greuter, D. Reuter, A. D.
Wieck, M. Poggio, and R. J. Warburton, Charge noise and spin
noise in a semiconductor quantum device, Nat. Phys. 9, 570
(2013).

[25] P. D. Reilly and J. L. Skinner, Spectral diffusion of single
molecule fluorescence: A probe of low-frequency localized
excitations in disordered crystals, Phys. Rev. Lett. 71, 4257
(1993).

[26] R. G. DeVoe, A. Wokaun, S. C. Rand, and R. G. Brewer, Monte
Carlo theory of optical dephasing in LaF3 : Pr3+, Phys. Rev. B
23, 3125 (1981).

[27] R. Durrett, Probability: Theory and Examples (Cambridge Uni-
versity Press, Cambridge, 2019).

[28] P. E. Kloeden and E. Platen. Numerical Solution of Stochastic
Differential Equations (Springer, Berlin, 1992).

[29] B. Spokoyny, H. Utzat, H. Moon, G. Grosso, D. Englund,
and M. G. Bawendi, Effect of spectral diffusion on the coher-
ence properties of a single quantum emitter in hexagonal boron
nitride, J. Phys. Chem. Lett. 11, 1330 (2020).

[30] J. Wolters, N. Sadzak, A. W. Schell, T. Schröder, and O.
Benson, Measurement of the ultrafast spectral diffusion of
the optical transition of nitrogen vacancy centers in nano-size
diamond using correlation interferometry, Phys. Rev. Lett. 110,
027401 (2013).

[31] W. P. Ambrose and W. E. Moerner, Fluorescence spectroscopy
and spectral diffusion of single impurity molecules in a crystal,
Nature (London) 349, 225 (1991).

[32] K. Gao, H. Springbett, T. Zhu, R. A. Oliver, Y. Arakawa, and
M. J. Holmes, Spectral diffusion time scales in InGaN/GaN
quantum dots, Appl. Phys. Lett. 114, 112109 (2019).

[33] H. Utzat, W. Sun, E. K. Kaplan, F. Krieg, M. Ginterseder, B.
Spokoyny, N. D. Klein, K. E. Shulengerber, C. F. Perkinson,
M. V. Kovalenko, and M. G. Bawendi, Coherent single-photon
emission from colloidal lead halide perovskite quantum dots,
Science 363, 1068 (2019).

[34] R. Loudon, The Quantum Theory of Light (Oxford University
Press, Oxford, 2000).

[35] A. Berthelot, G. Cassabois, C. Voisin, C. Delalande, R.
Ferreira, P. Roussignol, J. Skiba-Szymanska, R. Kolodka, A. I.
Tartakovskii, M. Hopkinson, and M. S. Skolnick, Voltage-
controlled motional narrowing in a semiconductor quantum dot,
New J. Phys. 11, 093032 (2009).

[36] M. Pont, A.-L. Phaneuf-L’heureux, R. André, and S. Francœur,
Restoring the coherence of quantum emitters through opti-
cally driven motional narrowing forces, Nano Lett. 21, 10193
(2021).

[37] R. A. Bogaczewicz and P. Machinkowski, Resonance flu-
orescence of noisy systems, New J. Phys. 25, 093057
(2023).

[38] P. Palinginis, S. Tavenner, M. Lonergan, and H. Wang, Spec-
tral hole burning and zero phonon linewidth in semiconductor
nanocrystals, Phys. Rev. B 67, 201307(R) (2003).

[39] I. D. Abella, N. A. Kurnit, and S. R. Hartmann, Photon echoes,
Phys. Rev. 141, 391 (1966).

[40] D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B.
Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, and Y.
Yamamoto, Ultrafast optical spin echo in a single quantum dot,
Nat. Photonics 4, 367 (2010).

[41] H. Risken, The Fokker-Planck Equation Methods of Solution,
Applications (Springer-Verlag, Berlin, New York, 1989).

[42] L. Mandel, Sub-Poissonian photon statistics in resonance fluo-
rescence, Opt. Lett. 4, 205 (1979).

[43] R. Short and L. Mandel, Observation of sub-Poissonian photon
statistics, Phys. Rev. Lett. 51, 384 (1983).

[44] F. Treussart, R. Alléaume, V. Le Floc’h, L. T. Xial, J.-M.
Courty, and J.-F. Roch, Direct measurement of the photon
statistics of a triggered single photon source, Phys. Rev. Lett.
89, 093601 (2002).

[45] D. Canneson, L. Biadala, S. Buil, X. Quélin, C. Javaux,
B. Dubertret, and J.-P. Hermier, Blinking suppression and
biexcitonic emission in thick-shell CdSe/CdS nanocrystals at
cryogenic temperature, Phys. Rev. B 89, 035303 (2014).

[46] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.109.155308 for additional simulations and
calculations.

155308-10

https://doi.org/10.1038/s41467-021-24019-6
https://doi.org/10.1021/acsphotonics.2c00631
https://doi.org/10.1103/PhysRevB.100.155419
https://doi.org/10.1143/JPSJ.9.935
https://doi.org/10.1143/JPSJ.9.316
https://doi.org/10.1038/nphys433
https://doi.org/10.1155/2010/494738
https://doi.org/10.1038/nphys2688
https://doi.org/10.1103/PhysRevLett.71.4257
https://doi.org/10.1103/PhysRevB.23.3125
https://doi.org/10.1021/acs.jpclett.9b02863
https://doi.org/10.1103/PhysRevLett.110.027401
https://doi.org/10.1038/349225a0
https://doi.org/10.1063/1.5088205
https://doi.org/10.1126/science.aau7392
https://doi.org/10.1088/1367-2630/11/9/093032
https://doi.org/10.1021/acs.nanolett.1c02898
https://doi.org/10.1088/1367-2630/acfb2f
https://doi.org/10.1103/PhysRevB.67.201307
https://doi.org/10.1103/PhysRev.141.391
https://doi.org/10.1038/nphoton.2010.83
https://doi.org/10.1364/OL.4.000205
https://doi.org/10.1103/PhysRevLett.51.384
https://doi.org/10.1103/PhysRevLett.89.093601
https://doi.org/10.1103/PhysRevB.89.035303
http://link.aps.org/supplemental/10.1103/PhysRevB.109.155308

