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Electric dipole spin resonance in a single- and two-electron quantum dot defined in two-dimensional
electron gas at the SrTiO3/LaAlO3 interface
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We investigate the energy spectrum of a single- and two-electron quantum dot (QD) embedded in two-
dimensional electron gas at the interface between SrTiO3 and LaAlO3, in the presence of the external magnetic
field. For this purpose, the three-band model of 3d electrons defined on the square lattice of Ti ions was utilized.
We demonstrate that, for the weak parabolic confinement potential, the low-energy spectrum is sufficiently well
described by the effective Hamiltonian reduced to the one dxy orbital with the spin-orbit interaction originating
from the coupling to the dxz and dyz bands. This is not the case for stronger confinement where contribution of
the states related to the dxz/yz orbital is relevant. Based on the time-dependent calculations, we discuss in detail
the manipulation of the electron spin in a QD by external AC voltages, in the context of the electric dipole spin
resonance. The allowed and forbidden transitions are discussed in detail with respect to the parity selection rule.
Our calculations show that, for a single-electron QD, the spin flip in the ground state has the character of a
Rabi resonance, while for two electrons, the singlet-triplet transition is forbidden by the parity symmetry. For
the two-electron QD, we demonstrate that the spin-flip transition can still be accomplished via a second-order,
two-photon process that has a two-state Rabi character for low AC field amplitude. The violation of the parity
symmetry on the spin-flip transitions is also analyzed.
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I. INTRODUCTION

The spin dynamics of electrons confined in quantum dots
(QDs) has attracted increasing interest in recent years as
a fundamental aspect for constructing spin qubits for fu-
ture quantum information processing [1,2]. The key element
in utilizing spin qubits in quantum technology is effective
control of their states through coherent spin manipulation.
In the case of a single QD, this can be realized through
electron spin resonance-Rabi oscillations induced by exter-
nal microwave radiation, which drives resonant transitions
between the Zeeman-split energy levels in a magnetic field
[3–5]. Alternatively, two-electron spin states in QDs have
been demonstrated to be effectively tunable by exchange
coupling [6].

A significant breakthrough in this field has been achieved
in electrostatically defined QDs [7,8], where the microwave
field has been successfully replaced by AC gate voltages
[9,10]. Periodic changes in the potential induced by the
AC field affect the spin of the confined electron through
the momentum-dependent spin-orbit (SO) interaction [11,12].
This technique, called electric-dipole spin resonance (EDSR)
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[13–16], has been reported in two-electron double-QD sys-
tems using Pauli blockade of the current flow, which occurs
when the dots are occupied by electrons with parallel spins
[9,10].

The number of operations which can be performed on a
spin qubit is a result of the switching time (mainly determined
by the SO coupling strength) and the spin decoherence. The
latter is strongly influenced by the host material, which sets
the strength of hyperfine interaction (HFI) with nuclear spins
as well as the coupling of the electron spin with the lattice vi-
brations and charge fluctuations via the SO interaction. Thus,
the SO coupling, on the one hand, is responsible for coherent
spin manipulations, but on the other hand, it is also the source
of detrimental spin decoherence.

The two-dimensional electron gas (2DEG) formed at the
interface between SrTiO3 (STO) and other insulating transi-
tion metal oxides, such as LaAlO3 (LAO) [17], is considered a
promising material platform for QD-based spin qubits fabrica-
tion. The increasing interest in this platform is mainly because
the considered 2DEG interface exhibits a unique combina-
tion of characteristics, including high mobility [18], large
SO coupling [19,20], gate-tunable superconductivity [21–24],
magnetic ordering [25], and ferroelectricity [26]. Its suscepti-
bility to electrostatic gating, comparable with semiconductor
materials, has brought significant advances in oxide-2DEG
nanotechnology [27–30]. Authors of a recent study of sin-
gle QDs based on LAO/STO have revealed the Coulomb
blockade diamond characteristic for well-defined electrostatic
confinement [27]. The electron spin in STO-based QDs can
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be controlled by large SO coupling, switched on and off by
moderate gate voltages, which is hardly achievable with semi-
conducting platforms [19]. Note, moreover, that STO-based
2DEG is expected to have another significant advantage over
semiconductors. It is characterized by a smaller impact of
direct and indirect sources of decoherence, as the HFI with the
nuclear spin bath should be suppressed by the 3d character of
electrons—their wave functions have nodes at the nuclei posi-
tions [31]. All these properties, combined with the capability
to interconvert charge and spin currents through Edelstein and
spin Hall effects [32–35], exhibiting some of the highest effi-
ciencies among solid-state materials, make LAO/STO-based
QDs a promising platform for development of fast spin qubits
with inherent scalability of 2D systems. However, so far, the
electronic structure and spin dynamics in the STO-based QDs
have not been systematically explored. Note that the structural
lateral confinement of 2DEG at the SrTiO3/LaAlO3 interface
using nanolitography has also been applied [36] for formation
of QDs.

In this paper, based on the three-band model, we investigate
an electronic spectrum of single- and two-electron STO-based
QDs. We derive the simplified one-band Hamiltonian for the
dxy orbital with inclusion of the SO interaction and demon-
strate that it can sufficiently well describe the low-energy
range of the spectrum for the low parabolic confinement.
Based on the time-dependent scheme, we simulate the EDSR
with the electron spin in a QD controlled by the AC electric
field. The calculated transitions between states are discussed
with respect to the direct (single-photon) and second-order
(two-photon) processes determined by the parity symmetry
of states. The organization of this paper is the following: in
Sec. II, we present a theoretical model in the k-vector and real
space as well as the simplified Hamiltonian for the dxy band,
Sec. II contains the analysis of the electronic spectra of single-
and two-electron QDs as well as results of time-dependent
simulations (EDSR). Finally, the summary and conclusions
are included in Sec. IV.

II. THEORETICAL MODEL

A. Single-electron Hamiltonian for (001)-oriented
LAO/STO interface

At the (001)-oriented LAO/STO interface, the conduction
band is formed by the Ti t2g orbitals (dxy, dyz, dxz) coupled
through 2p states of oxygen on the square lattice. At the
interface, where a narrow quantum well is created [25,37,38]
as a result of the polarization discontinuity, the degeneracy of
the t2g bands is lifted, resulting in 2D discrete states with the
band dxy being lower in energy with respect to the bands dyz

and dxz. In wave-vector space, 2DEG at the (001) LAO/STO
interface can be described by the Hamiltonian [39]:

Ĥk =
∑

k

Ĉ†
k (Ĥ0 + ĤRSO + ĤSO + ĤB)Ĉk, (1)

where Ĉk = (ĉ↑
k,xy, ĉ↓

k,xy, ĉ↑
k,xz, ĉ↓

k,xz, ĉ↑
k,yz, ĉ↓

k,yz )T corresponds
to the vector of annihilation operators for electrons with spin
σ =↑,↓ on the orbital dxy, dxz, dyz, in the state k. In Eq. (1),

Ĥ0 describes the kinetic energy and is given by

Ĥ0 =

⎛
⎜⎝

ε
xy
k 0 0

0 εxz
k εh

k

0 εh
k ε

yz
k

⎞
⎟⎠ ⊗ σ̂0 , (2)

with dispersion relations:

ε
xy
k = 4tl − 2tl cos kx − 2tl cos ky − �E ,

εxz
k = 2tl + 2th − 2tl cos kx − 2th cos ky, (3)

ε
yz
k = 2tl + 2th − 2th cos kx − 2tl cos ky,

and the hybridization term defined by

εh
k = 2td sin kx sin ky. (4)

In Eqs. (3) and (4), tl and th are the hopping parameters (ener-
gies) for the light and heavy mass, and td is the energy which
determines the coupling between the dxz/dyz bands. Due to
the lack of the inversion symmetry occurring in a natural way
at interfaces, LAO/STO-based 2DEG exhibits SO coupling,
in this case, consisting of two components: the atomic and
Rashba parts. The former appears as an effect of the atomic
L · S interaction and can be expressed in the form [40]:

ĤSO = �SO

3

⎛
⎝ 0 iσx −iσy

−iσx 0 iσz

iσy −iσz 0

⎞
⎠ , (5)

where �SO determines the strength of the atomic SO energy,
and σx, σy, σz are the Pauli matrices.

The Rashba-like SO term ĤRSO, occurring as a result of
the mirror symmetry breaking, is induced by the out-of-plane
offset of atom positions at the interface and is given by

ĤRSO = �RSO

⎛
⎝ 0 i sin ky i sin kx

−i sin ky 0 0
−i sin kx 0 0

⎞
⎠ ⊗ σ̂0 , (6)

where �RSO determines the energy of the Rashba SO cou-
pling.

Finally, the coupling of the external magnetic field to the
spin and orbital momentum of electrons is considered by the
Hamiltonian:

ĤB = μB(L ⊗ σ0 + g13×3 ⊗ S) · B
h̄

, (7)

where μB is the Bohr magneton, g is the Landé factor, S =
h̄σ/2 with σ = (σx, σy, σz ), and L = (Lx, Ly, Lz ) with

Lx =
⎛
⎝ 0 i 0

−i 0 0
0 0 0

⎞
⎠, Ly =

⎛
⎝0 0 −i

0 0 0
i 0 0

⎞
⎠,

Lz =
⎛
⎝0 0 0

0 0 i
0 −i 0

⎞
⎠. (8)

In our calculations, we assume the tight-binding param-
eters tl = 875 meV, th = 40 meV, td = 40 meV, and �E =
47 meV taken from Ref. [21], the Landé factor [41] g = 3,
and the SO coupling parameters �SO = 10 meV, �RSO =
20 meV corresponding to that measured experimentally
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FIG. 1. Dispersion relation E (kx, ky = 0) for the (001)-oriented
LAO/STO heterostructures.

[19,20]. The dispersion relation E (k) for the chosen param-
eters is presented in Fig. 1.

For confined nanostructures such as QDs, it is necessary to
express the Hamiltonian in Eq. (1) in the real space. On the
square lattice, with the position indexed by (μ, ν), the single-
electron Hamiltonian in Eq. (1) takes the form:

Ĥ =
∑
μ,ν

Ĉ†
μ,ν (Ĥ0 + ĤSO + ĤB)Ĉμ,ν

+
∑
μ,ν

Ĉ†
μ+1,νĤxĈμ,ν +

∑
μ,ν

Ĉ†
μ,ν+1ĤyĈμ,ν

+
∑
μ,ν

Ĉ†
μ+1,ν−1ĤmixĈμ,ν

−
∑
μ,ν

Ĉ†
μ+1,ν+1ĤmixĈμ,ν + H.c., (9)

where Ĉμ,ν = (ĉ↑
μ,ν,xy,ĉ

↓
μ,ν,xy,ĉ

↑
μ,ν,xz,ĉ

↓
μ,ν,xz,ĉ

↑
μ,ν,yz,ĉ

↓
μ,ν,yz )T

corresponds to the vector of annihilation operators of electron
with spin σ =↑,↓ on the orbital dxy, dxz, dyz and the position
(μ, ν), Ĥ0 defines the on-site energy related to the kinetic
term and the confinement potential V (r):

Ĥ0 =
⎛
⎝4tl − �E 0 0

0 2tl + 2th 0
0 0 2tl + 2th

⎞
⎠ ⊗ σ̂0

+
⎛
⎝Vμ,ν 0 0

0 Vμ,ν 0
0 0 Vμ,ν

⎞
⎠ ⊗ σ̂0, (10)

while

Ĥx =
⎛
⎝−tl 0 0

0 −tl 0
0 0 −th

⎞
⎠ ⊗ σ̂0 + �RSO

2

⎛
⎝0 0 −1

0 0 0
1 0 0

⎞
⎠ ⊗ σ̂0,

(11)

Ĥy =
⎛
⎝−tl 0 0

0 −th 0
0 0 −tl

⎞
⎠ ⊗ σ̂0 + �RSO

2

⎛
⎝0 −1 0

1 0 0
0 0 0

⎞
⎠ ⊗ σ̂0,

(12)

Ĥmix = td
2

⎛
⎝0 0 0

0 0 1
0 1 0

⎞
⎠ ⊗ σ̂0 (13)

determines the energy of hopping to the nearest neighbors
related to the kinetic energy and Rashba SO coupling in
Eqs. (11), (12) as well as the hybridization in Eq. (13). In
Eq. (9), ĤSO and ĤB have the same form as in the wave-vector
space formulation and are given by Eqs. (5) and (7).

B. Simplified Hamiltonian for the dxy band

The position of the dxy band on the energy scale lowered
by �E relative to the dyz/dxz bands, together with the low
effective mass, may lead to the dominant role of dxy states
when the confinement of the QD is weak. In such a case, one
can anticipate that the influence of the higher-lying bands, dyz

and dxz, is negligible. It is essential to note that reducing the
Hamiltonian in Eq. (1) solely to the dxy part is not sufficient,
as it overlooks the SO coupling arising from the interaction
with the dxz/yz bands via the terms HRSO and HSO. For this
reason, more sophisticated methods are required to reduce the
full Hamiltonian to the effective one describing the dxy band.
To derive it, let us express the Hamiltonian in Eq. (1) in the
following form:

Ĥ =
(

Ĥxy Ĥc

Ĥ†
c Ĥxz/yz

)
− �E16×6, (14)

where

Ĥxy =
(

ε
xy
k + �E 0

0 ε
xy
k + �E

)
+ 1

2
gμBB · σ, (15)

Ĥxz/yz =

⎛
⎜⎜⎝

εxz
k + �E 0 0 0

0 εxz
k + �E 0 0

0 0 ε
yz
k + �E 0

0 0 0 ε
yz
k + �E

⎞
⎟⎟⎠,

(16)

while the coupling between the states dxy and dxz/dyz is given
by

Ĥc = �SO

3

(
0 i 0 −1
i 0 1 0

)

+ i�RSO

(
sin ky 0 sin kx 0

0 sin ky 0 sin kx

)
. (17)

Note that, in Ĥxz/yz we neglect the coupling of the bands
dxz/dyz to the magnetic field and their hybridization assuming
that the kinetic and SO energy constitute the major contribu-
tion to the energy.

Using the standard folding-down transformation, we can
reduce the 6 × 6 model in Eq. (14) to the effective 2 × 2
Hamiltonian for the dxy electrons:

Ĥ eff
xy = Ĥxy + Ĥc(Ĥxz/yz − E )−1Ĥ†

c . (18)

If we assume that �E is much larger than the kinetic energy in
the dxz/dyz band, we can expand (Ĥxz/yz − E )−1 from Eq. (18)
into the Taylor series:

(Ĥxz/yz − E )−1 = 1

ε
xz/yz
k + �E − E

14×4 ≈ 1

�E
14×4. (19)
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Then the effective Hamiltonian is reduced to the following
form:

Ĥ eff
xy =

[
εxz

k + 2�SOγ

3(1 − γ )

]
12×2 + 1

2
gμBB · σ

+α(σy sin kx − σx sin ky), (20)

where γ = �SO/3�E and α = �SO�RSO/3�E . The last term
in Eq. (20) is related to the SO coupling of the Rashba type
[12,42], like that observed in semiconductor 2DEGs. It clearly
demonstrates that the SO coupling for the dxy band results
from the relative interplay between the atomic and Rashba
coupling through the bands dxz/dyz.

The Hamiltonian in Eq. (20) in the real space takes the
form:

Ĥ eff
xy =

∑
μ,ν

Ĉ†
μ,ν

{[
4tl − 2�SOγ

3(1 − γ )

]
σ0

+ 1

2
gμBB · σ + Vμ,ν

}
Ĉμ,ν

+
∑
μ,ν

Ĉ†
μ+1,ν (−tlσ0 − iασy)Ĉμ,ν

+
∑
μ,ν

Ĉ†
μ,ν+1(−tlσ0 + iασx )Ĉμ,ν + H.c., (21)

which, as we will show later, can be successfully used to
describe the electronic structures of QDs with a weak con-
finement. In the above expression, Vμ,ν corresponds to the
confining potential of QD.

C. Integration of the two-electron problem

We consider the case of two electrons confined in a QD em-
bedded in 2DEG at the (001)-LAO/STO interface, described
by the Hamiltonian:

Ĥ2 = Ĥ (1) + Ĥ (2) + e2

4πε0εr12
, (22)

where Ĥ is the single-electron Hamiltonian in Eq. (9) or in
the simplified model reduced to the dxy band, Ĥ = Ĥ eff

xy , see
Eq. (21). We take the dielectric constant ε = 100ε0 which is
the upper limit of the electric field dependence of ε given in
Ref. [43]. Although the dielectric constant of STO is known
to be significantly dependent on the electric field and temper-
ature, the assumed value is justified near the interface where
the triangular quantum well is created and the electric field is
large—see Appendix.

The problem is solved in the basis of antisymmetrized
products of the single-electron eigenfunctions, i.e., in the ex-
act diagonalization approach applied for an electron pair. For
H	q = Eq	q, the single-electron eigenfunction is spanned
over the 3d spin orbitals of a Ti ion:

	q(x, y, σ ) =
∑

j

aq
j d j (x, y, σ )

=
∑

r j ,o j ,s j

aq
j dr j ,o j (x, y)Ssj (σ ), (23)

where the summation runs over the position of ions r j , orbitals
o j on the ion, and the z component of the spin indexed by s j ;

and S is the spin-up or spin-down eigenstate. In the sums, j is
equivalent to the triple indices (r j, o j, s j ), and drj ,o j is one of
the 3d orbitals localized on the ion position r j .

Evaluation of the matrix elements of the two-electron
Hamiltonian requires determination of the Coulomb integrals:

Iq1q2q3q4 = 〈
	q1 (1)	q2 (2)

∣∣ 1

r12

∣∣	q3 (1)	q4 (2)
〉

=
∑

j1, j2, j3, j4

(
aq1

j1
aq2

j2

)∗
aq3

j3
aq4

j4

× 〈
d j1 (1)d j2 (2)

∣∣ 1

r12

∣∣d j3 (1)d j4 (2)
〉
. (24)

The integral over the spin orbitals that appears in the sum is
calculated based on the formula:

〈
dj1 (1)d j2 (2)

∣∣ 1

r12

∣∣d j3 (1)d j4 (2)
〉

= δ
(
r j1 , r j3

)
δ
(
r j2 , r j4

)
δ
(
s j1 , s j3

)
δ
(
s j2 , s j4

)

×
{[

1 − δ
(
r j1 , r j2

)] 1

|r j1 − r j2 |
δ
(
o j1 , o j3

)
δ
(
o j2 , o j4

)

+ δ
(
r j1 , r j2

)
ε
(
o j1 , o j2 , o j3 , o j4

)}
, (25)

where

ε
(
o j1 , o j2 , o j3 , o j4

) = 〈
d j1 (1)d j2 (2)

∣∣ 1

r12

∣∣d j3 (1)d j4 (2)
〉

(26)

is the integral for the four orbitals localized on the same
ion. The Kronecker deltas in the second line in Eq. (25)
introduce the two-center approximation [44] and the or-
thogonality of the spin states. The third line is responsible
for the contributions to the integral with the first and sec-
ond electrons occupying different ions. In this term, we
assume that the Coulomb potential changes slowly, allow-
ing us to use the orthogonality of the orbitals. The last line
of Eq. (25) is responsible for the Coulomb integrals over
the same ion with electrons occupying various orbitals—that
is denoted as the ε integral. This integral is evaluated us-
ing the Monte Carlo technique. For orbitals numbered as
dxy = N exp(−Z∗r/3)xy → 1, dxz = N exp(−Z∗r/3)xz → 2,
and dyz = N exp(−Z∗r/3)yz → 3, using the hydrogenlike 3d
orbitals with the normalization factor N and the effective
atomic number Z∗ = 3.65 given by the Slater rules for the Ti
orbitals, the nonzero values of the on-site Coulomb integral
are ε(i, i, i, i) = 0.336, ε(i, j, i, j) = 0.306, and ε(i, j, j, i) =
0.015 (for i 	= j) in atomic units. The remaining 12 integrals
with other sequences of orbitals are zero due to negative parity
of the integrated functions.

In the calculations, we use up to 50 lowest-energy single-
electron states that produce 1225 Slater determinants as a
basis for the two-electron problem.

D. Time evolution

For discussion of spin dynamics in the external electric
field, we assume a periodic perturbation of the potential
VAC(t ) = −eFx sin(2πωt ). We solve the Schrödinger equa-
tion with the time-dependent Hamiltonian Ĥt = Ĥ + VAC(t ).
The solution is obtained on the basis of time-independent
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Hamiltonian eigenstates 	(t ) = ∑
m cm(t ) exp(−iEnt/h̄)|m〉,

with Ĥ |m〉 = Em|m〉. Upon substitution of this wave function
into the Schrödinger equation followed by a projection on the
〈n| state, we obtain a system of equations for cn(t ):

ih̄c′
n(t ) = −eF

∑
m

cm(t ) exp

[
i(En − Em)

t

h̄

]

× sin(2πωt )〈n|x|m〉, (27)

which is solved using the Crank-Nicolson scheme. In the
initial condition, we take cn(t = 0) = δn,1. We monitor the
maximal occupation (max |cn(t )|2) of the excited states during
the simulation that covers a time interval of 5 ns.

The present model assumes that the QD is a closed system
subject to external fields; hence, no decay and dephasing
mechanisms are considered. In QDs, the decay or relaxation
of the system from the excited state to the ground state with
opposite spin occurs with electron-acoustic phonon coupling
in the presence of the SO interaction. In terms of the EDSR
experiments, the problem was studied in Ref. [45]. The relax-
ation may induce off-resonant transition to a third state with a
lower energy than the couple participating in the EDSR. This
situation corresponds particularly to the double QD, when the
states participating in the EDSR are two spin states of charge
configuration corresponding to separated charges and the third
state—lower in energy—with both electrons in the deeper dot.
In this paper, with a single QD considered, there is no third
state of a lower energy that could appear in the time evolution.
In the simulations described in this paper, the ground state is
always the initial state of the EDSR process.

The main source of the spin decoherence in III-V or Si
QDs is the coupling of the electron spins with the nuclear
spin bath via the HFI. In terms of the EDSR experiments, this
decoherence leads to a reduction of the spin oscillations as a
function of time [46]. Here, STO-based 2DEGs are expected
to be characterized by a smaller decoherence, as the HFI with
the nuclear spin bath is intrinsically low in STO [47] since
the electron bands at the Fermi level are built of 3d atomic
orbitals which vanish at the nuclei. In addition to the spin
decoherence, the evolution of the states can be perturbed by
the charge noise. However, the latter is mitigated by a large
dielectric constant.

III. RESULTS

A. Single confined electron

The Hamiltonian in Eq. (9) in the basis limited to the
dxy orbitals is equivalent to a single-band Hamiltonian with

an isotropic electron effective mass of m = h̄2

2a2tl
= 0.286m0,

where a = 0.39 nm is the lattice constant. Since the electro-
static confinement is typically parabolic near its minimum, we
have considered single-electron spectra for the external poten-
tial in the form V (x, y) = 1

2 mω2
0r2, with h̄ω0 = 9.344 meV,

18.689 meV, and 37.378 meV, defining the range of a low,
moderate, and strong confinement, respectively. The spectra
for a single confined electron are given in Fig. 2, for the case
of the magnetic field applied perpendicular to 2DEG.

For the lowest confinement energy h̄ω0 [Fig. 2(a)], the
share of dxy orbitals [Fig. 2(b)] in the low-energy part of the

spectra is ∼1 and the basis limited to dxy orbitals [Fig. 2(c)]
provides nearly exact results in the low-energy range. For
h̄ω0 = 18.689 meV [Figs. 2(e) and 2(f)], the states with low
contribution of dxy orbitals appear already ∼40 meV above
the ground state, and the limited basis [Fig. 2(g)] produces
results close to exact ones only for a few lowest-energy states.
For the strongest confinement [Figs. 2(i)–2(k)], only the two
lowest-energy states can be described with the limited model.
The last column of the plots [Figs. 2(d), 2(h), and 2(l)] shows
the results obtained with the Hamiltonian in Eq. (21) reduced
to the dxy orbitals with SO coupling. Note that the simple
limitation of the basis to the dxy orbitals in the Hamiltonian
in Eq. (9) [Figs. 2(c), 2(g), 2(k)] excludes all SO coupling
interactions due to the absence of direct coupling between the
dxy,↑ and dxy,↓ spin orbitals. On the other hand, the reduced
model in Eq. (20) transfers the SO interactions originating
from the coupling to dxz and dyz orbitals to the basis of dxy.
Although the energy difference between the two approaches
is small, the SO interaction in the model reduced to the dxy

orbital is needed, as it allows for control of the electron spin
using the electric field.

Now let us consider the transitions driven by the AC elec-
tric field oriented within the plane of confinement. Direct
transitions between the ground state and the excited states are
governed by the values of the dipole matrix elements. The
values xnm = 〈n|x|m〉 for n = 1 are listed in Table I for the
magnetic field of 10 T oriented perpendicular to the confine-
ment plane. The spin-flipping transition from the ground state
to the first excited state 1 → 2 has a small but nonzero matrix
element. The states 1 and 2 have opposite parity; hence, the
matrix element for 1 → 2 transition is nonzero. The element
is small since the integration of the matrix element involves
products of the spin-up and spin-down contributions to both
states, and their dominant spins are opposite.

The matrix elements for spin-conserving transitions to the
third and fifth states are ∼500 times larger than 〈1|x|2〉. A
direct spin-flipping transition to the fourth state and the direct
spin-conserving transition to the sixth state are forbidden.
There is a symmetry reason for the vanishing transition ma-
trix elements to the fourth and sixth states. Note that the
Hamiltonian in Eq. (9) commutes with a generalized diagonal
parity operator 
 = diag[P,−P,−P, P,−P, P], where P is the
scalar parity operator Pψ (r) = ψ (−r). As a result, each of
the components of the eigenfunctions has a definite—even or
odd—scalar parity. It means that, for a given orbital, the P
parity of the spin-up and spin-down components is opposite.
Moreover, for a given spin, the scalar parity of the dyz and
dxz components is the same and opposite to the parity of
the dxy component. The eigenvalues of the 
 parity for the
lowest-energy levels are listed in Table I, and the spectrum
with parity marked by colors is plotted in Fig. 3(a). The fourth
and sixth states have the same parity as the ground state,
leading to the vanishing dipole matrix element for each of
the six components in the scalar product 〈1|x|n〉, with n = 4
or 6.

Figure 4 shows the maximum occupation for the driving
AC field of 1 mV/nm with the full (a) and reduced (b)
Hamiltonians, defined by Eqs. (9) and (21), respectively. In
Figs. 4(a) and 4(b), above the driving energy of 10 meV,
we can see wide overlapping maxima due to the allowed
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FIG. 2. Single-electron spectra as functions of the perpendicular magnetic field B, for parabolic confinement with energy (a)–(d) h̄ω0 =
9.344 meV, (e)–(h) h̄ω0 = 18.689 meV, and (i)–(l) h̄ω0 = 37.378 meV. The left column of plots (a), (e), and (i) presents the results of the
exact Hamiltonian in Eq. (9). The second column (b), (f), and (j) displays the share of dxy orbitals with the wave functions of the states within
the Hamiltonian in Eq. (9). The third column (c), (g), and (k) shows the spectra as obtained with the dxz and dyz orbitals excluded from the
basis, still with the Hamiltonian in Eq. (9). The last column (d), (h), and (l) shows the results of the effective Hamiltonian in Eq. (21) reduced
to the dxy orbitals.

spin-conserving transitions to the third and fifth states [cf.
Table I]. In the same energy range, the maximum occupancy
of the seventh energy level is also observed. Note, however,
that the direct transition 1 → 7 is forbidden by the parity
symmetry, but the energy difference E7 − E1 is nearly equal to
2(E3 − E1), so the transition to the seventh energy level occurs
through transitions via the third energy level 1 → 3 → 7. In
Fig. 4(a), the narrow yellow and red peaks ∼11 meV corre-
spond to two-photon transitions to the sixth and ninth states,
respectively, and appear at half the energy of the forbidden di-
rect (i.e., single-photon) transition. The two-photon processes

appear in the second-order time-dependent perturbation the-
ory via a third state m that intermediates the transition between
the initial and final states. In the second-order perturbation
theory, the values of the coefficients in the wave function
expansion are given by [48]

cn(t ) = cn(0) + c1
n(t ) + c2

n(t ), (28)

where

c(1)
n (t ) = −eF

h̄
xn1 exp

[
i
(ωn1 − ω′)t

2

]
sin

(
ωn1−ω′

2 t
)

(ωn1 − ω′)
, (29)
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TABLE I. The energy levels (second column) for h̄ω0 = 18.689 meV at B = (0, 0, 10) T. The third column gives the parity 
 eigenvalue.
The dipole matrix element with the ground state and the nth eigenstate is given in the fourth column for an electric field of 1 mV/nm. The
subsequent columns provide the contributions of the atomic spin orbitals to the Hamiltonian in Eq. (9) eigenstates.

n E + �E 
 |eFx1n| (meV) dxy ↓ dxy ↑ dxz ↓ dxz ↑ dyz ↑ dyz ↓
1 −29.30 −1 0 0.99493 0.00007 0.00085 0.00165 0.00085 0.00165
2 −27.57 1 0.00382 0.00010 0.99444 0.00186 0.00087 0.00186 0.00087
3 −12.72 1 1.866 0.98711 0.00019 0.00412 0.00223 0.00412 0.00223
4 −11.00 −1 0 0.00041 0.98529 0.00250 0.00465 0.00250 0.00465
5 −8.81 1 1.859 0.97891 0.00053 0.00783 0.00245 0.00783 0.00245
6 −7.08 −1 0 0.00039 0.97977 0.00313 0.00679 0.00313 0.00679
7 3.67 −1 0 0.95177 0.00103 0.01921 0.00438 0.01921 0.00438

and

c(2)
n (t ) = e2F 2

2ih̄2

∑
m

xnmxm1

[
exp

(
i
ωnm + ωm1 − 2ω′

2
t

)

× sin
(

ωnm+ωm1−2ω′
2 t

)
(ωm1 − ω′)(ωnm + ωm1 − 2ω′)

− exp

(
i
ωnm − ω′

2
t

)
sin

(
ωnm−ω′

2 t
)

(ωm1 − ω′)(ωnm − ω′)

]
,

(30)

with ω′ = hω/h̄ and ωnm = (En − Em)/h̄.
The formula for c(2)

n (t ) involves a sum of the matrix-
element products xnmxm1, with a resonance at 2hν = En − E1

(hence the two-photon nomenclature), due to the first term in
brackets of Eq. (30). Although the direct (first-order) transi-
tions 1 → 6 and 1 → 7 are forbidden by the same parity of the
initial and final states, the two-photon process is still allowed
due to nonzero values of matrix elements with |m〉 states of
the opposite parity.

At a lower-energy range of Fig. 4(a), we notice a peak at
hω = 5.53 meV for the transition to the third excited state.

FIG. 3. (a) The single-electron spectrum of Fig. 2(e) (h̄ω0 =
18.688 meV) but plotted with the colors indicating the 
 parity of
energy levels in a perpendicular magnetic field. The blue color stands
for the negative parity and the red for the positive parity. (b) The
single-electron spectrum with the same confinement energy but the
external magnetic field oriented in the x direction. The colors indicate
the sign of the x component of the spin.

This in turn is a three-photon (third-order) process at the
driving energy of 1

3 of the energy difference between the
energy levels (see Table I). The two-photon transition 1 → 3
is forbidden since the parity of any intermediate state m will
agree with the parity of states 1 or 3, thus making one of
the dipole matrix elements in the product equal to zero—see
Eq. (30). The contributions of the separate eigenstates as a
function of time for this transition is plotted in Fig. 4(d). The
apparent large width of the lines results from rapid oscillations
of the contributions |c3|2 and |c1|2. In Fig. 4(a), the peak
does not exactly reach 1. In Fig. 4(c), we can see that the
contribution of the seventh energy level reaches maximum at
the same moment as the contribution of the third state, which
limits the maximal value of the latter.

The lowest-energy peak in Figs. 4(a) and 4(b) is the 1 →
2 spin-flipping transition near the driving energy of 1.727
meV—compare with Table I. This is the EDSR spin-flip tran-
sition that we focus on in this paper. We find that, at the
resonance, for the amplitude of the electric field of F = 1
mV/nm, the spin inversion time is 537.9 ps, and for the
amplitude decreased by half, the spin inversion time is twice
longer—just as for the Rabi oscillation involving two states
only. The time dependence of the contributions for this tran-
sition is given in Fig. 4(d). Note that, indeed, at the driving
frequency for the spin flip, the higher-energy states have only
a residual presence in the wave function; hence, the transitions
can be identified as the Rabi resonance.

The reduced model incorporating the SO effects to the
effective dxy Hamiltonian in Eq. (21), presented in Fig. 4(b),
produces similar results for the direct transitions, including
the lowest-energy spin flip, and the structure of the wide max-
ima between 10 and 30 meV is similar. The matrix elements
for the reduced model are given in Table II.

The estimated spin-flip time at the resonance for the am-
plitude of 1 mV/nm is 379.81 ps. Note, however, that the
two-photon transitions to the sixth and eighth states as well
as the three-photon transition to the third state of Fig. 4(a) are
missing, as these transitions occur via the state with the dxz

and dyz components. Moreover, a narrow peak corresponding
to the transition to the seventh excited state at 8.4 meV in
Fig. 4(b) is pronounced but missing in Fig. 4(a). In summary,
the reduced model does not exactly reproduce the results
of the full model for the higher-order transition processes
that involve intermediate states between the initial and final
states in terms of the time-dependent perturbation theory.
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FIG. 4. The results of the integration of the time-dependent Schrödinger equation for h̄ω0 = 18.689 meV, the perpendicular magnetic field
of 10 T with the AC electric potential, VAC(t ) = −eFx sin(ωt ). The simulation time is set to 5 ns and the amplitude of the electric field to 1
mV/nm. In (a) and (b), we plot the maximal occupancy of the nth state defined as maximal |cn(t )|2 over the simulation time. (a) shows the
results for the Hamiltonian in Eq. (9) and (b) the results for the Hamiltonian in Eq. (21), reduced to the dxy orbitals. We plot the results obtained
with the full Hamiltonian as in (a). The lines show contributions of eigenstates as a function of time for (c) h̄ω = 1.727 meV, where the
peak for the direct 1 → 2 transition is found in (a), (d) h̄ω = 5.53 meV, for the third-order transition peak 1 → 3 of (a), and (e) off-resonant
excitation with h̄ω = 10 meV. In (c)–(e), we use the same colors for the same states as in (a) and (b). Additionally, in (c) and (e), we plotted
the contribution of the ground state with the black line.

The spectrum of the reduced Hamiltonian misses part of the
higher-energy states, which thus cannot assist in the transi-
tions as the intermediates. Importantly, the EDSR transition
between the lowest states with opposite spins is correctly
captured by this simplified one-band model.

Finally, our calculations demonstrated that the spin flip
from the ground state is only possible with the presence of
both atomic SO and Rashba couplings. The hopping Rashba
interaction is diagonal in spin and cannot drive spin transitions
by itself. On the other hand, the atomic SO coupling does not
couple the dxy spin-up and spin-down orbitals which domi-
nate in the lowest-energy spectrum. Therefore, only a mutual
presence of both SO interactions opens the way for spin flips.

The manipulation of the spin with an electric field is also
possible for the magnetic field oriented within the plane of
confinement. Figure 3(b) shows the energy spectrum as a
function of Bx. The second and third excited energy levels
in Fig. 3(b) are nearly two times degenerate with a splitting
of ∼0.01 meV at Bx = 10 T. At the scale of the figure, the
lifting of the degeneracy is not resolved. For Bx = 10 T and
the amplitude of the electric field of 1 mV/nm, the matrix
element for the lowest-energy spin-flip transition induced by

TABLE II. Same as Table I only for the dxy-reduced Hamiltonian
in Eq. (21).

n E + �E 
 |eFx12| (meV) dxy ↓ dxy ↑
1 17.404 −1 0 0.9998 0.0002
2 19.139 1 0.0054 0.00029 0.99971
3 34.157 1 1.80 0.99960 0.0004
4 35.899 −1 0 0.00049 0.99951
5 38.198 1 1.880 0.99951 0.00049
6 39.922 −1 0 0.00058 0.99942
7 50.901 −1 0 0.00069 0.99931

the AC electric field oriented in the x direction is 3.7 µeV.
On the other hand, this matrix element is 0 for the AC field
oriented in the y direction. The role of the orientation of
the AC field and the external magnetic field is characteristic
for the Rashba 2D interaction HR = αR(kyσx − kxσy) [12,42],
which translates the motion in the y (x) direction into an
effective magnetic field oriented along the x (y) axis [49]. The
external magnetic field (Bx, 0, 0) polarizes the spin parallel
or antiparallel to the x direction. Then the motion induced
by the AC electric field parallel to the x direction induces
the y component of the magnetic field that induces the spin
flips [49]. On the other hand, the AC field oriented in the y
direction produces an effective magnetic field oriented parallel
or antiparallel to the external magnetic field. It can only affect
the spin-splitting energy but does not couple the states with
spins oriented in opposite directions along the x axis.

The analysis given above describes the spin-flipping transi-
tions for the energy difference between the low- and high-spin
states of a few meV. Note, however, that EDSR experiments
[2] are usually performed with the AC field applied to the
gate electrodes in a microwave range of ∼10 GHz, which
corresponds to the spin-splitting energy of ∼0.041 meV. For
the single-electron spectrum with h̄ω0 = 18.689 meV [cf.
Figs. 2(e)–2(h)], this energy difference between the spin-down
ground state and the spin-up first excited state corresponds to
the magnetic field of the magnitude Bz = 0.24 T for which the
dipole matrix elements 〈1|eFx|2〉 are lower than at Bz = 10 T.
The dependence of 〈1|eFx|2〉 on the magnetic field is pre-
sented in Fig. 5(a). Note that the transition matrix element
〈1|eFx|2〉 is calculated by summation of the integrals over
the six spin-orbital channels. We find that, at B = 0, the sum
of components integrated over the spin-up orbitals is exactly
opposite to the ones integrated over the spin-down orbitals
[see Fig. 5(a)]. In consequence, the transition matrix element
at B = 0 is exactly zero. As Bz increases, the spin-down
components are promoted by the spin Zeeman effect so that
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FIG. 5. The results for the single-electron and confinement en-
ergy h̄ω0 = 18.688 meV. (a) The absolute value of the dipole matrix
element for AC field of F = 1 mV/nm (blue line) and the absolute
values of the contributions to the matrix element from the spin-up and
spin-down components. These contributions have opposite sign and
exactly cancel each other at B = 0. (b) The spin-flip time as a func-
tion of the AC amplitude for Bz = 0.24 T, where the energy splitting
between the ground (spin-down) and the first excited state (spin-up)
is ∼0.0414 meV, which corresponds to the microwave frequency of
∼10 GHz. (c) The maximal occupancy of the lowest-energy levels
for the time evolution starting from the ground state and lasting 5 ns.
The AC field amplitude increases from the bottom to the top. The
subsequent plots for higher amplitudes are shifted by +1 each.

the contributions to the matrix element from both the spin
channels become unequal, which results in the nonzero value
which changes a linear function of the external magnetic
field [Fig. 5(a)]. For the chosen magnetic field Bz = 0.24 T
and F = 1 mV/nm, we estimate the spin-flip time equal to
22.36 ns (compare with the spin-flip transition at 10 T dis-
cussed in Sec. III A, which is 537.9 ps only). The spin-flip
time can be shortened by applying AC field of the larger
amplitude. Note, however, that the increased amplitude of
the AC field may lead to appearance of the higher-energy

states and changes the nature of the transition from the Rabi
resonance to a more complex dynamics. The spin-flip time
as a function of the amplitude is plotted in Fig. 5(b) and the
maximal occupancy of the states in Fig. 5(c). We find that
the shortest spin-flip time of 5.71 ns is found near F � 7
mV/nm. Interestingly, the spin-flip time is an inverse function
of the matrix element—as in the Rabi oscillation—only for
F < 4 mV/nm. At larger F , the third and fifth states (both
spin-down) appear over the entire studied range of h̄ω—
see Fig. 5(c). Importantly, the fourth and sixth states (both
spin-up) appear within the range of the resonant spin-flip
maximum, which indicates that the electron is first transferred
to the second energy level and next strongly couples to higher
spin-up energy states [50]. Note that the spin-flip resonance in
Fig. 5(c) is blueshifted for a higher AC field amplitude. This
effect is known as the Bloch-Siegert shift [51].

B. Two confined electrons

1. Spectra

The energy spectra for the confined electron pair are
displayed in Fig. 6, for the exact Hamiltonian in Eq. (9)
(first three columns of plots) and the effective Hamiltonian
in Eq. (21). In the third column, the basis was limited to
solely dxy orbitals in the Hamiltonian in Eq. (9). The effective
Hamiltonian (fourth column) and the limited basis applied
to the exact Hamiltonian (third column) produce similar re-
sults although with a small shift on the energy scale. The
splitting between the energy levels that moves parallel in the
magnetic field is smaller in the exact Hamiltonian (the first
column in Fig. 6) than in the approximate approaches (the
last two columns in Fig. 6). The share of dxy orbitals in
the low-energy states depends on the energy eigenvalue and
the strength of confinement similarly as in the single-electron
case (cf. Fig. 2).

In the following, we are mainly interested in the spin flip
between the spin-singlet ground state and the first excited
triplet state with the spins polarized antiparallel to the external
magnetic field. The contributions of the orbitals, the parity,
and the dipole matrix elements are given in Table III for
h̄ω0 = 18.688 meV and the perpendicular magnetic field of
12 T. In the table, we see that the transition of main interest
1 → 2 is forbidden by the parity symmetry, while the transi-
tions are allowed to the pairs of even 
 parity states—the third
and fourth as well as the seventh and eighth. Each pair is split
by ∼1 meV, and the energy levels of the pair move parallel
when the magnetic field is changed [Fig. 6(e)]. In each pair,
the transition to a lower-energy state has a much smaller prob-
ability than to a higher-energy one which can be explained as
follows. In the basis limited to dxy orbitals (third column in
Fig. 6), the spatial and spin degrees of freedom separate due to
the absence of the SO coupling effects. Then the lower-energy
state corresponds to the spin triplet with spin z component
equal to zero and the antisymmetric spatial wave function. The
higher-energy state corresponds to the symmetric spatial wave
function characteristic to the spin singlet.

The matrix elements for the transition from the singlet
ground state calculated with the x1 + x2 operator are then
zero due to the antisymmetry of the spatial part of the wave
function with respect to the electrons interchange. The lifting
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FIG. 6. Energy spectra for a confined electron pair (a)–(d) h̄ω0 = 9.344 meV, (e)–(g) h̄ω0 = 18.689 meV, and (h)–(l) h̄ω0 = 37.378 meV.
The first column of the plots shows the results of the full model Hamiltonian in Eq. (9). The color on the first, third, and fourth (second)
columns corresponds to the component of the total spin (share of dxy orbitals). The third column shows the spectra for the Hamiltonian in
Eq. (9) but with the basis limited to dxy orbitals. The last column presents the results for the dxy-reduced Hamiltonian in Eq. (21), with the
spin-orbit (SO) coupling effects integrated into the dxy band.

of the separation between the spin and the space by the SO
interaction included in the complete basis opens the direct
channel for the transition to the lower-energy level of each
pair, but the matrix element for the lower-energy state is small.

The results of the time evolution in the VAC(t ) field are plot-
ted in Fig. 7 where, for the AC amplitude of 0.5 mV/nm, we
can see wide maxima corresponding to the direct transitions to
the fourth and eighth states. In addition to the wide maxima,
we can observe a peak for the direct transition to the seventh
state near h̄ω = 20 meV. Two narrow peaks corresponding
to the transition to the third state appear near h̄ω = 15 meV,

and next, we see a third-order transition to the eighth state.
The second-order transition to this state is forbidden by the
symmetry (cf. Table III). To the left of this peak, there is the
lower one due to the two-photon transition of main interest:
to the second energy level—the one which corresponds to the
flip of one of the spins from the ground state for which the
direct transition is forbidden by the parity symmetry.

For the amplitude of the AC field increased to 1 mV/nm
[Fig. 7(b)], the spin-flip 1 → 2 transition probability within
5 ns of the simulation is increased to 98.8% via the second-
order two-photon process that takes 4.7 ns. For comparison,
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TABLE III. Results for two electrons, confinement energy h̄ω0 = 18.688 meV, and the vertical magnetic field of 12 T. The results are
organized as in Table I for a single electron.

n E + �E 
 | − eFx1n| (meV) dxy ↓ dxy ↑ dxz ↓ dxz ↑ dyz ↑ dyz ↓
1 −52.276749 −1 0 0.995 0.994 0.00279 0.00252 0.00279 0.00252
2 −39.169408 −1 0 1.982 0.000 0.00484 0.00381 0.00484 0.00381
3 −37.100982 +1 0.0097 0.991 0.990 0.00463 0.00461 0.00463 0.00461
4 −36.026479 +1 2.63 0.991 0.990 0.00462 0.00457 0.00463 0.00457
5 −35.032511 −1 0 0.001 1.979 0.00444 0.00538 0.00444 0.00538
6 −34.466481 −1 0 1.972 0.001 0.00927 0.00409 0.00927 0.00409
7 −32.389505 +1 0.0149 0.986 0.987 0.00727 0.00607 0.00727 0.00607
8 −31.313806 +1 2.62 0.987 0.987 0.00718 0.00613 0.00718 0.00613

FIG. 7. The results for two electrons, confinement energy h̄ω0 =
18.688 meV, and the vertical magnetic field of 12 T. Maximal oc-
cupation probability of excited states for the ground state as the
initial one in the time evolution lasting 5 ns for AC potential VAC =
−eFx sin(2πωt ) with the amplitude (a) 0.5 mV/nm and (b) and
(c) 1 mV/nm. (a) and (b) show the results of the full model, while
results for the effective Hamiltonian reduced to the dxy orbitals in
Eq. (21) are given in (c). The spin-flip transition 1 → 2 in the two-
photon process takes 4.7 ns for F = 1 mV/nm.

for the AC field amplitude set at 0.5 mV/nm, the spin flip via
the second-order process takes 24.7 ns, and the transition to
the triplet state is achieved with the probability of 99.645%.
The increased fidelity of the spin flip by reduction of the AC
field amplitude is due to the reduction of the contribution
of higher-energy states in the time evolution [cf. Figs. 7(a)
and 7(b)]. Therefore, there is a tradeoff between the transi-
tion time and the fidelity. Note that, in the results for the
effective Hamiltonian reduced to the dxy orbitals, the peak
due to the two-photon second-order spin-flipping transition to
the second energy level is missing [Fig. 7(c)]. Although the
reduced model worked well for the direct spin-inversion in
the single-electron case, the second-order transition is missed
out. In fact, a closer inspection of the results reveals the
second-order peak but with a tiny magnitude of the order of
10−4, which is outside the resolution of Fig. 7(c). Already in
the single-electron case, we noticed that the reduced model is
not completely reliable for the description of the higher-order
transitions, which go via intermediate states, part of which are
missing in the reduced Hamiltonian eigenspectrum.

The two-photon process for the spin-flip transition 1 → 2
is not very fast, and the direct one is missing due to the
dipole matrix element that vanishes due to the parity sym-
metry reason. One can try to speed up the process by, e.g.,
perturbation of the confinement potential lifting its inver-
sion symmetry and thus the parity selection rule. To lower
the symmetry, we have placed a Gaussian perturbation Vg =
V0 exp{−[(x − xr )2 + y2]/s2}, with xr = 3 nm and s = 2 nm,
to the parabolic confinement potential. The matrix elements
for V0 = 2 and 20 meV are listed in Table IV. We see that the
largest transition elements to the fourth and eighth states are
weakly changed by the Gaussian perturbation to the potential,
while the transition from the ground state to the first excited
state, involving a transition from zero to spin-polarized spin
becomes nonzero in the presence of perturbation.

The two-electron energy spectra for the potential with the
Gaussian perturbation are displayed in Fig. 8 for V0 = 2 and
20 meV. The Gaussian perturbation opens avoided crossings
between states of the same spin and the parity which is op-
posite for the symmetric potential. The transition spectra are
plotted in Fig. 9 for V0 = 20 meV and the AC field amplitude
of 0.25 mV/nm (a), 0.5 mV/nm (b), and 1 mV/nm (c). In
each panel, both first- and second-order spin-flipping transi-
tions 1 → 2 are observed. As the amplitude of the AC field
increases, the second-order peak near h̄ω = 6 meV grows
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TABLE IV. The dipole matrix elements in meV for the two-
electron system with the Gaussian perturbation to the harmonic
oscillator potential with confinement energy h̄ω0 = 18.688 meV and
the vertical magnetic field of 12 T, for the amplitude of the AC
electric potential eF of 1 mV/nm. The second (third) column gives
the results for V0 = 2 meV (V0 = 20 meV). The fourth column lists
the results for V0 = 20 meV obtained with the reduced Hamiltonian.

n |eFx1n|, V0 = 2 meV |eFx1n|, V0 = 20 meV ← reduced mod.

1 0.1300 1.1726 1.1298
2 0.0006 0.0039 0.0013
3 0.0094 0.0058 0.0029
4 2.5800 2.0464 2.1145
5 0.0019 0.0094 0.0558
6 0.0011 0.0098 0.0042
7 0.0056 0.0054 0.0049
8 2.6800 3.0296 3.0039

up, but the first-order peak near h̄ω = 12 meV decreases.
The decrease of the single-photon transition is due to the
widening of the maxima related to transitions to the sixth
and eighth states that compete in the evolution process with
the transition to the second state. The spin-flip times for the
second-order process for the AC amplitudes of 0.25, 0.375,
0.5, 0.75, and 1 mV/nm are 39.2, 17.7, 10.2, 4.9, and 3.09 ns,
respectively. The maximal occupation of the second energy
level are 99.9%, 99.6%, 99%, 98.7% and 97.7%, respectively.
For the first-order transition, the spin-flip times are 2.25, 1.6,
1.4, 1.24, and 3.1 ns, with the fidelity of the transfer to the
second excited state of 98.6, 96.9, 91.2, 90.6, and 83.7%.
Remarkably, in this case, the spin-flip transition slows down
when the amplitude is increased from 0.75 to 1 mV/nm,
which is due to participation of the other excited states in the
time evolution in addition to the initial and targeted ones. For
both the second- and first-order transitions, the fidelity of the
spin flip decreases with the AC amplitude due to leakage of
the wave function to the higher-energy states. However, the
fidelity of the transfer via the second-order processes is larger

FIG. 8. The energy spectra for two electrons and the confinement
energy h̄ω0 = 18.688 meV in the presence of the off-center Gaussian
perturbation with (a) V0 = 2 meV and (b) V0 = 20 meV.

FIG. 9. The maximal occupation of the states for the simulation
starting from the ground state and lasting 5 ns. Results for two
electrons with Gaussian perturbation with V0 = 20 meV and the AC
field amplitude of 0.25 mV/nm (a), 0.5 mV/nm (b), and 1 mV/nm
(c).

due to the lower background of the other excited states in the
lower-energy range.

The first-order spin-flipping transitions can also be ob-
served for an ideally parabolic confinement potential but with
the in-plane magnetic field that lifts the 
 symmetry. In
Fig. 10(a), we plotted the two-electron spectrum as a function
of the magnetic field oriented along the x axis with the struc-
ture of the lowest-energy excited state enlarged in Fig. 10(b).
The value of the energies obtained at Bx = 12 T with the aver-
age spin x component and the transition matrix elements from
the ground state are given in Table V. At Bx = 12 T, all the
excited states considered in Table V are nearly twofold degen-
erate. The magnetic field–oriented in-plane does not produce
the orbital effects present for the perpendicular magnetic field;
hence, the splitting is primarily due to the SO interaction. The
splitting of the excited energy levels is resolved in Fig. 10(b)
with the exception of the two energy levels below −34.5 meV
which, in the absence of the SO interaction, correspond to
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FIG. 10. The energy spectrum for two electrons with h̄ω0 =
18.688 meV in the magnetic field oriented parallel to the x axis. (b) is
a zoom of (a).

a spin singlet. All the other energy levels in Fig. 10(b) in
the absence of SO coupling correspond to a spin triplet. For
each couple of excited states, the transition matrix elements
from the ground state are large for one of the states of the
couple and much smaller for the other—see Table V. In the
table, we see that the largest is the transition matrix element
to an excited singlet state. The simulated spectra of excita-
tions are plotted in Fig. 11 for the AC electric field oriented
along the x axis with the amplitude (a) 0.25, (b) 0.5, and
(c) 1 meV. The transition to the spin singlet—the seventh
state—corresponds to the wide maximum, with the narrower
peaks due to the third- and fifth-order processes (c) for the
largest AC amplitude. We find that the spin-flip channels go
through the first-order process for the second energy level
and the second-order process for the third energy level. As
the AC amplitude is increased, the peak corresponding to the
second-order process increases, and the one due to the direct
transition is reduced due to the strengthened presence of the
seventh energy level in this excitation energy range. The spin-
flip times for the AC amplitudes of 0.25, 0.5, and 1 mV/nm in
the first-order transition to the second energy level are 2.4 ns,
1.1 ns, and 502 ps, with the fidelity of the transfer of 96.9,
89.3, and 75.6%, respectively. The corresponding numbers for
the second-order transitions to the third state and the listed
amplitudes are 11.67 ns, 3.03 ns, and 845 ps and 99.64, 99.54,
and 98.48%, respectively.

TABLE V. The energy levels, the average value of Sx , and the
transition matrix element for Bx = 12 T (see Fig. 10) with the AC
field amplitude of 1 mV/nm.

n E + �E 〈Sx〉 |eFx1n| ( µeV)

1 −53.009 −0.001 0
2 −37.574 −1.993 3.42
3 −37.563 −1.990 0.021
4 −35.632 −0.000 0.049
5 −35.602 −0.001 12.228
6 −34.542 −0.000 4.630
7 −34.541 −0.001 3737.6
8 −33.686 1.992 9.046
9 −33.642 1.988 0.028

FIG. 11. The results for two electrons for confinement energy
h̄ω0 = 18.688 meV and the external magnetic oriented parallel to
the x axis, Bx = 12 T. The maximal occupation of the states for the
simulation starting from the ground state and lasting 5 ns is shown.
The amplitude of the AC electric field oriented in the x direction is
(a) 0.25, (b) 0.5, and (c) 1 mV/nm.

Like in the single-electron QD, now let us analyze what
happens when VAC(t ) is set in the GHz regime. For a sym-
metric confinement potential and vertical magnetic field, the
singlet-triplet first-order transition is forbidden by the parity
selection rule. To set the spin-flip AC field frequency in the
second-order process to ∼10 GHz, we need the singlet-triplet
energy difference to be equal to ∼2 × 0.0413 meV. In the
magnetic field range given in Fig. 6, this situation is observed
only for the weakest confinement of h̄ω0 = 9.344 meV, i.e.,
at Bz = 25.4848 T, just below the singlet-triplet crossing in
Fig. 6(a). Figure 12(a) shows the maximal occupancy of the
lowest-energy levels for the 5 ns time evolution in the AC
field as a function of the driving frequency. The blueshift for
this second-order process with the field amplitude is stronger
than in the first-order process discussed above for the single
electron. The fourth excited state (spin-singlet) participates
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FIG. 12. The results for the two electrons and confinement
energy h̄ω0 = 9.344 meV at Bz = 25.4848 T. (a) The maximal occu-
pancy of the lowest-energy levels for the time evolution lasting 5 ns
starting from the spin-singlet ground state and AC field amplitude
increasing from the bottom to the top. The subsequent plots for
higher amplitudes are shifted by +1 each. (b) The singlet-triplet
transition time as a function of the AC amplitude.

in the time evolution for all the considered amplitudes. The
fifth excited state (spin-down polarized triplet) appears in
the evolution near the resonance for the singlet-triplet tran-
sition. The spin-flip time can be taken from 10.6 ns (for F =
1 mV/nm) to 0.22 ns (for F = 20 mV/nm). The transitions
are faster than in the single-electron case discussed above, but
the magnetic field is two orders of magnitude larger.

Finally, as the considered QD is created electrostatically
by the top and bottom gates, another issue which can be
regarded is the possible application of the AC electric field
perpendicular to the 2DEG using those gates. Although this
specific scenario was not addressed in this paper, to delve into
this situation further, three issues need to be raised:

(i) As stated in this paper, in the considered 2D model of a
QD, the transition rate between the states with opposite spins
depends on the relative orientation between the magnetic and

electric fields—they need to be oriented in such a way that the
effective SO magnetic field has a component perpendicular
to the spin direction. For this reason, in our calculations, no
transitions are observed when the magnetic field is directed
along the y axis. In the case of the perpendicular electric field,
the effective SO field is perpendicular to the spin orientation
for the out-of-plane magnetic field. It means that the transi-
tions between the spin states oriented in-plane should have a
similar character as described in this paper.

(ii) The orbitals of d electrons are spatially oriented due
to the vertical electric field. For this reason, we would expect
that dxz/yz orbitals could play a more significant role for the
perpendicular field orientation, leading to the increase of the
transition elements between those orbitals.

(iii) The model considered in this paper is the projection
of the real three-dimensional (3D) Hamiltonian into 2D x-y
space, assuming that electrons occupy the ground state related
to the confinement in the z direction. The transitions induced
by a vertical AC field would involve excited states of the verti-
cal quantization. Due to the nature of 2DEG, these excitations
should require a large amount of energy. The description of
these processes is, however, beyond the scope of this paper.

IV. SUMMARY AND CONCLUSIONS

We have studied single and two electrons confined in a
lateral QD defined within the 2DEG on the (001)-oriented
LAO/STO surface. For this purpose, we have developed a
real-space tight-binding Hamiltonian spanned by 3D orbitals
of Ti. The reduced Hamiltonian integrating the SO coupling
effects due to the dxz and dyz orbitals into an effective in-plane
dxy band has also been derived and analyzed with respect
to the full three-band model. We have analyzed the energy
spectrum in a parabolic confinement and demonstrated that,
for a weakly confined system, the low-energy eigenstates can
be identified with the dxy orbitals. In this case, the spectrum
is close to the one of the harmonic oscillator with the electron
effective mass of m = 0.286m0. For stronger confinement, the
states related to the orthogonal bands appear lower in the
energy spectrum.

In this paper, we have discussed the manipulation of the
confined spin by external AC voltages in the context of the
EDSR and demonstrated that the spin flip in the ground state
can be accomplished by a Rabi resonance with the transition
time of the order of 0.5 ns for the amplitude of the AC field of
the order of 1 mV/nm. For the electron pair in the harmonic
oscillator potential and the perpendicular magnetic field, the
singlet-triplet transition is forbidden by the parity symmetry.
However, the spin flip can still be obtained via a second-order,
two-photon process that has a two-state Rabi character for low
AC field amplitude. The parity selection rule excluding the
single-order transition can be lifted by a perturbation of the
external potential or in-plane orientation of the external mag-
netic field. In this case, the first-order transition deviates from
the Rabi oscillation due to the participation of higher-energy
singlet states in the time evolution. We have also found that
fidelity of the transfer increases when lowering the amplitude
of the AC field and can reach ∼97% values. Our results can
be verified in EDSR experiments on a LAO/STO QD [27]
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FIG. 13. Self-consistent potential profile at the LAO/STO inter-
face (black line, left axis) together with the corresponding electric
field (blue curve, right axis). Horizontal dashed lines mark the energy
of the ground state for the dxy (blue) and dyz/xz (red) orbitals.

and demonstrate the possibility of quantum operation on oxide
QDs with high fidelity and fast control.
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APPENDIX: DIELECTRIC CONSTANT AT THE LAO/STO
INTERFACE

It is widely known that the dielectric constant of strontium
titanate strongly depends on the temperature and electric field,
reaching values as high as 10 000. However, it is important to
note that the electric field near the interface where 2DEG is
created is very strong, leading to a reduction in the dielectric
constant [52]. To support our assumption regarding the rel-
atively low value of ε at ∼100ε0, we conducted additional
calculations to determine the dielectric permittivity profile
at the LAO/STO interface For this purpose, we employed
the Schrödinger-Poisson approach, as detailed in Ref. [52],
utilizing the spatially dependent ε(z) which varies according

FIG. 14. The dielectric constant as a function of the position at
the LAO/STO interface. The blue and red lines present a square of
the wave function for the lowest-energy state of the vertical quanti-
zation for dxy (blue) and dxz/yz (red) orbitals.

to the following formula, applicable for low temperatures:

ε = ε0 + 1

A + B|F | , (A1)

where F is the electric filed, A = 4.097 × 10−5, B = 4.907 ×
10−10 m/eV, and ε0 = 70. In the simulations, we took 2DEG
electron density at the level 2 × 1013 cm−2, while the trapped
charge profile was assumed in such a way as to achieve an
energy difference between the dxy and dxz/yz ground states of
∼47 meV, as stated in this paper and experimentally mea-
sured [36].

In Fig. 13, we present the self-consistent potential profile
showing that the electric field near the interface where 2DEG
is embedded is significant. In this range of ∼10 nm, where
wave functions of the ground state for the dxy and dxz/yz

orbitals are localized, the dielectric constant changes in the
range (80–200)ε0 for the dxy orbital and (80–500)ε0 for the
dxz/yz orbital—see Fig. 14. As the main contribution to the
electronic structure of a QD comes from the dxy band, due
to the shift of this band by 47 meV with respect to dxz/yz,
we assumed the dielectric constant equal to 100ε0 as the
average value of ε determined for this band. Furthermore,
we confirmed that varying ε from 100ε0 to 300ε0 does not
significantly affect our results.
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