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Nonreciprocal ballistic transport in asymmetric bands
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Nonreciprocal transport in uniform systems has attracted great research interest recently and the existing
theories mainly focus on the diffusive regime. In this study, we uncover a scenario for nonreciprocal charge
transport in the ballistic regime enabled by asymmetric band structures of the system. The asymmetry of the
bands induces unequal Coulomb potentials within the system as the bias voltage imposed by the electrodes
inverts its sign. As a result, the bands undergo different energy shifts as the current flows in opposite directions,
giving rise to the nonreciprocity. Utilizing the gauge-invariant nonlinear transport theory, we show that the
nonreciprocal transport predominantly originates from the second-order conductance, which violates the Onsager
reciprocal relation but fulfills a generalized reciprocal relation similar to that of unidirectional magnetoresistance.
The ballistic nonreciprocal transport phenomena differ from the diffusive ones by considering the internal
asymmetric Coulomb potential, a factor not accounted for in diffusive cases but undeniably crucial in ballistic
scenarios. Our work opens an avenue for implementing nonreciprocal transport in the ballistic regime and
provides an alternative perspective for further experimental explorations for nonreciprocal transport.
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I. INTRODUCTION

Reciprocity in charge transport reflects a symmetrical rela-
tionship between current and voltage, where the magnitude
of current stays constant when the voltage has an opposite
sign but the same value [1,2]. Violations of reciprocity un-
derpin the functionality of key electronic devices like diodes
and photodetectors [3,4]. Although nonreciprocal transport is
commonly encountered at systems involving interfaces, such
as the celebrated p-n junction, its implementation in uniform
bulk materials has occurred more recently, driven by entirely
different scenarios. A type of nonreciprocal transport, termed
electric magnetochiral anisotropy (EMCA), which exhibits
unidirectional magnetoresistance, was proposed in Ref. [5].
Inspired by this discovery, extensive exploration has been
conducted to identify material candidates that exhibit non-
reciprocal transport. Significant findings encompass chiral
nanosystems [5,6], polar semiconductors [7–9], bilayer het-
erojunctions [10–14], and topological systems [15,16].

On the theoretical side, a variety of mechanisms have been
put forward to explain nonreciprocal transport in systems with
translational symmetry. Typical scenarios include asymmet-
ric band structures [1,7], asymmetric inelastic scattering by
spin clusters [17] and magnons [18], quantum metric [19,20],
quantum interferences [21], and the non-Hermitian skin ef-
fect [22,23]. In these studies, various theoretical approaches
have been employed, such as semiclassical transport equa-
tions [7,19,24,25] and quantum kinetic theory [26], both of
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which consider the nonlinear effects of an external electric
field.

Here, we mainly focus on the nonreciprocal transport in the
systems with asymmetric bands. The existing mechanism for
this case mainly concentrates on the diffusive limit [7], and a
direct extension to the ballistic limit is not feasible under the
same theoretical framework.

Notably, both first-order and second-order conductivities
derived in the diffusive regime diverge to infinity as the relax-
ation time τ approaches infinity [7], highlighting challenges
in the ballistic regime. Therefore, it remains an open question
whether nonreciprocal transport can be achieved in the ballis-
tic regime. The recent application of the nonlinear Landauer
formula has addressed the issue [27], yet it takes no account of
the internal Coulomb potential, which results in gauge depen-
dence as evidenced by variations in the nonlinear current with
global voltage shifts. Meanwhile, a gauge-invariant nonlinear
theory developed decades ago offers a more solid framework
[28–30]. This approach has recently provided valuable in-
sights, particularly in studies on nonlinear Hall effects [31,32].

In this work, we give an affirmative answer to this question
by showing that nonreciprocal ballistic transport can be imple-
mented in systems featuring asymmetric band structures with
the setup depicted in Fig. 1. In this scenario, the asymmetry
of the bands induces unequal Coulomb potentials U (�V )
within the system as the bias difference �V = VL − VR be-
tween the terminals undergoes a change in sign, because the
current flowing in opposite directions is carried by electrons
with different densities. This leads to different energy shifts
as the current flows in opposite directions. Consequently,
the states occupied by electrons in the bands are situated at
different levels in the original band structures without the
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FIG. 1. The two-terminal setup for the nonlinear nonreciprocal
transport system with asymmetric band structures. The terminals,
depicted in blue, are designated as “L” (left) and “R” (right) with
biases VL and VR. The region in yellow represents the scattering
regime. The asymmetric band structure is illustrated by the purple
lines. In equilibrium, the Fermi level and the Hamiltonian are de-
noted by EF and H0, respectively. The internal screened Coulomb
potential, represented as U (VL,VR), correlates with the biases at the
terminals. The term v±

x indicates the velocity of the right-moving
(left-moving) mode around the Fermi energy. The current generated
in the system, as a result of the potential difference, is expressed by
I (VL,VR). �U , the difference of Coulomb potential U (VL,VR) in
the cases of VL > VR and VL < VR, makes a shift of the bottom of
energy bands.

effect by Coulomb potentials, resulting in nonreciprocal trans-
port. By utilizing the theoretical framework of gauge-invariant
nonlinear quantum transport [28–30], we demonstrate the
nonreciprocal ballistic transport in a two-terminal setup by
showing |I (�V, B)| �= |I (−�V, B)|, where B is the magnetic
field utilized to generate band asymmetry. We further show
that, although the Onsager reciprocal relation [33] breaks
down here, the relation |I (�V, B)| = |I (−�V,−B)|, similar
to that in EMCA [5,34], maintains.

The rest of the paper is organized as follows: In Sec. II, we
provide a concise review of the theory employed in our study.
In Sec. III, a general theory of nonreciprocal ballistic transport
is elucidated. In Sec. IV, the physical results are specified in
the two-dimensional (2D) Rashba gas subjected to an in-plane
magnetic field. Finally, in Sec. V, we present our concluding
remarks.

II. GAUGE-INVARIANT NONLINEAR QUANTUM
TRANSPORT THEORY

Consider quantum coherent transport taking place in a
mesoscopic system with connection to multiple terminals la-
beled by {α}. The electric current Iα in terminal α driven by
the bias voltages {Vα} is expressed as [30,35–37]

Iα = − e

h

∑
β

∫
dETαβ (E ,U )( fα − fβ ), (1)

where fα ≡ f (E − μα ) is the Fermi-Dirac distribution func-
tion in terminal α, with μα = EF − eVα; EF is the equilibrium
Fermi energy; and Vα is the bias voltage. The transmis-
sion from terminal β to terminal α is given by Tαβ =
Tr[�αGr�βGa], where Gr(a) is the retarded (advanced) Green’s

function defined as

Gr(a)(E ,U ) = 1

E − H + eU − �r(a)
,

�r(a) =
∑

α

�r(a)
α , (2)

with �r(a)
α being the retarded (advanced) self-energy intro-

duced by terminal α that satisfies �a
α = (�r

α )†. The linewidth
function is defined as �α = i(�r

α − �a
α ). For a two-terminal

setup, the unitarity of the scattering matrix [38] ensures
TLR = TRL.

In Eq. (2), H is the Hamiltonian of the system in equilib-
rium; i.e., all bias voltages vanish (Vα = 0). The additional
term U (x) is the Coulomb potential arising from a finite bias,
which satisfies the Poisson equation [39]

∇2U (x) = 4π ie
∫

dE

2π
[G<(E ,U )]xx, (3)

where x denotes the position. The potential U (x) plays an
essential role for the nonreciprocal ballistic transport as the
asymmetric band structures are considered. The lesser Green’s
function G< is defined as G< = Gr�<Ga, with

�< =
∑

α

i�α fα. (4)

In general, a self-consistent approach is required to solve
Eqs. (2)–(4) in the nonlinear regime. Since the lesser Green’s
function exhibits a nonlinear relationship with U , Eq. (3)
is a nonlinear differential equation. Nevertheless, the entire
theoretical framework is gauge invariant [39], which means
that the current is invariant under a uniform potential shift
applied throughout the system.

Here, we focus on the weakly nonlinear regime, where the
Coulomb potential can be expanded as

U (x) =
∑

α

uα (x)Vα + · · · , (5)

where the zeroth-order term (potential in equilibrium) has
been absorbed into the Hamiltonian H , and uα (x) denotes
the characteristic potential [30,39]. Gauge invariance of the
theory requires [30] ∑

α

uα = 1. (6)

To the lowest order, we derive the equation for uα (x) from
Eqs. (3) and (5) [30,40] as

−∇2
x uα + 4πe2 dn

dE
uα = 4πe2 dnα

dE
, (7)

where n(x) is the local charge density, and the injectivity or
local partial density of states (LPDOS) of terminal α [30,40]
is given by

dnα

dE
(x) =

∫
dE

2π
(−∂E f0)

[
Gr

0�αGa
0

]
xx

, (8)

in which Gr,a
0 is the equilibrium Green’s function with

U (x) = 0. An alternative expression for injectivity in terms of
scattering wave functions and the velocity of incident modes
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is [41,42]

dnα

dE
(x) =

∫
dE

2π
(−∂E f0)

∑
n

|
αn(x)|2
h̄|vαn| , (9)

where f0 is the zero-bias distribution function, and 
αn(x)
and vαn are the wave function and the velocity corresponding
to the incident mode n from terminal α. The total injectivity
contains the contributions from all terms as

dn

dE
(x) =

∑
α

dnα

dE
(x). (10)

In the weakly nonlinear regime, we expand the current to the
second order of the bias voltages as [30,31,39]

Iα =
∑

β

GαβVβ +
∑
βγ

GαβγVβVγ + · · · . (11)

III. NONRECIPROCAL TRANSPORT
IN THE BALLISTIC REGIME

In this section, we employ the theoretical framework intro-
duced in the previous section to study nonreciprocal ballistic
transport. We here focus on transport in a two-terminal setup.
The current is assumed to flow in the x direction. The two
terminals are situated on the left (L) and right (R) sides, with
the corresponding biases denoted by VL and VR, respectively.
Due to the gauge invariance, the current flowing in two-
terminal setups as formulated in Eq. (11) solely depends on
the bias difference between the two terminals, which can be
described by

I (�V ) = G1�V + G2�V 2 + O(�V 3), (12)

where �V = VL − VR. For convenience, we set the bias con-
figuration as VL = V/2 and VR = −V/2, corresponding to
the voltage difference �V = V . Accordingly, the current in
Eq. (1) reduces to

I (V ) = − e

h

∫
dE T [E ,U (V )]

×
[

f

(
E − EF + eV

2

)
− f

(
E − EF − eV

2

)]
.

(13)

Without the bias-induced Coulomb potential, it is straight-
forward to prove the reciprocity of the transport, that is,
I (V ) = −I (−V ). This conclusion fails as the bias-dependent
Coulomb potential U (V ) is taken into account. Equation (5)
now reduces to

U (V ) = (uL − uR)
V
2

+ O(V2), (14)

to the first order of V . From Eq. (13), it is evident that
if T [E ,U (V )] �= T [E ,U (−V )] then |I (V )| �= |I (−V )|, giv-
ing rise to nonreciprocal ballistic transport. This can be
achieved by U (V ) �= U (−V ), or uL �= uR in Eq. (14). Ac-
cording to Eq. (7), this means that dnL/dE �= dnR/dE . One
way to achieve this condition is by breaking the translational
symmetry along the transport direction using proper device
geometries [30,43,44]. However, this strategy can readily
drive the system away from the ballistic regime.

Here, we propose an alternative approach to realize
nonreciprocal ballistic transport, taking advantage of the
asymmetrical band structures with E (kL

x ) �= E (kR
x ), where

kL,R
x are the wave vectors for the left- and right-moving states,

respectively. The scenario is to lift the condition of U (V ) =
U (−V ) by introducing unequal LPDOS in Eq. (9) for different
terminals, which is achieved by the bias-resolved Coulomb
potential. Specifically, for a given energy E , the opposite
propagation states possess unequal velocities,∣∣v(

kL
x , E

)∣∣ �= ∣∣v(
kR

x , E
)∣∣, (15)

due to the asymmetry of the bands. For a uniform system, the
spatial distribution of the eigenstates |
αn(x)| is independent
of x and so is the LPDOS dnα/dE . Similarly, the Coulomb
potential remains constant throughout the scattering region
so that the characteristic potentials satisfy ∇2

x uα = 0. The
characteristic potentials are then expressed as

uα = dnα

dE

/
dn

dE
. (16)

This result is consistent with the local neutral approxima-
tion [30,39,42], where the local charge density is assumed to
be zero everywhere inside the system. Since the LPDOS is
solely determined by the velocities in Eq. (9), the asymmetric
band structures assign different values to the LPDOS for the
two terminals with dnL/dE �= dnR/dE , which further gives
uL �= uR.

The analysis above highlights the key scenario for the
nonreciprocal ballistic transport in asymmetric bands. Next,
we introduce Uc ≡ U (V ) = −U (−V ), drop the higher-order
terms O(V2) in Eq. (14), and denote the transmission for +V
as T+ ≡ TLR(E ,Uc) and that for −V as T− ≡ TLR(E ,−Uc)
for brevity. It is conceivable that the nonreciprocal condition
T+ �= T− holds in general. Expanding Eq. (13) in the weak
nonlinear regime yields

I (V ) ≈ e2

h

∫
dE (−∂E f0)

[
T0V + e

2
(∂E T0)(uL − uR)V2

]

= G1V + G2V2, (17)

where T0 ≡ TLR(E ,U = 0), and the first-order and second-
order conductances are expressed as

G1 = e2

h

∫
dE (−∂E f0)T0,

G2 = e3

2h
(uL − uR)

∫
dE (−∂E f0)(∂E T0). (18)

In the limit of zero temperature, the integration in Eq. (17)
simplifies to

I ≈ e2

h

[
T0V + e

2
(∂E T0)(uL − uR)V2

]
, (19)

where the energy is assumed to be at the Fermi energy EF .

IV. NONRECIPROCAL BALLISTIC TRANSPORT
IN RASHBA ELECTRON GAS

The scenario of nonreciprocal ballistic transport introduced
in the previous section is general. Equation (17) indicates that

155302-3



ZOU, GENG, MA, CHEN, SHENG, AND XING PHYSICAL REVIEW B 109, 155302 (2024)

FIG. 2. The energy spectrum of the 2D SOC system, as calculated from Eq. (23), is illustrated in the following configurations. Panels
(a) and (c) display the energy spectrum of the SOC system with By = B0 and −B0, respectively, at a fixed ky = 0. Panel (b) shows the energy
spectrum with By = B0 and ky = 0.2k0. Panels (d)–(f) depict the Fermi surfaces, which are closed contours in the 2D system, at EF = −0.1,
−0.05, and 0.1 eV, corresponding to the levels shown in panel (a), with By = B0. Here, the parameters are m = 0.15me, with me being the mass
of a bare electron; λ = 3.85 eV Å [7]; k0 satisfying h̄2k2

0/m = 1 eV; and B0 = 0.078 eV.

a nonzero second-order conductance G2 necessitates uL �= uR

and ∂E T0 �= 0. In quasi-1D systems, where transmission T0 is
quantized, achieving nonzero ∂E T0 is theoretically impossible.
However, a continuous and differentiable T0(E )—a prerequi-
site for nonzero ∂E T0—can be realized in 2D and 3D systems,
as well as in quasi-1D systems with heterogeneous leads and
the scattering region.

In this section, we elucidate the physical effects using
the concrete example of 2D Rashba electron gas subjected
to an in-plane magnetic field, which realizes asymmetric
band structures. We investigate the modulation of the inter-
nal Coulomb potential induced by the bias voltages and the
resultant nonreciprocal transport properties. The physical con-
ditions for the implementation of the nonreciprocal transport
are given.

A. 2D Rashba gas with asymmetric bands

We consider the 2D electron gas with Rashba spin-orbit
coupling (SOC) subjected to an in-plane magnetic field, which
can be captured by the Hamiltonian as

H (k) = h̄2k2

2m
+ λ(kxσy − kyσx ) − Byσy, (20)

where m denotes the effective electron mass, λ represents the
strength of the SOC, k2 = k2

x + k2
y defines the magnitude of

the wave vector, and By is the Zeeman splitting induced by
the in-plane magnetic field along the y axis.

When By is zero, the system satisfies both space-inversion
symmetry (SIS) and time-reversal symmetry (TRS). Utilizing
the QSYMM package [45], we identify the unitary symme-
tries related to SIS, including inversion symmetry with the
action S = σz, and mirror symmetries along the x and y di-
rections with actions Mx = σx and My = iσy, respectively.
These symmetry operations transform the Hamiltonian as

follows:

S†H (k)S = H (−k),

M†
xH (kx, ky)Mx = H (−kx, ky),

M†
yH (kx, ky)My = H (kx,−ky ). (21)

TRS is represented as an antiunitary symmetry with the action
T = σyK, where K is the complex conjugation operator, and
it satisfies

T †H (k)T = H (−k). (22)

When By is nonzero, symmetries associated with S , Mx, and
T are all broken, leading to an asymmetric band structure
along the x direction (cf. Fig. 2). Specifically, the energy
dispersions are

E±(k) = h̄2k2

2m
±

√
(λkx − By)2 + λ2k2

y . (23)

The x component of the velocities are

vx
± = h̄kx

m
± λ(λkx − By)

h̄
√

(λkx − By)2 + λ2k2
y

. (24)

As our setup is infinite and translationally invariant along the
y direction, we simplify our model by assuming the potential
U to be independent of y. This assumption facilitates a simpli-
fied solution for the characteristic potential, analogous to the
formulation presented in Eq. (16). The LPDOS contains the
contribution from all ky channels and can be expressed as

dnα

dE
=

∫
dky

2π

dnα,ky

dE
, (25)

where dnα,ky/dE represents the LPDOS of the ky channel
in terminal α. In the ballistic limit, where kx remains a
good quantum number and the terminals share the same
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FIG. 3. Panels (a), (b), and (c) display the first-order conductances, the second-order conductances, and the characteristic potentials of the
two terminals, respectively, at varying temperatures of 0, 40, 100, and 150 K. In these figures, By = B0 is fixed, and the other system parameters
are identical to those presented in Fig. 2. Specifically, in panel (c), the solid and dashed lines represent the characteristic potentials uL and uR,
respectively. These lines correspond to the same temperatures as those in panels (a) and (b), indicated by matching colors. The parameters g0

and g1 are defined such that g0 = e2Lyk0
2πh and g0

2g1
= 1 V.

Hamiltonian as the system, the total transmission is directly
evaluated as

T0 = Ly

2π

∑
n=±

∫
dkxdkyθ

(
vx

n

)
vx

nδ(E − En), (26)

where Ly denotes the width of the scattering region in the y di-
rection, and θ (· · · ) and δ(· · · ) are the Heaviside step function
and the Dirac delta function, respectively. The LPDOS of the
left and right terminals can be simplified as

dnL,R

dE
= −1

(2π )2

∑
n=±

∫
dkxdkyθ

( ± vx
n

)
∂En f (En − EF ),

(27)

where L and R correspond to +vx
n and −vx

n, respectively. As
the temperature approaches zero, dnL,R/dE becomes propor-
tional to the carrier density of the Fermi arcs for the left-
and right-moving modes, as indicated by Eq. (27). When the
Fermi surfaces (loops in the 2D case) are asymmetric, as
shown in Figs. 2(d)–2(f), dnL/dE �= dnR/dE . According to
Eqs. (16) and (17), nonreciprocal transport phenomena can be
expected.

B. Results and discussions

We start by analyzing the asymmetric energy bands de-
scribed by Eq. (23), as depicted in Fig. 2. For a given energy
in the ky channel, the velocities of the counterpropagating
states are unequal, like the density of states (DOS). Such
band asymmetry necessitates the violation of SIS and TRS,
which are symmetries S , Mx, and T here. Figures 2(d)–2(f)
reveal the broken reflection symmetry of the Fermi loops
about the kx axis, which gives rise to different characteristic
potentials uL and uR and leads to the emergence of second-
order conductance G2, as formulated in Eq. (18). In Fig. 3, we
plot the characteristic potentials and two conductances G1,2.
The nonreciprocal transport is revealed by the second-order
conductance G2 in Fig. 3(b). According to Eq. (18), it is pro-
portional to the difference of characteristic potentials uL − uR;
see Fig. 3(c). From Fig. 3(b), one can see that the most
pronounced nonreciprocal signals occur at EF ≈ −0.07 eV,
when the Fermi energy coincides with the higher band bottom
in Fig. 2(a). It is associated with the von Hove singularity in
the DOS, resulting in a sudden alteration in conductance G1,

as depicted in Fig. 3(a), where the derivative of G1 under-
goes an abrupt change at EF ≈ −0.07 eV. This observation
aligns with findings in the diffusive limit [7]. However, our re-
sults in the ballistic limit display persistent nonvanishing sig-
nals even when the Fermi energy is above the Dirac point, thus
differentiating them from diffusive transport behaviors [7].

In Fig. 4, we illustrate how the conductances and the first-
order potential are influenced by both the Fermi energy and
the magnetic field By. When By is inverted to −By, the con-
ductance G1 remains unchanged, as does its derivative with
respect to energy; see Fig. 4(a). Concurrently, the energy band
structure reverses along the kx direction, as shown in Figs. 2(a)
and 2(c). This reversal swaps the characteristic potentials from
uL(R) to uR(L), given that the LPDOS is fully determined by the
band structures. This phenomenon is manifested in Fig. 4(c),
where the first-order potential U is an odd function of By for
a given EF . As for Eq. (18), the conductance G2 should also
invert its sign, corresponding to the observation in Fig. 4(b). It
is noted that the Onsager reciprocal relation [33] is violated,

FIG. 4. Contour plot figures are presented to illustrate the follow-
ing: (a) and (b) the first-order conductance G1 and the second-order
conductance G2, as expressed in Eq. (18); (c) the first-order potential
U , as expressed in Eq. (14); and (d) the magnitude of γ ′ = γ Ly, with
γ defined in Eq. (28). They are in relation to variations in the Fermi
energy and the Zeeman energy By. The parameters here are consistent
with those used in Fig. 3, with the temperature fixed at 0 K. We
take g = 60 as the g factor [7] to determine the magnetic field when
calculating γ .
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as |I (V, B)| �= |I (−V, B)|. However, the relation |I (V, B)| =
|I (−V,−B)| holds, akin to the EMCA effects [5,6,34].

The resistance formula is commonly adopted in nonrecip-
rocal transport measurements. The expression for resistance,
as discussed in Refs. [5,34], can be obtained from Eq. (17) as

R = V
I

= R0(1 − γ IB), (28)

where

R0 = 1

G1
, γ = G2

G2
1B

.

We plot γ ′ = γ Ly as a function of By and EF in Fig. 4(d). In
the funnel-mouth-shaped region, where By is relatively small
and the Fermi energy lies between the higher band bottom
and the Dirac point, γ ′ appears to be largely independent of
By. This result coincides with that in the diffusive limit [7].
However, it is noteworthy that the magnitude of γ ′ in this
region, approximately 10−6 A−1 T−1 m, is significantly larger
than that reported in Ref. [7].

V. CONCLUSIONS

In conclusion, our theoretical investigation focuses on
nonreciprocal transport in energy band asymmetric systems
within the quantum ballistic regime. A pivotal aspect of our
study is the consideration of Coulomb potentials induced by

finite biases. Antisymmetric biases at the left and right ter-
minals lead to asymmetric potentials, a consequence of the
inherent asymmetry in the band structure. Additionally, our
analysis anticipates significantly larger nonreciprocal current
signals in the quantum transport regime compared to diffusive
bulk materials.

Furthermore, it is important to emphasize the wide ap-
plicability of the gauge-invariant weak nonlinear quantum
transport theory to quantum nonreciprocal transport phe-
nomena. This framework is versatile, extending to coherent
nanoribbons and nanowires impacted by impurities and barri-
ers, as well as to scenarios involving noncoherent transport.
Specifically, our theoretical insights, particularly those de-
rived from Eq. (17), offer qualitative understanding across a
range of systems, leading to significant physical interpreta-
tions and conclusions. We hope that our work will provide
valuable insights for future quantum transport experiments.
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