
PHYSICAL REVIEW B 109, 155301 (2024)

Clock generator based on a vortex attractor in polariton superfluids
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We reveal the topologically protected persistent oscillatory dynamics of a polariton superfluid which is driven
nonresonantly by a super-Gaussian laser beam in a planar semiconductor microcavity subjected to an external
C-shaped potential. We find persistent oscillations characterized by an attractor of vortices that are based on
the dynamical behavior of small Josephson vortices rotating around the outer boundary of the ring-shaped dense
region of the central vortex. The attractor is formed due to the inverse energy cascade accompanied by the growth
of incompressible kinetic energy. The attractor displays a remarkable stability towards perturbations, and it may
be tuned by the pump laser intensity to two distinct frequency ranges: 20.16 ± 0.14 and 48.4 ± 1.2 GHz. This
attractor is bistable with respect to the chirality of the vortex. The switching between two stable states is achieved
by altering the pump power or by adding an extra incoherent Gaussian pump beam.
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I. INTRODUCTION

Exciton-polariton condensates [1–3] offer intriguing possi-
bilities for on-chip simulation of a broad variety of nonlinear
phenomena in classical [4–6] and quantum [7–9] physics. The
nonlinearity that is essential for these phenomena arises from
the fact that the material component of exciton-polaritons
allows them to interact among themselves [10,11]. On top of
this, being bosonic quasiparticles, polaritons possess the re-
markable ability to form superfluids even at high temperatures
[12–14]. This superfluid behavior is conveniently described
by a many-body wave function that is governed by a general-
ized Gross-Pitaevskii equation. The generalization is required
to account for pumping and dissipation, which are always
present in any polariton system because of the finite (and
usually very short) lifetime of each individual polariton. The
driven-dissipative nature of polariton superfluids is respon-
sible for a multitude of fascinating phenomena [15–18]. To
be more specific, thanks to pumping and dissipation, every
polariton system is out of thermal equilibrium, and it does not
strive to minimize its energy. Polariton condensates may be
formed in an excited state of the lower polariton dispersion
branch [19–21] or even in a superposition of excited states
[22–24] of the conservative Hamiltonian of the system as long
as the pumping is on.

The stationary state of a superfluid is governed by the
balance of pump and decay. If the initial state of the superfluid
is a superposition of two eigenstates of the Hermitian part of
the Hamiltonian of the system and this state is close to the
stationary state, the subsequent dynamics of the superfluid
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may be characterized by the exciting phenomenon of persist-
ing oscillations. Such oscillations manifest through periodic
modulations of the density of polaritons, through the phase of
the condensate, or through the spatial redistribution of either
of the two. In the latter case, oscillations of quantized vortices
[25,26] may be found. Quantized vortices are the subject
of detailed experimental study in polaritonics. They can be
conveniently identified by near-field interferometry.

A variety of physical mechanisms may be behind the
formation of persistent currents or vortices in polariton su-
perfluids. A comparison of the polariton system to the ac
Josephson currents of Cooper pairs might be instructive or
deceptive, depending on how the system responds to its initial
conditions. If the initial state of the system is formed by a su-
perposition of two eigenstates of the Hermitian component of
the Hamiltonian, the ac Josephson current is formed [27,28].
In contrast, if the system’s stationary dynamics and the initial
state are mismatched, chaotic dynamics might emerge, pro-
voking an inverse energy cascade [29,30] in which vortical
structures, from small ones to large ones, form increasingly
over time. The appearance of corotating pairs of vortices [31]
is one of the signatures of this mechanism [32,33].

In this work, we report the persistent nonlinear dynamics
of an attractor [34,35] of vortices in a circular polariton super-
fluid, where Josephson vortices with relatively small cores can
consistently circulate around the outer boundary of the ring-
shaped dense region of the central large vortex. By analyzing
the dynamics of the system, we establish that the appearance
of corotating pairs of vortices, induced by the inverse en-
ergy cascade triggered during the dynamical procedure of the
chaotic phase of repeated collisions of vortices, is crucial to
the formation of this attractor. Topological protection guar-
antees the robustness of the attractor dynamics, characterized
by persistent oscillations over time, against external pertur-
bations, thus preventing them from being easily disrupted.
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FIG. 1. (a) Sketch of the semiconductor microcavity containing
a C-shaped potential, excited by a nonresonant pump in the super-
Gaussian shape with radius R0 = 10 µm. (b) Stable state of the vortex
achieved with P0 = 3.1Pth. The parameters for a C-shaped potential
with a slot are r0 = 4 µm, a = 2 µm, wd = 2 µm, and potential depth
V0 = −0.6 meV.

The system may be considered a “clock generator” [36,37]
which presents remarkable stability and may be adjusted to
two distinct frequency domains by tuning the pump laser
intensity. Since a vortex has chiral symmetry, every attractor
is bistable. In each particular numerical experiment, the sys-
tem spontaneously relaxes to one of two stationary solutions.
These findings provide a proof-of-concept demonstration of
the feasibility of a portable and low-power clock generator
based on a polariton superfluid.

II. MODEL

To be specific, we consider the system shown schemati-
cally in Fig. 1(a). The nonresonant cw optical field with the

super-Gaussian shape P(r) = P0e−( r
R0

)20

is applied to excite
exciton-polaritons in a semiconductor microcavity containing
a C-shaped in-plane external potential. r0 and a are the radius
and width of the potential ring, respectively. V0 is the potential
depth, and wd is the width of the potential slot. Obeying the
bosonic statistics, polaritons form a Bose-Einstein condensate
which remains localized under the joint confinement effect of
the external potential and the pump spot.

The dynamics of a polariton condensate can be described
by the dissipative Gross-Pitaevskii equation for the macro-
scopic wave function ψ (r, t ) coupled to the rate equation for
the density of the exciton reservoir nR(r, t ):

ih̄
∂ψ (r, t )

∂t
=

[
− h̄2

2m
∇2 + gC|ψ (r, t )|2 + gRnR(r, t ) + V (r)

+ ih̄

2
(RnR(r, t ) − γC)

]
ψ (r, t ) + ih̄

dW

dt
,

∂nR(r, t )

∂t
= P(r) − [γR + R|ψ (r, t )|2]nR(r, t ), (1)

where m = 1 × 10−4me (me is the free electron mass) is the
effective mass of polaritons on the lower-polariton branch.
The nonlinear coefficients gC = 3 × 10−3 meV µm2 and

gR = 2gc represent the strengths of polariton interactions
among themselves and with the reservoir exciton, respec-
tively. γC = 0.4 ps−1 and γR = 0.8 ps−1 are the polariton and
reservoir decay rates, respectively. R = 0.01 ps−1 µm2 is the
rate of stimulated scattering of quasiparticles from the exciton
reservoir to the polariton fluid. P(r) is the nonresonant cw
optical pump. V (r) is the external potential with depth, which
can be generated in planar semiconductor microcavities us-
ing different techniques [38,39]. dW describes the quantum
fluctuations within the classical field approximation with the
addition of a complex stochastic term in the truncated Wigner
approximation [40],

〈dW (r, t )dW (r′, t ′)〉 = 0,

〈dW (r, t )dW ∗(r′, t ′)〉 = dt

2dxdy
(RnR + γC)δr,r′δt,t ′ . (2)

III. AN ATTRACTOR OF VORTICES

The polariton superfluid, due to its non-Hermitian nature,
requires a persistent external pump to sustain the polariton
population by means of the stimulated scattering of quasi-
particles from the exciton reservoir to the polariton reservoir.
The spatial characteristics of the pump have a notable in-
fluence on the reservoir-induced effective potential confining
the condensate, which, in conjunction with the external po-
tential, plays a crucial role in determining the dynamics of
the superfluid system. For instance, in the case of a polariton
superfluid confined within an external C-shaped potential,
although Josephson vortex pairs form at the location of the
potential slot functioning as a Josephson junction, the ulti-
mate stationary state hinges on the profiles of the pumping
mechanism. If the pump exhibits an annular configuration,
the superposition of two eigenstates of the Hermitian part
of the Hamiltonian of the system can be excited, and the
subsequent dynamics of the superfluid may be characterized
by quantum beats with a characteristic frequency dependent
on the energy splitting of the involved eigenstates [27]. If the
pump, however, exhibits a super-Gaussian profile, only one
excited state with two modes is stimulated, and the subsequent
dynamics of the superfluid may manifest in the periodic oscil-
lation where Josephson vortices with relatively small objects
can consistently circulate around the outer boundary of the
ring-shaped dense region of the density of the central large
vortex. We shall refer to the cyclic dynamics, demonstrated
by the system, as an attractor of vortices. The attractor of
vortices is similar to a limit cycle attractor [34,35], in which
it concerns the ability of returning to a stable periodic orbit
even after being perturbed. Two types of attractors of vortices,
presented in Fig. 2, emerge spontaneously due to the random
fluctuations of the initial noise and the quantum fluctuation
dW . Attractor A, as seen in Figs. 2(a1)–2(a3), illustrates
the periodic rotation of a single small Josephson vortex
around the outer edge of the annular density of the central
vortex. Conversely, Figs. 2(b1)–2(b3), showing attractor B,
depict the periodic rotation of two small Josephson vortices.
The former is accomplished by utilizing a pump power of
P0 = 2.9Pth, while the latter is obtained by employing a
slightly lower pump power of P0 = 2.6Pth. In both scenarios,
all small Josephson vortices exhibit circulation identical to
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FIG. 2. Attractor of vortices. (a1) and (b1) Polariton density in
real space, (a2) and (b2) phase distribution in real space. and (a3) and
(b3) polariton density in momentum space for two different pump
powers. (a) One small Josephson vortex (P0 = 2.9Pth) or (b) two
small Josephson vortices (P0 = 2.6Pth) circulate around the outer
edge of the annular density of the central large vortex. White arrows
depict the direction of movement of the Josephson vortices. (c) and
(d) The trajectories of the vortex singularity in the xyt space for the
attractor of vortices in (a) and (b).

that of the central vortex, as depicted in Figs. 2(a2) and 2(b2),
showing the phase distribution in real space. It is clear that
the quantity of the Josephson vortices, which are captured as
small objects by the central vortex, diminishes as the pump
power increases. Hence, it is not surprising that a stable vortex
state can be observed as the pump power is progressively
raised to the value of P0 = 3.1Pth, as seen in Fig. 1(b). This
observation is consistent with the non-Hermitian nature of the
polariton superfluid, wherein an increase in the pump power
leads to a decrease in the energy of the state. Indeed, due
to non-Hermitian terms, neither the number of particles nor
the energy is conserved by the Hamiltonian. The stimulated
scattering terms that favor the occupation of highly populated
states start playing a more important role with the increase
of the pump power, which eventually leads to a decreases
of the mean energy per particle manifested in the numerical
calculation. The effects revealed by this study diverge from
those observed in polariton condensates subjected to annular
external potentials. In the context of the earlier study [41],
it is observed that vortex structures characterized by varying
winding numbers (representing angular momentum) tend to
exhibit stability when subjected to adjustments in the pump
power. The limit cycles have been discussed and experimen-
tally searched for in polariton fluids. Proposals for polariton
time crystals [37,42,43] based on such limit cycles have been
made. In this context, the originality of the present work is
in the focus on vortex/antivortex oscillation dynamics that
allows for a relatively easy experimental detection via inter-
ferometry and brings an interesting phenomenology of the
Laguerre-Gaussian beams with oscillation orbital momenta.

It is important to highlight that in the context of the attrac-
tor of vortices, both the central vortex and the small Josephson
vortices are close to the first excited state of the external
potential where a stable vortex is normally located. The po-

lariton density distribution in momentum space, as seen in
Figs. 2(a3) and 2(b3), illustrates the presence of small Joseph-
son vortices within the annulus of the density of the central
vortex. These small Josephson vortices split the central vortex
into several portions to generate unbalanced modes in the first
excited state. The binding energy between the central vortex
and the small Josephson vortices may be approximated by
calculating the vector difference of their singularity locations
in momentum space. It is worth noting that the uncertainty
of this estimation, denoted as �k, is about 0.08 µm−1. We
believe that this binding energy is responsible for the forma-
tion of an attractor. It makes our system return to a stable
periodic orbit after being perturbed. We prove the stability of
the observed dynamics by adding a Gaussian-shaped barrier to
the path of the small Josephson vortex for several oscillating
periods. Having added this perturbation, we observe that the
small Josephson vortex would bypass the barrier’s periphery
while meeting the barrier and then continue to orbit along the
original trace. Further, if the barrier is withdrawn after several
oscillating periods, the small Josephson vortex would go back
to its original trace.

Figures 2(c) and 2(d) illustrate the spatiotemporal trajecto-
ries of the vortex singularities within the studied attractor of
vortices, with a temporal resolution of δt = 1 ps. The singu-
larity of the central vortex remains intact as it moves within
the core area, but the singularities of the rotating Josephson
vortices follow a circular course. The orbital-like trajectory
is analogous to that of the half vortex in a spinor polariton
condensate [44], where a vortex characterized by a certain cir-
cular polarization coincides with a Gaussian beam that has the
opposite circular polarization. Orbital-like trajectories suggest
an attractive interaction between the central vortex and the
rotating Josephson vortices.

In order to reveal the physical mechanism responsible
for the formation of an attractor of vortices, it is essential
to recall the physics of an inverse energy cascade. An in-
verse energy cascade is a physical phenomenon observed in
two-dimensional (2D) fluid dynamics, in which, during the
process of energy transfer, energy gradually transfers from
small-scale vortices to large-scale vortices, as indicated by
a Kolmogorov-like −5/3 power law in the kinetic energy
spectrum [45,46]. Within the realm of atomic Bose-Einstein
condensates [47,48], the clustering of vortices with the same
rotational direction, along with the increase in the incom-
pressible kinetic energy per vortex, is commonly recognized
as the characteristic feature of an inverse energy cascade.
For a dissipative polariton system, both theoretical [49,50]
and experimental [30] studies have successfully illustrated the
occurrence of vortex clustering, highlighting the tendency of
the vortex gas towards highly excited configurations. In the
following, we shall concentrate on the role of the inverse en-
ergy cascade in the generation of a corotating pair of vortices
characterized by identical vortex numbers and kinetic energy
[see Fig. 3(g)], which plays a critical role in the dynamics of
an attractor of vortices.

Let us consider the scenario involving a single Josephson
vortex playing the role of a small rotating object. The po-
lariton density generated by the pump with P0 = 2.9Pth is
sufficient to ensure the superfluid behavior of the polariton
condensate, resulting in a shallow density distribution across
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FIG. 3. (a1)–(f1) The polariton densities and (a2)–(f2) the corresponding phases in the dynamical procedure for the formation of an
attractor of vortices with a single Josephson vortex orbiting around the central vortex. (g) The vortex counts and kinetic energy vs time. The
inverse energy cascade is primarily responsible for the formation of an attractor.

the potential slot. This distribution disrupts the rotational sym-
metry of the polariton density and exhibits features similar
to those of a Josephson junction. Consequently, Josephson
vortex-antivortex pairs are induced symmetrically with re-
spect to the y axis on the right side of the potential slot
[see Fig. 3(a)]. The vortex and antivortex exhibit opposite
rotational orientations around the outside border of the ring-
shaped dense part of the polariton condensate and intersect at
a specific spot symmetric to the potential slot with respect to
the x axis [see Fig. 3(b)]. Following the collision, the vortex
and antivortex tunnel through the dense part of the ring and
subsequently undergo annihilation. Although the observed
dynamical activity exhibits periodicity throughout several cy-
cles, it does not represent a stationary state of the system.
At a certain moment, this behavior is abruptly interrupted,
resulting in the cessation of tunneling following the collision.
One vortex loses its energy following the impact and progres-
sively diminishes over time, while the other vortex persists
in its rotational motion at the outer boundary of the ring-
shaped dense part of the polariton condensate [see Fig. 3(c)].
Therefore, the left vortex is inevitably hit with the newly gen-
erated vortex or antivortex. In a 2D condensate, the occurrence
of repeated collisions between vortices can give rise to an
inverse energy cascade, which is facilitated by the inclusion of
the quantum pressure term |ψ |2∇( h̄2

2m
∇2|ψ |
|ψ | ) [51] in the Gross-

Pitaevskii equation. As a result of this inverse energy cascade,
vortex reconnection takes place, leading to the annihilation of
vortices possessing a particular circulation and the generation
of a corotating vortex pair with the same circulation. This
phenomenon is shown in Fig. 3(d): the right-circulation vortex
is eliminated following the collision, whereas a corotating pair
of vortices with left circulation is retained.

Figure 3(g) illustrates the fluctuations in vortex counts and
the associated time dependence of the incompressible kinetic
energy. The temporal intervals represented by points A to F

correspond to those in Figs. 3(a) to 3(f), respectively. It is
evident that prior to the formation of the dynamics shown
by C, the annihilation of the vortex through tunneling con-
sistently coincides with a reduction in the kinetic energy. On
the other hand, it is observed that the kinetic energy between
points C and D steadily grows, despite the decrease in the
number of vortices resulting from collisions. The occurrence
of a corotating pair of vortices provides direct proof of the
inverse energy cascade.

The sequence of events following the formation of a coro-
tating vortex pair is straightforward to interpret. Governed
by the Magnus force FM = 2π h̄m|ψ |2�ez × �vrel [52], the coro-
tating vortex pair keeps orbiting the outer boundary of the
ring-shaped dense region of the condensate until one vor-
tex meets the potential slot. The attenuated polariton density
within this slot modulates the effective Magnus force, con-
sequently drawing the small Josephson vortex into the core
of the ring-shaped condensate [see Fig. 3(e)]. This inward
spiral leads to the excitation of a central vortex, yet it does not
affect the trajectory of the remaining vortices, which persist
as compact entities that continuously rotate around the central
vortex [see Fig. 3(f)]. Altogether, this produces a dynamically
stable vortex attractor. Once the direction of the oscillation is
established, it remains unaltered.

The periodic rotation of Josephson vortices around
the central vortex makes the attractor of vortices behave
like a clock generator. A key figure of merit for clocks is
the achievable oscillation frequency and stability. To illus-
trate these characteristics, we plot in Figs. 4(a) and 4(b) the
temporal dependences of the polariton density at the fixed
point (x = −5, y = 0) for attractors A and B, respectively,
corresponding to Figs. 2(a) and 2(b). The center of the mov-
ing Josephson vortices passes through the considered point
from time to time. High-contrast stable periodic oscillations
are visible. These oscillations begin at around 100 ps and
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FIG. 4. The frequency of oscillations exhibited by the attractor of
vortices. (a) and (b) The time dependences of the polariton density at
the fixed point (x = −5, y = 0), corresponding to Figs. 2(a) and 2(b),
respectively. (c) The dependence of the frequency of oscillations on
the pump power. (d) The time-resolved numerical measurement of
the oscillation frequency offset from the mean ∼20.18 GHz output
frequency.

remain stable for at least 500 ns, with no sign of decay or
dephasing. We checked that the period of oscillations over
this time range remains perfectly stable even though the static
potential noise is taken into account in the calculation. Fig-
ure 4(c) predicts the dependence of the oscillation frequency
on the pump power, a parameter that can be tuned easily in the
experiments. Two frequency ranges around 20.16 ± 0.14 and
48.4 ± 1.2 GHz are visible. The higher the pump power is, the
lower the oscillation frequency is. We believe that modulating
the pump power is the easiest way to tune the operation
frequency, although other parameters affecting the external
potential can also be modulated. It is important to note that
the impact of the up to 5% intensity fluctuation of the pump
laser on the oscillation frequency is negligible, as our calcula-
tions show. Figure 4(d) presents the time-resolved numerical
measurement of the 20.18 GHz clock generator output over
500 ns, which corresponds to 10 000 periods of oscillations
shown in Fig. 4(a). Here, each point is the result of averaging
over 100 numerical measurements with an observation time
of 100 periods of oscillations. The noise is taken into account
according to Eq. (2). The mean value depicted by the red solid
line is in agreement with the simulation results obtained by
neglecting the noise. The absolute frequency shift of our clock
generator is around � f ∼ 20 kHz, and the corresponding frac-
tional frequency stability is � f / f0 ∼ 10−6. Two-dimensional
numerical simulations become too expensive if carried over a
much longer time. This prevents us from predicting here the
value of the Allan deviation of the stabilized clock signal to
estimate the ultimate stability of the chip-scale polariton clock
generator. We believe that an experimental measurement of
the Allan deviation is more important than any theoretical
prediction.

We also note that the polariton system is bistable due to its
strong nonlinearity, which is why it relaxes to either clock-

FIG. 5. The dynamical switching from any controllable state of
the attractor of vortices to a desired state. The phase profiles of
the target attractor of vortices are shown in the larger panels. The
switch between states with the same direction of rotation is achieved
by simply modulating the power of the incoherent super-Gaussian
pump field P0. The switch between bistable sates with counterrotat-
ing directions is achieved with an additional incoherent pump P′(r)
carrying the same direction of rotation as the target state. Phase
profiles of P′(r) and initial seeds are shown in the smaller panels.

wise or counterclockwise rotation stochastically, with each
orientation appearing with a 50% probability. The rotation
direction of a given attractor of vortices may be imprinted
by seeding an initial orbital angular momentum, which is
similar to the method to control the chirality of stable vortices.
Figure 5 shows four examples of spontaneously formed at-
tractor of vortices with target rotation directions defined by
seeding an initial orbital angular momentum, which is de-
picted by two small color panels. Further, the attractor of
vortices can be switched to a new one characterized by a
different frequency by simply modulating the pump power P0

(see red arrows). Additionally, it is important to note that the
bistable attractor of vortices with opposite rotation directions
can also be controlled by switching an additional incoherent
super-Gaussian pump P′(r) = P1e−[((x+4)2+y2 )/4]10

at the posi-
tion symmetric to the potential slot with respect to the x axis
(see blue arrows). In general, we are able to switch from any
state of an attractor of vortices to any desired target state. The
dynamical switch with the modulation of P′(r) is shown in the
movie in the Supplemental Material [53].

Through large numerical simulations, we obtain phase di-
agrams to observe two kinds of attractors of vortices for two
considered potential depths: V0 of either −0.6 or −0.5 meV,
as shown in Fig. 6. To obtain these phase diagrams, the dy-
namics of the system is studied by scanning the pump power
P0 while keeping a fixed potential slot wd . For a fixed P0,
the attractor of vortices forms while wd is small enough. In
particular, the range of wd where one can observe attractor
of vortices A, characterized by a single Josephson vortex
playing the role of a small rotating object, is larger than that
for attractor of vortices B, characterized by two Josephson
vortices playing the role of small rotating objects. Comparing
two different ranges of pump power needed to observe the
attractors of vortices for two different values of the potential
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FIG. 6. The phase diagram of the existence of the attractor of
vortices shown in Fig. 2 for two different potential depth: (a) V0 =
−0.6 and (b) −0.5 meV. The orange plot for attractor A is shown in
Fig. 2(a), and the cyan plot for attractor B in shown in Fig. 2(b).

depth V0, one can conclude that the shallower the potential
depth is, the lower the required pump power is.

IV. CONCLUSION

We predicted here the formation of the attractor of vortices
in a superfluid of exciton-polaritons placed in an external
lateral potential of the C-shaped geometry. The attractor of
vortices corresponds to the regime where Josephson vor-
tices are rotating periodically around a central large vortex.
The inverse energy cascade was shown to be responsible for
the formation of the attractor of vortices. The high stability of
the oscillations makes it possible to use an attractor of vortices
as a portable clock generator operating in a low-power regime.
We showed that the operation frequency of the clock generator
can be controlled within two different ranges. It can be tuned
by tuning the laser pump power.
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