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Near-field heat transfer and drag resistance in bilayers of composite fermions
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Heat transfer is studied in the system of electron double layers of correlated composite fermion quantum
liquids. In the near-field regime, the primary mechanism governing interlayer energy transfer is mediated by
the Coulomb interaction of thermally-driven charge density fluctuations. The corresponding interlayer thermal
conductance is computed across various limiting cases of the composite fermion Chern-Simons gauge theory,
encompassing ballistic, diffusive, and hydrodynamic regimes. Plasmon enhancement of the heat transfer is
discussed. The relationship between the heat transfer conductance and the drag resistance is presented for
electron states formed in the fractional quantum Hall effect of even denominator filling fractions.
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I. INTRODUCTION

In studies of strongly correlated electrons of condensed
matter systems, the problem of two-dimensional (2D)
fermions coupled to a gauge field arises naturally in many
different contexts as an effective low-energy model. The emer-
gent gauge theory provides a powerful framework to address
properties of quantum spin systems, fractional quantum Hall
liquids, and unconventional superconductors [1,2].

In the paradigmatic example of the fractional quantum
Hall effect with the even denominator filling fractions, such
as the half-filled Landau level [3,4], the effective action de-
scription is obtained in connection to the composite fermion
(CF) representation [5–8]. A composite fermion is introduced
in the theory by attaching an even number of flux quanta to
an electron. This transformation is realized by introducing
an appropriate Chern-Simons gauge field. There are several
advantages of such reformulation of the original problem. At
the mean-field level, the composite fermion experiences no
magnetic field, which is enforced by the cancellation of the
properly chosen Chern-Simon flux and the externally applied
magnetic field. Consequently, the system of strongly inter-
acting electrons in a magnetic field can be mapped onto a
Fermi liquid of weakly interacting composite fermion quasi-
particles. Extending beyond the mean-field level, fluctuations
of the gauge field can be addressed within the random-phase
approximation (RPA). The approach based in the Chern-
Simons theory has demonstrated success, enabling relatively
straightforward and systematic calculations of experimentally
measurable quantities such as conductivities and various re-
sponse functions, as elaborated in Refs. [9–14]. It is worth
noting, however, that the electromagnetic and thermal re-
sponses of composite fermions differ significantly from those
observed in conventional Fermi liquids.

The double-layer quantum well heterostructures, com-
posed of closely spaced parallel two-dimensional electron
systems, unveil a myriad of intriguing quantum Hall physics.
These systems offer a unique platform for exploring nonlocal
transport effects that are exclusive to bilayers. Experimentally
observed examples of emergent phenomena in high-mobility

semiconductor devices or graphene bilayers include Coulomb
drag [15–19] and quantum Hall drag [20–23], particularly at
half-filling per layer. Additionally, superfluid exciton conden-
sation of composite quasiparticles has been observed [24–27].
The existing theories provide a foundational support for many
observed features [28–36] and go beyond by identifying a host
of other possible states at fractional total filling some of which
are expected to display exotic topological properties [37–41].

This paper is motivated by the physics of bilayers, with
a primary objective of investigating specific thermal transfer
properties defined by the near-field effect [42–44]. It has
long been established [45–47] that the heat flux between two
closely spaced planar bodies, maintained at different tempera-
tures, is dominated by fluctuation-driven near-field evanescent
electromagnetic modes. This regime is realized when the
interlayer separation becomes smaller than the thermal de
Broglie wavelength of the photon. Notably, for conducting
layers, such a near-field effect is dominated by the Coulomb
interactions between thermal fluctuations of electron density
[48]. Despite its relevance to most modern nanostructures,
see, e.g., Refs. [49–53], this physics has yet to be explored
in the context of composite fermion double-layer systems,
constituting our primary goal.

The presentation is organized as follows. In Sec. II, we
apply the RPA of Chern-Simons theory to compute the near-
field thermal conductance between unequilibrated layers in a
composite fermion picture, discussing the coupling between
layers in purely electronic terms. This approach elucidates
the underlying physical picture and establishes connections
to previous works on heat transfer between 2D conductors. In
Sec. III, we employ the semiclassical Boltzmann equation to
incorporate impurity scattering and derive heat transfer in
the diffusive limit. Section IV delves into the hydrodynamic
limit of the composite fermion liquid, assuming fast intralayer
equilibration and subjecting the system to a disorder poten-
tial with a long correlation radius. In this regime, we derive
heat conductance in terms of dissipative coefficients of the
fluid, such as intrinsic conductivity and viscosity, and the
correlation function of the disorder potential. Additionally,
we highlight the mechanism of plasmonic enhancement. For a
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FIG. 1. Schematic representation of the interactively coupled
two-dimensional composite fermion liquids formed in an electron
double layer system with interlayer spacing d . The composite
fermion quasiparticles are depicted as circles with attached fluxes
φ labeled by arrows. The interlayer coupling is denoted by the
Coulomb potential U12. The underlying background of each layer
represents disorder potential. Each layer is kept at different tem-
peratures T1,2 and wavy dashed lines pointing up or down represent
vertical heat fluxes J1,2 between the layers generated in the near-field
regime.

broader perspective, in Sec. V, we draw parallels between the
technicalities underlying the near-field effect and the problem
of nonlocal Coulomb drag resistance [54]. Finally, in Sec. VI,
we provide typical parameters used in the calculations and the
order of magnitude estimates. In the paper, we work in the
natural units setting Boltzmann and Planck constants to unity
kB = h̄ = 1.

II. NEAR-FIELD EFFECT IN BILAYERS

A. Formalism

The basic setup for considering the near-field effect con-
sists of two parallel 2D layers separated by a distance d ,
and kept at different temperatures T1 and T2, see Fig. 1 for
illustration. It can be shown that in such a bilayer the heat
current per unit area is given by

J =
∫

ω[N1 − N2]��1(q, ω)��2(q, ω)|U12(q, ω)|2d�qω.

(1)

In the theory of near-field heat transfer (NFHT) this expres-
sion is often called the Caroli formula. It can be derived
from variety of methods based on e.g. fluctuational electrody-
namics [45,46], nonequilibrium Green’s function formalism
[55,56], kinetic equation [57–59], and Ehrenfest theorem
[60,61]. The physical picture behind Eq. (1) was comprehen-
sively discussed in the literature by many authors. Here we
briefly repeat main points to have a self-contained presen-
tation. In the Coulomb limit, NHFT arises from scattering
of electrons in different layers resulting in finite momen-
tum q and energy ω transfer. Thus the integration expands
over the phase space d�qω = dωd2q/(2π )3 and N1,2(ω) =
1/(eω/T1,2 − 1) denotes the Planck distribution function. In the
linear response, the layer polarizability �1,2(q, ω) is given
by the density-density correlation function, which relates the

induced charge density to the total electric potential [62]. The
response function �1,2(q, ω) also determines the dynamically
screened Coulomb potential both for intralayer and interlayer
interaction. It follows from the matrix Dyson equation. Within
the limits of RPA and written in the layer basis it reads

Û = V̂q ◦ (1 + �̂ ◦ V̂q)−1, (2)

where ◦ denotes matrix multiplication and

V̂q = Vq

(
1 e−qd

e−qd 1

)
, �̂ =

(
�1 0
0 �2

)
. (3)

Here Vq = 2πe2/εq is the bare Coulomb potential and ε is
the dielectric constant of the host material surrounding the
electron layers. The fact that the polarization operator has
no off-diagonal elements, reflects the assumed absence of
tunneling between the layers. In Eq. (1), U12(q, ω) is the
off-diagonal element of Û (q, ω). It takes the form

U12 = Vqe−qd

(1 + Vq�1)(1 + Vq�2) − V 2
q �1�2e−2qd

. (4)

The validity of Eq. (1) is not limited to a small difference
between T1 and T2, however it is useful to introduce the linear
in �T = T1 − T2 heat transfer conductance

κ = lim
T1,2→T

J (T1, T2)

T1 − T2
(5)

Differentiating Eq. (1), and assuming for simplicity identical
layers, �1,2 = �, one finds

κ =
∫

ω2(��(q, ω))2|U (q, ω)|2
4T 2 sinh2(ω/2T )

d�qω. (6)

In general, the temperature dependence of κ comes from
the thermal factor and temperature dependence of the polar-
ization function. For example, in a two-dimensional electron
gas (2DEG) at temperatures below Fermi energy, polariza-
tion is weakly temperature dependent, therefore, the main
dependence on T comes from the thermal broadening and
phase space available to quasiparticle excitations. In contrast,
in graphene devices close to charge neutrality, polarizability
is very strongly temperature dependent, which leads to addi-
tional features. The dependence of κ on the interlayer spacing
d is primarily determined by the screening effects, which
are implicit in the form of the interlayer interaction potential
U (q, ω).

In bilayers of composite fermions, polarization is approx-
imately temperature independent. However, properties of this
function at low-frequency and long-wavelength lead to an
emergence of the T -dependent momentum scale that sets the
typical momentum transfer between the layers. In a con-
ventional 2DEG this scale is simply set by the interlayer
separation q ∼ 1/d . Since �(q, ω) also enters the interlayer
interaction and modifies screening, this combined effect leads
to a unique T and d dependence of κ, which differs signifi-
cantly from that of the Fermi liquid regime.

B. Composite fermion description

The single-layer electronic polarizability �(q, ω) can be
calculated with the composite fermion theory. Following
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Ref. [4], we introduce electronic �̂el and composite fermion
�̂cf density and current response functions. The latter de-
scribes the response of the composite fermions to the total
scalar and vector potentials including external, Coulomb, and
Chern-Simons contributions. These functions are related to
each other,

(�̂el )−1 = Ĉ + (�̂cf)−1, (7)

by the Chern-Simons interaction matrix

Ĉ =
(

0 2π iφ/q
−2π iφ/q 0

)
. (8)

For the case of the half-filled Landau level φ = 2. The com-
posite fermion matrix �̂cf can be calculated within the RPA
and simply corresponds to the noninteracting fermion at zero
magnetic field. Therefore it is a diagonal matrix

�̂cf =
(

�cf
ρρ 0
0 �cf

j j

)
. (9)

The density element of this matrix reflects the finite com-
pressibility of the system. The current element describes
the diamagnetism. In the low-energy limit, q/kF � 1 and
ω/vFq � 1, and to the lowest nonvanishing order [4]

�cf
ρρ ≈ m∗

2π
, �cf

j j ≈ − q2

24πm∗ + iωkF

2πq
, (10)

where m∗ is the quasiparticle effective mass [63,64], vF and
kF = √

4πn are the Fermi velocity and momentum, respec-
tively, with n being average particle density per layer. The
imaginary part of �cf

j j describes Landau damping. We need to
extract the density element of �̂el that enters Eq. (6). Inverting
matrix in Eq. (7), one finds

�(q, ω) ≡ �el
ρρ = �cf

ρρ

1 − �cf
ρρ�

cf
j j (2πφ/q)2

. (11)

Using the explicit forms of �cf
ρρ and �cf

j j from Eq. (10), we
arrive at the well-known result [4]

�(q, ω) = νq3

q3 − 2π iνφ2ωkF
, (12)

where we introduced the thermodynamic compressibility ν =
(m∗/2π )/(1 + φ2/12). The above form of the polarizability is
reminiscent of that of a disordered electron gas νDq2/(Dq2 −
iω), see further discussion in Sec. III, but with an effective
diffusion constant D that depends linearly on q. This particular
feature leads to a slow spreading of charge fluctuations and
it also weakens screening effects thus enhancing the thermal
transfer due to Coulomb coupling.

C. NFHT conductance

With all the ingredients described in the previous section,
we focus our attention to Eq. (6). The key element that we
need to unpack is the product ��(q, ω)|U (q, ω)|. In the
case of symmetric layers, the denominator of the interlayer
interaction in Eg. (4) factorizes into a product of two sim-
ple terms (1 + Vq�) ± Vq�e−qd = 1 + Vq�(1 ± e−qd ). This

leads to the following identity (omitting q, ω arguments of �

and U for brevity)

�(�)|U |

= −�(�−1)

∣∣∣∣ Vqe−qd

[�−1 + Vq(1 + e−qd )][�−1 + Vq(1 − e−qd)]

∣∣∣∣.
(13)

It is instructive to examine poles of the product �(�)|U |.
From the expression above it is clear that they occur when
�−1 = −Vq(1 ± e−qd ). From Eq. (12) it then follows that in
the long wave length limit, q → 0, we have two overdapmed
modes, ω+ ∝ iq2 and ω− ∝ iq3. Therefore density fluctua-
tions relax slowly. It should be also stressed, that screening of
such fluctuations is weak. These two factors lead to a substan-
tial enhancement of heat transfer and drag resistance. Based
on these considerations one should expect an unconventional
temperature dependence of κ. Indeed, the typical frequency
of excitations is set by temperature ω ∝ T . This immediately
leads to a characteristic transfer momentum q ∝ T 1/3 of the
ω− mode, which will be shown to dominate the response
of the system. This is distinct from the case of conventional
2DEG, where typical q are determined by the interlayer spac-
ing q ∝ 1/d . As a consequence, the phase space integral in
Eq. (6) will be dominated by the characteristic momenta of the
collective modes. Since q ∝ T 1/3 one expects κ to scale with
the fractional power of temperature. The scaling q ∝ T 1/3

at lowest temperatures also supports the argument of weak
screening since in that limit e−qd factor in the interlayer in-
teraction can be approximated by unity since qd � 1.

To further illuminate the physical significance of poles,
one can express the polarization function �(q, ω) in terms
of the conductivity σ (q, ω). This is easily done by using the
continuity equation relating density and current, along with
the Kubo formula that defines conductivity from the current-
current correlation function, whereas � is determned by the
density-density correlation function. One thus finds σ (q, ω) =
−ie2(ω/q2)�(q, ω). Therefore the dispersion relation for the
collective modes can be written as

iω = q2

e2
σ (q, ω)Vq(1 ± e−qd ). (14)

In the range of frequencies where conductivity is real, the
solution to this equation gives only overdamped modes dis-
cussed above. However, when σ is purely imaginary, the
solution of Eq.(14) are given by plasmons of the double-
layer system [65], namely, in-phase (optical) and out-of-phase
(acoustic) density oscillations. Plasmons are higher in energy
excitations and their role in the heat transfer and drag resis-
tance will be discussed in Secs. IV and V respectively. We
also remind that Eq. (14) played a pivotal role in the analysis
of surface acoustic wave experiments [66,67], which provided
the first clear indication of the existence of a compressible
state of the half filled Landau level.

To this end, we turn to the analysis of Eq. (6). The integral
in Eq. (6), with an input from Eqs. (12) and (13), sug-
gests the following dimensionless variables x = qd and y =
ω/T for momenta and frequencies respectively. After some
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FIG. 2. Plots of the dimensionless function F defined by Eq. (16)
that show its dependence on the interlayer separation d at different
temperatures as described by the dimensionless parameter αT (top)
and vise versa, the dependence on αT at several values of kTFd
(bottom).

straightforward algebra, this leads to the result

κ = T k2
TF

8π2
F (αT , kTFd ), (15)

where we introduced the inverse Thomas-Fermi screening
radius kTF = 2πe2ν/ε and dimensionless parameter αT =
2πνφ2T kF d3. The two-parameter dimensionless function
F (a, b) is defined by the following double integral:

F (a, b) =
∫∫ +∞

0

a2x5y4e−2xdxdy

sinh2(y/2)|X+(a, b)|2|X−(a, b)|2 (16)

with

X±(a, b) = x3 + bx2(1 ± e−x ) − iay. (17)

We have evaluated this function numerically in order to ex-
tract the characteristic dependence of thermal conductance on
temperature and interlayer separation. In Fig. 2, we plot F
as a function of kTFd at several different values of αT , and
conversely, as a function of αT at varying kTFd . We always
work under the tacit assumption that kTFd > 1. This parameter
range is relevant experimentally and compatible with the con-
dition required for the near-field effect, namely, k−1

TF < d <

c/T . It is clear that F decays algebraically as a power law
in 1/d , so does the NFHT conductance κ ∝ (1/d )pd with the

FIG. 3. Temperature dependence of the dimensionless thermal
transfer conductance K = κ/κ0 [from Eq. (6)] plotted in the units
of κ0 = r2

s νvF/8πφ2kFd3. The bottom panel shows the same data
as the top panel but zoomed into the low-temperature domain of
parameters.

exponent pd > 1. The temperature dependence of F , implicit
in the parameter αT , is nonmonotonic. It has a peak at αT ∼ 1
that sets the scale for a characteristic crossover temperature
∼EF /(kF d )3. For kF d 
 1, this temperature is much smaller
than the Fermi energy so that the crossover occurs within the
domain of validity of low-energy effective model. In order
to highlight the temperature dependence of conductance κ,
we plot the product TF (αT , kTFd ) versus αT with the proper
prefactor based on Eq. (15). This is shown in Fig. 3. From
the graph it is apparent that thermal conductance displays
monotonic growth. At lowest temperatures, it scales as a
power law, κ ∝ T pT , with the exponent pT > 1. This regime
is rather narrow. It is followed by a much wider regime with
approximately T -linear behavior and a round off at higher
temperatures when αT > 1.

The limiting cases discussed above can be analyzed an-
alytically. The integral is dominated by values {x, y} <

1. Provided {kFd, kTFd} > 1, one can approximate X+ ≈
2kTFdx2 − iαT y and X+ ≈ (1 + kTFd )x3 − iαT y, and take
e−2x ≈ 1 in the numerator of Eq. (16). These steps give

F ≈
∫∫ +∞

0
dxdy

y4

sinh2(y/2)

× α2
T x5

[4(kTFd )2x4 + α2
T y2][(1 + kTFd )2x6 + α2

T y2]
. (18)
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For the sufficiently small αT , one can further neglect α2
T y2

as compared to 4(kTFd )2x4 in the first bracket of the denom-
inator, but the y dependence must be retained in the second
bracket, which controls convergence of the x integral. Note
this bracket corresponds to the ω− mode. After this additional
approximation the x integration becomes elementary and can
be done by rescaling the variable x → (αT y/(1 + kTFd ))1/3x:

F ≈ 1

(2kTFd )2

(
αT

1 + kTFd

) 2
3
∫ ∞

0

y
8
3 dy

sinh2(y/2)

∫ ∞

0

xdx

(x6 + 1)
.

(19)

The integral over x brings a factor of π/(3
√

3) while the
y integral can be expressed as a product of Euler’s gamma
function and Riemann’s zeta function as 4�( 11

3 )ζ ( 8
3 ). Using

this asymptote of F in Eq. (6) we find

κ ≈ �
(

11
3

)
ζ
(

8
3

)
24

√
3π

T

d2

(
αT

1 + kTFd

) 2
3

. (20)

This asymptote applies for T � EF(kTFd )/(kFd )3. Recall that
kTF ∼ kF for rs = e2/εvF ∼ 1. Since αT contains one power
of temperature and three powers of interlayer separation we
deduce that κ ∝ T 5/3/d2/3 in this limit. It can be com-
pared to the corresponding result of the Fermi liquid theory
κ ∝ T 3/d2 (an extra log factor is omitted for brevity, see
Refs. [59,68] for a complete result). We conclude that weak
screening leads to a much slower decay of the heat transfer
conductance with interlayer spacing thus providing a signifi-
cantly stronger effect (for numerical estimates see Sec. VI).

Equation (20) should also hold for the filling fractions 1/4
and 3/4 per layer. The only modification is in the value of the
flux attachment φ = 4. This leads to a verifiable conclusion
that at low temperatures, where Eq. (20) applies, if the filling
fraction is varied from 1/2 to 1/4 (or 3/4) at fixed electron
density, then the interlayer heat conductance should increase
by a factor close to 45/3.

At higher temperatures, T > EF/(kFd )2, we deduce from
Eq. (18) a different asymptote that translates to the conduc-
tance in the form (with the logarithmic accuracy)

κ ≈ T

18d2
ln

(
αT

kTFd

)
, (21)

corresponding to the approximate T -linear regime clearly vis-
ible in Fig. 3. Interestingly, in this limit the heat conductance
is nearly universal, i.e., independent of any microscopic pa-
rameters of the material (modulo the logarithmic factor).

The validity of Eq. (6) should extrapolate to the onset of
the collision-dominated regime with respect of the intralayer
collisions. It is marked by the condition when the composite
fermion mean free path lcf becomes comparable to the inter-
layer spacing, lcf ∼ d . In the framework of the Chern-Simons
theory lcf ∼ k−1

F (EF/T )2/3, therefore the approach based on
the RPA breaks down above the scale of ∼EF/(kFd )3/2.

III. DISORDERED BILAYERS

It is of practical importance to consider effect of disorder
which is inevitably present in any bilayer device. The impurity
scattering can be included via the Boltzmann equation (BE)
for the composite fermion distribution function [9,12]. At the

simplest level, the collision term of the BE can be taken in the
relaxation time approximation. While it may be insufficient in
general this approach is adequate to describe the low-energy
diffusive limit. Solving this equation in response to the alter-
nating electric field ∝ eiqr−iωt leads to the density response
function of the form

�cf
ρρ = m∗

2π

[
1 + iωτcf√

(1 − iωτcf)2 + (qvFτcf)2 − 1

]
, (22)

where τcf is the composite fermion transport mean free time.
Extrapolating this result empirically to the diamagnetic term
one can write

�cf
j j = − q2

24πm∗ − iωm∗

2πq2τcf

× [(1 − iωτcf) −
√

(1 − iωτcf)2 + (qvFτcf)2], (23)

which has a correct form of Eq. (10) in the clean limit τcf →
∞. In contrast, in the diffusive limit {ωτcf, qvFτcf} � 1, ex-
panding both �cf

ρρ and �cf
j j and using Eq. (11), one finds

�(q, ω) ≈ νDq2

Dq2 − iω
, (24)

with the effective diffusion constant in the form

D = 1 + φ2/12

1 + (φkFlcf/2)2

v2
F τcf

2
. (25)

Coincidently, the density-density response function of the
form of Eq. (24) is identical to that of a disorder 2DEG.
Therefore the dynamically screened interaction in this case
takes a familiar form from the theory of disordered electron
systems [69]

U (q, ω) ≈
(

1

2νDq2

)
(Dq2 − iω)2

(1 + kTFd )Dq2 − iω
. (26)

Substituting this expression and Eq. (24) into Eq. (6) leads to
the heat conductance in the form

κ =
∫

(ω2/4T )2

sinh2(ω/2T )

d�qω

(1 + kTFd )2(Dq2)2 + ω2
. (27)

After integration we find as a final result

κ = 3ζ (3)

16π

1

(1 + kTFd )

T

L2
T

, (28)

where we have introduced the diffusive thermal length LT =√
D/T . Notice that in this limit diffusive spreading of charge

density fluctuations restores the Fermi-liquid form of the tem-
perature dependence of κ ∝ T 2 [58,59].

IV. HYDRODYNAMIC REGIME

In clean electron systems with sufficiently frequent colli-
sions the system can attain a hydrodynamic limit. It can be
described macroscopically based on the equations of motion
for particle, entropy, and momentum densities of the fluid.
This formulation enables obtaining results that go beyond
the perturbation theory in interaction. However, it requires a
proper values of temperatures and particle density to justify
the hydrodynamic description. In the context of bilayers, hy-
drodynamic theory can be applicable at temperatures when
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intralayer mean free path becomes shorter than interlayer sep-
aration.

The near-field effect in the hydrodynamic limit was consid-
ered recently in Ref. [61] for pristine systems. Here we merely
repeat this calculation for composite fermions including the
generalization to incorporate the disorder potential with the
long correlation radius that exceeds the scale of equilibration
length. It introduces friction that damps collective excitations
at long wave length. In what follows, we summarize the main
steps of derivation and present the end result.

One starts from the continuity and Navier-Stokes equa-
tions for an electron fluid. The latter includes electric
potential, which is related to the electron charge density by the
Poisson equation. Working to the linear order in fluctuations
one expresses electron density variation mediated by fluctu-
ating viscous stresses and intrinsic currents. This approach
to the problem based on the hydrodynamic equations with
random Langevin fluxes is analogous to the fluctuational
electrodynamics in the Coulomb limit. The correlation func-
tions of the hydrodynamic Langevin sources are found from
the respective fluctuation-dissipation relations [70]. Heat flux
between the layers can be directly related to the dynamic
structure factor of the fluid which is given by the density-
density response function [71]. Since fluctuations of viscous
stresses are not correlated with fluctuations of intrinsic cur-
rents, the corresponding near-field transfer conductance is
found as a sum of two terms

κ = κσ + κυ, (29a)

where

κσ =
∫

d�qω

(
2πe2

εq

)
e−qd

(
2σq2

e2

)

× ω2(ω2 + 1/τ 2)(ω2
+ − ω2

−)/τ

[(ω2 − ω2+)2 + ω2/τ 2][(ω2 − ω2−)2 + ω2/τ 2]
(29b)

and

κυ =
∫

d�qω

(
2πe2

εq

)
e−qd

(
4(η + ζ )q4

(m∗)2

)

× ω2(ω2
+ − ω2

−)/τ

[(ω2 − ω2+)2 + ω2/τ 2][(ω2 − ω2−)2 + ω2/τ 2]
.

(29c)

Both contributions have transparent physical meaning. The
first term under the integral of each expression, 2πe2/εq, is
just the Coulomb potential that couples the layers, whereas
exponential, e−qd , captures the screening. The next factor in
each term represents the strength of Langevin fluxes that drive
the density fluctuations. For κσ it scales with the intrinsic
conductivity of the fluid σ , whereas for κυ it is determined
by the shear (η) and bulk (ζ ) viscosities, as dictated by the
fluctuation-dissipation theorem. For the case of short-ranged
interactions of composite fermions one can extract intrinsic
conductivity and viscosity from the model of Fermi surface
coupled to U(1) gauge field for dynamical critical exponent
z = 3. The dissipative coefficients have the following para-

FIG. 4. Numerically evaluated dimensionless functions that de-
scribe the plasmon enhancement of thermal conductance κ. Plasmon
resonances are most pronounced for �pτ > 1 therefore we constrain
the plot only to the values of β < 1.

metric dependence [4,72,73]:

σ ∝ e2

(
EF

T

)2/3

, η ∼ ζ ∝ k2
F

(
EF

T

)2/3

. (30)

The remaining terms in Eqs. (29b) and (29c) are just the
corresponding parts of the dynamical structure factor that are
peaked at the frequencies of two plasmon modes

ω2
± = 2πne2q

εm∗ (1 ± e−qd ). (31)

The broadening of these resonances is governed by the relax-
ation time τ induced by the disorder potential. The primary
difference with the earlier analysis is that in pristine sys-
tems decay of plasmons is determined by the combination of
viscous diffusion, �ω ∝ (η + ζ )q2/(m∗n), and the Maxwell
relaxation, �ω ∝ σq. It is clear that in the long wave length
limit, q → 0, attenuation of plasmons is ultimately deter-
mined by disorder potential [74].

Both expressions for κσ and κυ can be significantly simpli-
fied by rescaling momentum integrals in units of x = qd and
frequency integrals in units of y = ωτ . This gives as a result

κσ = σ

εd3
f (β ), κυ = υ

d4
g(β ), (32)

where we introduced the kinematic viscosity of the fluid υ =
(η + ζ )/nm∗. The dimensionless functions f and g depend on
a single variable β = 1/(�pτ ), where �p =

√
2πe2n/εm∗d

is the plasmon frequency at the characteristic momentum
transfer q = 1/d . For plasmons to be well-defined and long-
lived excitation we assume �pτ > 1. These functions capture
the plasmon enhancement of the heat transfer. They can be
evaluated numerically and plotted in Fig. 4. A crude estimate
suggests f ∼ g ∼ ln4(1/β ) for β � 1. Finally, we should
note that the crossover from the low-temperature RPA-limit of
the heat transfer given by Eq. (21) to the higher-temperature
hydrodynamic limit given by Eq. (32) is not immediately clear
and requires additional consideration.
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V. DRAG RESISTANCE

This section serves a complementary purpose. First, we
recapitulate known result for the drag resistance in electron
bilayers at half filling of the Landau level [28–31]. Next, we
highlight several experimentally relevant limiting cases which
were not discussed in the literature before. We do so in light of
the near heat field transfer problem, which originates from the
same mechanism of interlayer coupling. Therefore we relate
the two phenomena in the context of composite fermions. This
parallels recent discussion of the related physics presented in
the context of strange metals [75].

Coulomb drag [54] is an example of a nonlocal transport
effect that arises in the electrically isolated but interactively
coupled conducting layers when drag voltage Vdrag is induced
in one layer by the drive current Idrive in the other layer. The
nonlocal resistance ρD = Vdrag/Idrive provides a direct measure
of the interlayer electron correlations. The microscopic foun-
dations of the drag effect were developed in Refs. [76–79] and
the corresponding resistance can be expressed as follows:

ρD = 1

2e2n2T

∫
q2(��(q, ω))2|U (q, ω)|2

sinh2(ω/2T )
d�qω. (33)

Apart from the overall factor, ρD has almost the same form as
the expression for κ in Eq. (6) except that under the integral
two powers of frequency, relevant for the heat transfer, are
replaced by the two powers of momentum, relevant for the
drag. It is therefore not surprising that these two quantities
share similar characteristic features.

A. Ballistic limit

We use Eqs. (12) and (13) to rewrite Eq. (33) in the dimen-
sionless notations

ρD = 1

8π2e2

1

(nd2)2
R(αT , kTFd ), (34)

where

R(a, b) =
∫∫ +∞

0

a2b2x7y2e−2xdxdy

sinh2(y/2)|X+(a, b)|2|X−(a, b)|2 (35)

with x = qd and y = ω/T . From here one can extract two lim-
iting case of interest. At lowest temperatures, T � EF/(kFd )2,
one can use exactly the same approximations that lead to
Eq. (18), namely, take X+ ≈ 2kTFdx2, X− ≈ (1 + kTFd )x3 −
iαT y, and e−2x ≈ 1, which gives

ρD ≈ α2
T

32π2e2

1

(nd2)2

×
∫∫ +∞

0

x3y2dxdy

sinh2
( y

2

)[
(1 + kTFd )2x6 + α2

T y2
] . (36)

Here x integral can be done first by rescaling the variable,
followed by y integral. Collecting all the factors, we get

ρD ≈ �
(

7
3

)
ζ
(

4
3

)
24

√
3πe2

(
1

nd2

)2(
αT

kTFd

) 4
3

, (37)

which reproduces earlier result ρD ∝ T 4/3 [28–31]. At the
intermediate temperatures, when αT > kTFd , we use differ-
ent approximations to extract the leading asymptote. The

FIG. 5. Temperature dependence of the drag resistance presented
in the dimensionless units. Based on Eq. (35) R is defined by ρD in
units of (1/4πe)2(1/nd2)2 whereas αT ∝ T . The domain of validity
of Eq. (37), when R ∝ T 4/3, is limited to the lowest temperatures
T � EF/(kFd )2. Above this scale drag resistance is nearly linear in
temperature R ∝ T ln T , see Eq. (40).

expressions of X± remain the same, but we recognize that
the dominant range of y integration is limited by the domain
y � 1 therefore we can take y2/ sinh2( y

2 ) → 4. This gives

ρD ≈ α2
T

2π2e2

(kTFd )2

(nd2)2

×
∫∫ +∞

0

x7e−2xdxdy[
4(kTFd )2x4 + α2

T y2
][

(1 + kTFd )2x6 + α2
T y2

] .

(38)

At this point, y integration can be completed exactly with the
help of the tabulated integral for the product of two Loretzians∫ ∞

0

dy

(y2 + a2)(y2 + b2)
= π

2ab(a + b)
, (39)

and the remaining x integral can be done with the logarithmic
accuracy to yield the final expression

ρD ≈ 1

12πe2

(
1

nd2

)2(
αT

kTFd

)
ln

(
αT

kTFd

)
. (40)

In this limit, we deduce ρD ∝ T ln T . This behavior was
clearly observed in several experiments [15,17,18], however
it was not addressed theoretically. The full temperature de-
pendence is depicted in Fig. 5 for several values of kTFd .

B. Diffusive limit

Equation (33) for the drag resistance applies to the disor-
dered systems as well with the proper modifications to the
polarization function and screened interaction. Therefore, us-
ing Eqs. (24) and (26), we find

ρD = 1

8e2n2T

∫
ω2

sinh2
(

ω
2T

) q2d�qω

(1 + kTFd )2(Dq2)2 + ω2
. (41)

The resulting temperature dependence can be estimated as
follows. It is clear that the leading contribution comes the
low-frequency ω � T and small-wave-vector behavior of the
integrand. Thus the contributions to the integral in q for
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q <
√

ω/D can be neglected. These observations lead to the
approximate expression

ρD ≈ 1

32π2e2n2

1

(1 + kTFd )2

∫
ω2dω/T

sinh2
(

ω
2T

) ∫ 1/lcf

√
ω/D

dq

D2q
.

(42)
The logarithmically divergent momentum integral is cut by
the inverse of the mean free path at the upper limit, which con-
fines the applicability of the diffusive approximation, and by
thermal length at the lower limit, due to approximation made
to the screening of the interaction. In principle, frequency
integral should also be stopped at 1/τcf, but owing to its rapid
convergence the limits can be extended to infinity. Therefore,
with the logarithmic accuracy, one arrives at

ρD ≈ 1

12e2

(
1

nL2
T

)2( 1

1 + kTFd

)2

ln
LT

lcf
. (43)

Coincidently, the resulting temperature dependence is identi-
cal to that of drag resistance derived for the disordered Fermi
gas at zero field ρD ∝ T 2 ln T [77,78].

C. Hydrodynamic limit

Drag effect also admits hydrodynamic description in
strongly correlated electron liquids [36,80–82]. Computation
of the dragging force exerted from the drive layer on electron
fluid in the drag layer requires considerations of the density
fluctuation advected by the flow. This analysis can be carried
out to the linear order in hydrodynamic velocity. We find that
drag resistance is dominated by plasmon resonance and can
be expressed as the sum of two terms

ρD = ρσ + ρυ. (44)

In complete analogy with the heat transfer conductance, the
first term ρσ is generated by fluctuating intrinsic currents,
whereas the second term ρυ stems from the density fluctu-
ations induced by viscous stresses. We find that the latter
is parametrically smaller and decays fast with the interlayer
separation. Therefore we focus on the former contribution that
can be found in the following analytical form:

ρσ = 1

2e2n2

∫
d�qω

(
2πe2

εq

)
e−qd

(
T σq4

e2

)

× ω2(ω2
+ − ω2

−)/τ

[(ω2 − ω2+)2 + ω2/τ 2][(ω2 − ω2−)2 + ω2/τ 2]
.

(45)

Observe that the splitting of plasmon resonances becomes
exponentially small at q > 1/d . Therefore, in order to esti-
mate the frequency integral in the above expression, it is not
sufficient to take poles of two separate Lorentzians. Fortu-
nately, this integral can be calculated exactly so that the above
expression reduces to

ρσ = 1

2e2n2

∫
d2q

(2π )2

(
2πe2

εq

)
e−qd

(
T σq4

e2

)

× (ω2
+ − ω2

−)

[(ω2+ − ω2−)2 + 2(ω2+ + ω2−)/τ 2]
. (46)

The final result for the transresistance can be presented in the
form

ρσ = σ

e4

T

EF

1

(nd2)2
h(β ), β = 1

�pτ
. (47)

The dimensionless function is defined by the integral

h(β ) = 1

4

∫ ∞

0

x4e−2xdx

xe−2x + 1/β2
. (48)

This contribution to drag resistance displays anomalous sub-
linear temperature dependence, ρD ∝ T 1/3. This behavior is
qualitatively consistent with experimental observations re-
ported in Refs. [17,18]. Finally, we deduce that viscosity
dependent contribution scales as follows

ρυ = εvF

e4

T

EF

η + ζ

n

1

(kFd )5
w(β ), (49)

where w(β ) is yet another dimensionless function that has
logarithmic dependance on β in the well-resolved plasmon
limit when β < 1.

VI. PARAMETERS AND ESTIMATES

Drag of composite fermions was measured in several
groundbreaking experiments [15–18]. We take some typi-
cal values for parameters of the bilayer devices to estimate
the magnitude of the effect and compare that to drag be-
tween weakly correlated 2D electron systems. Near field
effect was not measured for composite fermion bilayers but
we will assume the same range of parameters in order to
estimate its value comparatively to the known examples.
Assuming identical layers with the average electron density
n ∼ 1011 cm−2 and interlayer spacing d ∼ 200Å, we can
estimate kFd ∼ 2. In principle, this product can be much
bigger since drag resistance was successfully measured for
much larger interlayer separations up to d ∼ 5000Å [83].
For the effective mass of composite fermions we take m∗ ≈
12mb, where mb ≈ 0.067me is the band mass in GaAs and
me is bare electron mass. Putting these numbers together
we estimate the Fermi energy to be about EF ∼ 10 K. The
condition αT ∗ = kTFd defines the crossover temperature T ∗
between low and intermediate temperature regimes. It evalu-
ates to T ∗ = (2e2/φ2εvF)EF/(kFd )2 and for above parameters
is close to ∼1 K. In a weakly correlated 2DEG bilayer drag
resistance is given by ρD ∼ e−2(T/EF)2/(kFd )4 at temper-
atures T < EF/(kFd ). If we compare that to resistance of
composite fermions at T ∼ T ∗ from Eq. (40), accounting for
the difference in Fermi energy due to effective mass, we find
the ratio of the two to be roughly (m∗/mb)2(kFd )4 ∼ 103.
Therefore drag of composite fermions is three orders of mag-
nitude stronger. This analysis corroborates earlier conclusions
[28]. The composite fermion drag measured in approximately
equivalent bilayers (in terms of values of n and d) give values
ρD ∼ 100�/� [15] and ρD ∼ 2�/� [17] at T ∼ 2 K. The
typical number of the zero-field value of drag in weakly cor-
related 2DEG bilayers is in the range of ρD ∼ 10 m�/� [84]
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at T ∼ 2 K. Thus strong enhancement of drag in composite
fermions systems is apparent.

Interestingly, the same enhancement parameter applies to
the near field thermal conductance. Indeed, the Fermi liquid
prediction κ ∼ (T/d2)(T/EF)2 applicable for T < EF/(kFd )
should be compared to Eq. (20) or (21) depending on the
value of T . Then for T ∼ T ∗ we deduce the same parametric
enhancement given by (m∗/mb)2(kFd )4 
 1.

In summary, we conducted a comprehensive analysis of
the near-field thermal transfer conductance in bilayers of
composite fermions. Our theoretical framework spans various
transport regimes, encompassing the ballistic to hydrody-
namic limits. The impact of disorder on the conductance
is also discussed. Additionally, we delved into the issue of
drag resistance, reproducing prior findings and expanding the

scope of results to a wider range of parameters pertinent to
experimental devices and measurements.
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