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Analytical model for a hydrogen atom in a magnetic field: Implications for the diamagnetic shift
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We propose a simple phenomenological model for a hydrogen atom in a magnetic field which correctly
reproduces the results of Makado and McGill’s variational calculations for the s, p, d , and f states for orbital
quantum numbers n � 4. The expression for the energy of the 1s state reveals that it never exhibits true free
carrier behavior. Even at high magnetic fields the energy varies as αnh̄ωc/2, where h̄ωc = h̄eB/μr is the cyclotron
energy and αn � 0.84 < 1. A Taylor expansion of the expression for the energy of the 1s state predicts a
diamagnetic shift �E = σB2 where σ = α2

ne2a2
B/4μr . This suggests that there is a missing factor of α2

n � 0.71
in the generally accepted perturbation expression for the diamagnetic shift. This hypothesis is supported by a
careful analysis of literature data for shallow donors and excitons in GaAs in the magnetic field.
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I. INTRODUCTION

Hydrogen atoms, formed by an electron and a proton which
are bound via the Coulomb interaction, occur in vast quantities
throughout the universe, both in stars and as gas in interstellar
space [1]. In the absence of a magnetic field Schrödinger’s
equation for the hydrogen atom can be solved, and the allowed
energy levels are given by En = −Ry/n2, with the Rydberg
Ry = e2/8πεaB, aB = h̄24πε/μre2 is the Bohr radius, μr is
the reduced mass, and ε = εrε0 is the dielectric constant [2,3].
The wave function can be expressed in terms of the radial
and angular wave functions as �(r, θ, ψ ) = Rnl (r)Ylm(θ, ψ ),
where l is the azimuthal quantum number and m is the mag-
netic quantum number. The hydrogen levels form shells which
are labeled s, p, d , and f , often prefixed by the principal quan-
tum number. Typical laboratory-scale magnetic fields have no
effect on the hydrogen atom due to the rather large value of
the Ryberg Ry � 13.6 eV.

However, in solid-state physics, analogous hydrogen-like
systems exist, for example, shallow donors/acceptors, or
photocreated electron-hole pairs know as excitons. In semi-
conductors, the significantly lower effective masses and the
modified dielectric environment, reduce the binding energy by
around three orders of magnitude, allowing laboratory-scale
magnetic fields to modify the electronic states of hydrogenic
shallow impurities and weakly bound excitons [4,5]. The mag-
netic field can be introduced into the Hamiltonian by replacing
the kinetic energy term �P2/2μr with the usual Peierls substi-
tution �P → P̂ − e �A, where �A is the magnetic vector potential.
Unfortunately, the resulting Hamiltonian is nonintegrable and
has no analytical solution [6,7].
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Numerical calculations for hydrogen in a magnetic field
do exist, and provide reliable results, at least for the lower
energy levels. For example, the widely used [8–11] variational
calculations of Makado and McGill [12] provide the energy
of the hydrogen levels as a function of the dimensionless
parameter γ = h̄ωc/2Ry for γ = 0 − 10. While it is possible
to directly use the Makado and McGill results to analyze hy-
drogenic states in a magnetic field, entering the four pages of
numerical data is both tedious and time consuming. It would
be much more convenient for experimental physicists to have
an analytical expression for the evolution of the states in a
magnetic field.

In this work, based on our observation that a phenomeno-
logical expression, which resembles the Fock-Darwin ground
state for an artificial atom [13,14], correctly describes evo-
lution of the 1s excitonic state in a magnetic field, we
propose an analytical model which is capable of reproducing
the magnetic-field evolution of hydrogenic states from the
Makado and McGill paper. The parameters in the model have
been determined by fitting to the numerical calculations. The
model suggests that the generally accepted and widely used
perturbation expression for the diamagnetic shift is missing a
factor α2

n � 0.71. We show that this hypothesis is supported
by the literature data for shallow donors and excitons in GaAs
in a magnetic field [15–20].

The rest of this paper is organized as follows. In Sec. II
we present the phenomenological model used to reproduce
the Makado and McGill numerical calculations for a hydrogen
atom in a magnetic field. We describe the physical influence of
each term in the model, the constraints on the six parameters
involved for each state, and the fitting procedure used. In
Sec. III we use literature data of shallow donors and excitons
in magnetic field in GaAs, selected as an almost ideal hy-
drogenic system, to precisely determine the electron effective
mass, static dielectric constant, and reduced exciton mass.
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FIG. 1. Symbols show the numerical values of Makado and McGill for the energies of the s, p, and d states versus the dimensionless
magnetic field γ in the low field range of interest γ = 0–1. For the s and p states we also show Makado and McGill results over the full field
range γ = 0–10. The blue lines are calculated using the simple phenomenological model using the parameters in Table I. For the 1s state, the
black dashed lines are calculated using the simplified expression with no correction term (δ = 0).

From the reduced exciton mass we are able to estimate the
hole effective mass, although the problem is ill-posed due to
the order of magnitude differences in the electron and hole
effective masses. In Sec. IV we compare the diamagnetic
shift of the Makado and McGill 1s hydrogen state with the
diamagnetic shift of first-order perturbation theory. Finally, in
Sec. V we summarize the main conclusions of our work.

II. ANALYTICAL APPROXIMATION TO MAKADO
AND MCGILL

The hydrogen states are labeled by their orbital quan-
tum number n, and depending upon the wave function, the
z-projection of the angular momentum Lz = mL. In the mag-
netic field n is no longer a good quantum number [21,22],
however, for the sake of convenience we continue to use n
to the label the states. The magnetic field evolution of the
energies of the s, p, and d states (n � 4), taken from the
tabulated results of the Makado and McGill variational cal-
culations [12], are shown by the symbols in Fig. 1. The s
states display a monotonic increase in energy with field, while
the p and d states which have angular momentum, depending
upon the magnetic quantum number m, can show a decrease
in energy at low fields due to the contribution of the orbital
Zeeman energy.

A. Phenomenological model

In the following, we will show that the energy in Rydbergs,
of the levels of the hydrogen atom in a magnetic field, are well

described by a simple phenomenological expression:

E (γ ) = − 1

n2
− E0 +

√
E2

0 + α2
nγ

2 + βmγ + δ

1 + e−2κ (γ−γ0 )
.

Following Makado and McGill, the dimensionless magnetic
field is defined as γ = 1

2 h̄ωc/Ry, which is half of the cy-
clotron energy in units of the effective Rydberg. For donors
or acceptors, the cyclotron energy (and the effective Rydberg)
should be calculated using the appropriate band edge electron
(m∗

e ) or hole effective mass (m∗
h). For excitons, the reduced

exciton mass μr should be used with 1/μr = 1/m∗
e + 1/m∗

h .
For a given state the model has up to six fitting parameters,
namely, three principle parameters E0(Ry), αn, βm, and three
parameters in a correction term δ(Ry), κ , and γ0.

The first term in the expression −1/n2 is the zero field
energy (in Rydbergs) of the hydrogen states. The third term
closely resembles the Fock-Darwin ground state. At high
magnetic fields (α2

nγ
2/E2

0 � 1) this term is equal to αnγ ,
i.e., a multiple of the cyclotron energy, which with a suitable
choice of αn will reproduce the behavior of free carriers. At
low magnetic field (α2

nγ
2/E2

0 � 1), the E2
0 term dominates

the square root and the energy evolves according to the first
term in the Taylor expansion [(1 + x2)1/2 � 1 + x2/2], so that
E ∝ α2

nγ
2/E0, reproducing the expected diamagnetic shift.

The second term (−E0) is simply bookkeeping, removing the

unwanted
√

E2
0 contribution of the Fock-Darwin like term at

zero magnetic field, ensuring the energy follows the required
E = −1/n2 hydrogenic series.

The p, d , and f states have angular momentum, giving rise
to the orbital Zeeman term βmγ . In the Fock-Darwin picture,
for the excited states we would have βm = m, however, here
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TABLE I. Parameters used to reproduce the Makado and McGill numerical solution for hydrogen in a magnetic field.

ψ n m E0(Ry ) αn βm δ(Ry ) κ γ0

1sa 1 0 1 0.84 0 0 – –
1s 1 0 1.38 0.87 0 0.102 3.5 0.6
2s 2 0 0.113 0.987 0 0.0455 20 0.12
3s 3 0 0 1 0 0.0368 80 0.05
2p0 2 0 0.586 1 0 0.141 6 0.278
2p±1 2 ±1 1.139 1.585 m + 0.3 0.209 6 0.353
3p0 3 0 0.159 1 0 0.0725 20 0.0848
3p±1 3 ±1 0.253 1.487 m + 0.5 0.101 20 0.0855
4p0 4 0 0 1 0 0.0105 30 0.0265
4p±1 4 ±1 0 1.5 m + 0.5 0.00237 20 0.1395
3d0 3 0 0.0505 1 0 0.0243 30 0.2086
3d±1 3 ±1 0.497 1.378 m + 0.6 0.110 10 0.2
3d±2 3 ±2 0.762 2.265 m + 0.6 0.171 10 0.175
4d0 4 0 0.0133 1 0 0.0295 30 0.0887
4d±1 4 ±1 0.1746 1.495 m + 0.5 0.0726 20 0.0697
4d±2 4 ±2 0.284 1.987 m + 1.0 0.114 20 0.0767
4 f0 4 0 0.0748 1 0 0.04414 30 0.0568
4 f±1 4 ±1 0.531 3.47 m + 0.5 0.216 20 0.0784
4 f±2 4 ±2 0.813 3.39 m + 1.5 0.267 20 0.107

aSimplified fit with δ forced to zero to allow direct comparison with the diamagnetic shift predicted by perturbation theory.

we treat βm as a fitting parameter. We also implicitly pa-
rameterized the contribution of the cyclotron energy through
the coefficient αn, which is at least partially justified by the
fact that n is no longer a good quantum number in magnetic
field. Nevertheless, the parameters αn and βm are strongly
constrained by the following considerations. (i) In the high
field limit, the predicted energy evolves linearly with E ∝
(αn + βm)γ , so that αn + βm has to be close to the appropriate
integer value to reproduce the free-carrier-like behavior. (ii) In
a given shell, states with Lz = |m|L are separated from states
with Lz = −|m|L by exactly 2|m|γ , so that β|m| − β−|m| =
2|m|. This is imposed by time reversal symmetry, and Makado
and McGill give only energies for m � 0 since E−|m| = E|m| −
2|m|γ [12].

Neglecting the last term in the expression for the mo-
ment (i.e., assuming δ = 0), a reasonable fit of the low
field region can be obtained, in particular for the 1s ground
state. For the s-states there is no orbital Zeeman contribution
(βm = 0) and the competition between the cyclotron energy
and E0, essentially α2

nγ
2/E2

0 , determines the range of γ where
a diamagnetic shift is observed. Additionally, αn is strongly
constrained by the slope of the extensive linear region at
high fields. The p, d , and f states have an orbital Zee-
man contribution, which for m < 0 (βm < 0) competes with
the diamagnetic shift, leading to a negative dispersion at
low fields. As before α2

nγ
2/E2

0 determines the width of the
diamagnetic field region, while βm has to chosen to repro-
duce the negative dispersion. Again, the value of αn + βm

is constrained to be close to the appropriate integer value to
correctly reproduce the slope at large magnetic fields.

For all states, reasonable fits to the low field region can be
obtained, and the fit can also correctly reproduce the slope
in the high field limit. However, the calculated energy lies
systematically below the Makado and McGill values at high
fields. We therefore have to add a correction δ at high fields.
This is the last term in the expression, it is essentially a

smeared out Heaviside step function, with a broadening de-
termined by the parameter κ , and the midpoint (where the
correction is δ/2) given by γ0. This term attempts to correctly
reproduce the transition from the regime with bound hydrogen
states at low field, to the free carrier region at high field. The
parameters κ and γ0 have to be chosen with some care. If
the δ correction is required already at low fields, κ has to be
chosen to have a broadening which is sufficiently narrow, so as
not to influence the −1/n2 zero field energies. Physically, the
correction term takes into account the coupling of the center
of mass and orbital motion which controls the transition from
a bound state to a free carrier state in the magnetic field.

B. Fitting procedure

To determine the parameters for each of the states,
we performed a nonlinear curve fit using a mix of
Simplex/Levenberg-Marquardt (SLM) iterations. In a first
approach, we impose δ = 0 and fit the low field region to
obtain E0, αn, and when appropriate, βm. Values are chosen so
that the high field slope is roughly reproduced, albeit with an
offset. E0, αn, and βm are then fixed, and we perform SLM
iterations to fit with δ, κ , and γ0 as free parameters (while
imposing that the zero field energy does not deviate from the
required −1/n2).

The calculated evolution (solid blue lines) is compared
with the Makado McGill values (symbols) for the s, p, and
d states in Fig. 1. We focus on the low field γ = 0–1 region
where the bound to free carrier transition occurs. For the s and
p states, we also show the variation for γ = 0–10 to highlight
the good agreement at high magnetic fields. The model cor-
rectly reproduces the low field diamagnetic behavior, negative
dispersion for negative values of m, and the linear free carrier
behavior at high fields. For the 1s state, the black dashed
lines are calculated using the simplified expression with no
correction term (δ = 0). For γ � γ0 = 0.6, the dashed line
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lies slightly below the full hydrogen model due to the absence
of the correction term with δ � 0.1 (see 1s parameters in
Table I). To have a feel for the magnetic fields involved, for
free excitons in GaAs, γ = 10 corresponds to a magnetic field
B � 32 T.

Fitting parameters are given in Table I. When the fitted
value of E0 is equal to an integer value within error, we
imposed the integer value, e.g., E0 = 0, 1. Similarly, αn has
been forced to integer values when appropriate. For states
with angular momentum, βm was manually adjusted to fit
the negative dispersion, while αn was evaluated using SLM
iterations to fit the high field region where the slope is given
by (αn + βm)γ . For the 1s state, we give two parameter sets.
The first is a simplified version, where we forced δ = 0. The
absence of the correction term produces a slightly worse fit
(dashed lines in Fig. 1) using a marginally different value
of αn.

The agreement between the Makado and McGill numerical
results and our simple model, which agree to better than a few
percent in Fig. 1, is more than good enough over the full range
of γ values to make the model useful for solid-state physicists.
However, the model cannot be expected to reproduce the four
to five digit accuracy of the Makado and McGill calculations.

C. 1s state

The evolution of the 1s ground state in a magnetic field is
important for exciton physics investigated using magnetoopti-
cal techniques. It is also required, together with the evolution
of the excited p states, to interpret the observed transitions
in shallow donor magnetospectroscopy. It should be empha-
sized that the 1s state is unique, in that it never exhibits
truly free carrier behavior, even at the highest magnetic fields.
The fitted value of αn � 0.84–0.87 depending on the model,
is �13–16% below the free carrier αn = 1 value. The large
value of E0 � 1 gives rise to a relatively wide region at low
magnetics fields for which a diamagnetic shift (�E ∝ γ 2) is
observed. In contrast, the excited s-states have little (2s) or no
(3s) diamagnetic contribution (E0 = 0 for 3s).

III. GaAs AS A MODEL SYSTEM

Hydrogenic shallow donor states in GaAs are a relatively
simple system as the only parameters involved are the elec-
tron effective mass and the relative dielectric constant. After
determining precise values for these parameters we turn our
attention to excitons in GaAs, a significantly more complex
problem with the uncertain value of the hole effective mass
due to the heavy-hole/light-hole mixing in the valence band
[23–25]. The objective here is to provide a reliable parameter
set required to compare the measured and predicted diamag-
netic shift in Sec. IV.

A. Shallow donors

GaAs is a direct gap semiconductor with a small electron
effective mass and isotropic conduction and valence bands
[23]. The effective Rydberg for a shallow donor is small,
Ry � 5.8 meV [26], making GaAs an ideal system to in-
vestigate hydrogenic shallow donor states. Photoconductivity
measurements on high purity GaAs samples were performed

FIG. 2. (a) Symbols are the measured shallow donor transition
energies in high purity GaAs versus magnetic field from the photo-
conductivity measurements of Stillman et al. [15] and Narita and
Miyao [16]. The curves are the calculated transition energies using
the phenomenological model for the hydrogen atom as described
in the text. They are labeled where possible. The color indicates
the 1s → 2p0,±1 (wine), 1s → 3p0,±1 (navy), and 1s → 3p0,±1

(olive) transitions. (b) Symbols show the measured splitting of the
1s → 2p±1 transitions versus magnetic field. The solid line is a
linear least squares fit used to determine the effective mass m∗

e =
(0.0665 ± 0.0005)me.

over 50 years ago to investigate the 1s → 2p and 1s → 3p
transitions in magnetic fields up to 3 T. In Fig. 2(a) we plot
the digitized data from the publications of Stillman et al.
[15] and of Narita and Miyao [16]. Despite the measurements
being performed on presumably different samples (the donor
involved is not specified in either paper, most likely it is Si),
there is a remarkable overlap between the two data sets. The
solid lines are the predicted transition energies calculated us-
ing the phenomenological model for hydrogen in a magnetic
field. The excellent agreement between theory and experiment
confirms the hydrogen-like nature of shallow donors in GaAs.

To determine the effective mass we use the fact that the
separation of the 2p±1 states is exactly h̄ωc. In the inset
of Fig. 2(b) we plot the splitting of the 1s → 2p±1 transi-
tions versus magnetic field. As expected, the splitting varies
linearly with magnetic field, and a linear fit gives a slope
of 1.73922 ± 0.0087 meV/T. The effective mass is there-
fore m∗

e = (0.0665 ± 0.0005)me (as previously determined by
Stillman et al. [15]). The only unknown parameter in the
hydrogen model is then the relative dielectric constant. Fit-
ting to the transitions, almost perfect agreement is obtained
using m∗

e = 0.0665me and εr = 12.5 ± 0.1. The value of the
dielectric constant agrees within error with the measured
value of the static (low frequency) dielectric constant εr �
12.4 in GaAs at low temperatures, but is significantly larger
the the high frequency value of ε∞ = 10.58 [27,28]. Using
εr = 12.5 the calculated shallow donor binding energy is then
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FIG. 3. Low-temperature (T � 4 K) exciton absorption/

emission in GaAs. Closed symbols are absorption/refelectance
measurements which have a predominantly free exciton light hole
character due to the light hole-heavy hole mixing. Open symbols are
PL emission of weakly bound excitons which have a predominantly
heavy hole character. Data is taken from Refs. [17–20]. The curves
are calculated from the evolution of the 1s excitonic state obtained
from the full model of the hydrogen atom.

Ry = 5.8 ± 0.1 meV. The states which are not reproduced
by the model in Fig. 2 were identified by the authors of
Refs. [15,16] as magnetic field states which do not originate
from the bound states of the hydrogenic donor [21,22].

B. Excitons

Having determined reliable values for the electron effective
mass and the relative dielectric constant, we are now in a
position to analyze the more delicate case of excitons in a
magnetic field. In Fig. 3, we plot the energy of the 1s excitonic
state in bulk GaAs versus magnetic field measured using ab-
sorption, reflectance, and photoluminescence (PL) emission at
low temperatures (T � 4 K). The most precise data are pro-
vided by the polarization resolved reflectance measurement
of Dingle [17] obtained in static (DC) magnetic fields up to
22 T. Nevertheless, the absorption data of Tarucha et al. [18]
obtained in pulsed magnetic fields agree within error with the
reflectivity results.

In contrast, the PL emission data of Nagamune et al. [19]
also obtained in pulsed magnetic fields, lie well below the
absorption/reflectance data at high magnetic fields suggesting
a significantly heavier reduced exciton mass. At intermediate
magnetic fields, two features are observed in the PL, with the
higher-energy feature close to the absorption/reflectance data.
This suggests that the lower-energy feature which dominates

TABLE II. Reduced mass (μr) and approximate effective Landé
g-factors extracted by fitting the full version of the 1s hydrogen
model to the exciton emission/absorption data for GaAs in Fig. 3.
Other parameters are calculated from the reduced mass, using the
electron mass m∗

e = 0.0665me and relative dielectric constant εr =
12.5 from the shallow donor fit. The diamagnetic coefficient σ is
estimated from a Taylor expansion of the simplified expression for
the 1s state. No attempt has been made to obtain accurate values for
the exciton g-factors used.

Exciton μr (me) m∗
h (me) Ry(meV) σ (µeV/T2) g

Dingle 0.048 ± 0.001 0.17 ± 0.02 4.2 124 1.2
Naga 0.064 ± 0.003 1.7 ± 1.1 5.6 51 –
KPa 0.060 ± 0.001 0.66 ± 0.1 5.3 61 0.4
KP14 0.062 ± 0.001 0.88 ± 0.2 5.4 57 0.4
KPc 0.060 ± 0.001 0.66 ± 0.1 5.3 61 0.4

the PL at high magnetic fields in the Nagamune data, is not
the free exciton transition. A natural explanation for the three
data sets would be the following. (i) Reflectance/absorption
measures the free exciton transition with a considerably re-
duced hole mass due to the heavy-hole/light-hole mixing.
(ii) In PL, before recombining, photocreated excitons move
to a defect or impurity site to form weakly bound excitons.
The weak confining potential is nevertheless sufficient to lift
the heavy-hole/light-hole degeneracy, reducing the mixing,
giving the exciton an essentially heavy-hole character.

In Fig. 3 we also plot polarization resolved PL emission
from the so-called KP series of lines, first reported by Kunzel
and Ploog [29] and observed in high quality MBE grown
GaAs using As4 as a source. They are tentatively thought
to arise from the radiative recombination of excitons weakly
bound to donor pairs with different separations [30,31]. The
three strong KP lines shown here were measured by Plo-
chocka et al. [20] at pumped helium temperatures, using
microphotoluminescence on a single GaAs nano wire, with
sufficiently large dimensions that it has the properties of bulk
GaAs.

The solid lines in Fig. 3 are the fitted evolution of the
excitonic emission/absorption using the full hydrogen model
for the 1s states. The obtained fitting parameters are given
in Table II. For the polarization resolved data, the transitions
were fitted assuming a Zeeman splitting of gμBB where g is
the effective exciton g-factor. The only fitting parameter is
then the reduced mass μr and the other parameters were calcu-
lated using the electron effective mass, and relative dielectric
constant obtained from the shallow donor spectroscopy. The
problem of calculating the hole effective mass is ill-posed
when the reduced mass approaches the electron effective
mass. A small error in the reduced mass creates a large error in
the hole’s effective mass. Nevertheless, the free exciton state
observed in absorption/reflectance has a mass which is much
less than the accepted heavy hole mass m∗

hh � 0.62, while still
being considerably heavier than the accepted light hole mass
m∗

lh � 0.087 in GaAs [23–25]. This suggests that for the free
exciton, in the absence of a confinement potential which lifts
the heavy hole/light hole degeneracy, there is a strong mixing
of the two states. The exciton states observed in emission
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FIG. 4. (a), (b) Low-temperature (T � 4 K) exciton absorption/emission in GaAs from references [17–20]. The curves are calculated
from the evolution of the 1s excitonic state obtained from the simplified (δ = 0) model of the hydrogen atom with αn = 0.84 (Makado and
McGill diamagnetic shift) and αn = 1 (perturbation approach diamagnetic shift). (c) Energy of the free exciton reflectance/absorption and
KP14 exciton emission versus B2 for B � 5 T. The symbols are the same as in panels (a), (b). The solid red lines are least-squares linear fits
used to extract the diamagnetic shift.

have hole masses which agree within error with the accepted
literature value for the heavy hole mass in GaAs.

IV. DIAMAGNETIC SHIFT

At low magnetic fields, a first-order perturbation-type ap-
proach gives the diamagnetic shift of the 1s ground state as
[4,5]

�E = 4π2ε2h̄4

e2μ3
r

B2 = e2a2
B

4μr
B2.

This result is widely used to extract the effective mass/Bohr
radius from the experimental diamagnetic shift [32–35]. The
diamagnetic shift arises from the magnetic-field-induced com-
pression of the exciton wave function due to the additional
parabolic confinement potential. Tightly bound excitons or
impurity states with highly localized wave functions will
have very small diamagnetic shifts (� 1 µeV/T2). In contrast,
weakly bound states, for example, shallow donors, or excitons
in GaAs, have a large Bohr radius aB � 10 nm and a relatively
large diamagnetic shift � 100 µeV/T2.

Using the simplified phenomenological expression (δ = 0)
the predicted evolution of the hydrogenic excitonic 1s state in
magnetic field can be written as

E = −2Ry + Ry

√
1 + α2

n

R2
y

(
h̄eB

2μr

)2

,

where αn = 0.84, and Ry = e2/8πεaB is the exciton binding
energy or effective Rydberg. Using a Taylor expansion we can

write the diamagnetic shift

�E = α2
n

2Ry

(
h̄eB

2μr

)2

= α2
n

e2a2
B

4μr
B2,

which differs from the usual diamagnetic shift by a factor
α2

n � 0.71. Thus, the analytical approximation to the Makado
and McGill variational calculation for the 1s hydrogenic state
in a magnetic field suggests that the widely used first-order
perturbation expression for the diamagnetic shift is missing
a factor α2

n � 0.71. This will have a significant effect on the
reduced mass/Bohr radius extracted from experiment.

A. Simplified 1s hydrogen model fit

To test this hypothesis, we fitted the GaAs exciton data us-
ing the simplified hydrogen model (δ = 0), using αn = 0.84,
and αn = 1, corresponding to the Makado and McGill, and
perturbation approach diamagnetic shifts, respectively. The
results of such a fit can be seen in Figs. 4(a) and 4(b). In both
cases the fits are in good agreement with the data over the
full field range, although the parameters extracted from the
fits (summarized in Table III) are significantly different.

The fit with αn = 0.84 produces reduced exciton masses
which are quite similar to those extracted from the full hy-
drogen model, although the calculated heavy hole masses no
longer agree within error with the accepted literature values
[23–25]. This is in a large part due to the ill-posed nature of
the hole mass calculation when the reduced effective mass is
close to the electron effective mass.

In contrast, for the αn = 1 fit, the reduced exciton masses
are significantly overestimated. For the heavy hole-like exci-
tons observed in emission, it even makes no sense to calculate
the mass since the reduced mass is higher than the electron
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TABLE III. Reduced exciton mass (μr) extracted by fitting the
simplified (δ = 0) version of the 1s hydrogen model to the exci-
ton emission/absorption data for GaAs in Fig. 4. We fitted using
αn = 0.84 (Makado and McGill diamagnetic shift) and αn = 1 (per-
turbation theory diamagnetic shift). Other quantities are calculated
using m∗

e = 0.0665me and εr = 12.5 from the shallow donor fit. The
diamagnetic coefficient σ is calculated from the measured reduced
mass using a Taylor expansion of the simplified expression for the
1s state. The exciton g-factors used are the same as in Table II.
The abbreviation ns signifies that there is “no sense” to calculate an
unphysical negative value for the mass.

Exc αn μr (me) m∗
h (me) Ry(meV) σ (µeV/T2)

Dingle 0.84 0.049 ± 0.001 0.19 ± 0.02 4.3 115
Naga 0.84 0.064 ± 0.003 1.7 ± 1.1 5.5 52
KPa 0.84 0.062 ± 0.001 0.9 ± 0.2 5.4 57
KP14 0.84 0.063 ± 0.001 1.2 ± 0.3 5.5 54
KPc 0.84 0.062 ± 0.001 0.9 ± 0.2 5.4 57
Dingle 1.0 0.056 ± 0.001 0.35 ± 0.02 4.9 109
Naga 1.0 0.073 ± 0.003 ns 6.4 49
KPa 1.0 0.071 ± 0.001 ns 6.2 54
KP14 1.0 0.072 ± 0.001 ns 6.3 51
KPc 1.0 0.071 ± 0.001 ns 6.2 54

effective mass, leading to unphysical negative values for the
hole mass. The values of the expected diamagnetic coeffi-
cients, calculated from the Taylor expansion, are very similar
for the two cases, indicating that similar diamagnetic coeffi-
cients will produce very different reduced masses depending
upon the value of αn used.

B. Direct analysis of the diamagnetic shift

Finally, we investigate the outcome of directly analyzing
the slope of the low field diamagnetic shift. In Fig. 4(c) we
plot the energy of the free exciton reflectance/absorption and
KP14 exciton emission versus B2 for magnetic fields less than
5 T. In both cases the energy of the emission shifts linearly
showing a clear diamagnetic shift �E ∝ B2. We are unable
to analyze other exciton lines due to the lack of data at low
magnetic fields. The solid lines are least squares linear fits to
the data.

For the free exciton, fitting to the Dingle reflectance
data we obtain a diamagnetic shift of σ = 111 ± 10 µeV/T2.
Here the error was estimated from a global fit to the Din-
gle and Tarucha (lower quality absorption data in pulsed
fields) data sets which produces a diamagnetic coefficient
which is approximately 10% lower. This gives a reduced
mass μr = (0.0496 ± 0.002)me, and a hole mass of mh =
(0.195 ± 0.02)me for αn = 0.84, in agreement with the mass
deduced using the hydrogen model. In contrast, assuming
αn = 1 (perturbation theory diamagnetic shift) gives a reduced
mass μr = (0.0557 ± 0.002)me, and a hole mass of mh =
(0.344 ± 0.08)me which is twice the expected value (see, e.g.,
Table II or Table III).

The extracted diamagnetic shift for the KP14 emis-
sion σ = 51 ± 2 µeV/T2 gives reduced masses of μr =
(0.064 ± 0.001)me (αn = 0.84) and μr = (0.072 ± 0.001)me

(αn = 1). The latter reduced mass is unphysical since it
requires the hole mass to be negative. For αn = 0.84,
the hole mass m∗

h = 1.9 ± 0.7 has a large error due to
the ill posed nature of the problem, while nevertheless re-
maining physical. Thus, a direct analysis of the diamagnetic
shift at low magnetic fields supports the conclusion that a
factor of α2

n � 0.71 is missing from the standard perturbation
expression for the diamagnetic coefficient.

V. CONCLUSION

We developed an analytical model for the hydrogen atom
in a magnetic field based on our experimental observation that
a phenomenological expression resembling the Fock-Darwin
ground state describes well the evolution of the 1s hydrogenic
ground state. Our model correctly reproduces the results of the
variational calculations of Makado and McGill [12] for the s,
p, d , and f states for orbital quantum numbers n � 4. We used
the model to analyze shallow donor transitions and exciton
absorption/emission in GaAs in magnetic field. The model,
when used to analyze the shallow donor transitions, provides
rather precise measurements of the electron effective mass
m∗

e = (0.0665 ± 0.00050)me, and the low frequency relative
dielectric constant εr = 12.5 ± 0.1. The exciton physics is a
much more complex proposition due to heavy-hole/light-hole
mixing, and the ill-posed nature of the problem due to the
order of magnitude difference in the electron and heavy hole
effective masses. Nevertheless, the hole masses found agree
within error with the literature data.

A Taylor expansion of the simplified analytical expression
for the 1s ground state reveals that the expected diamagnetic
shift differs from the predictions of perturbation theory by
a factor of α2

n � 0.71. This arises since the 1s state never
exhibits true free carrier behavior. Even at the highest mag-
netic fields the energy shifts as αnh̄ωc/2 with αn � 0.84 < 1.
This suggests that a factor of α2

n � 0.71 is missing from the
standard expression for the diamagnetic shift which should
read �E = σB2 where σ = α2

ne2a2
B/4μr . Our analysis of the

exciton magnetoabsorption/emission in GaAs supports this
hypothesis. The values of the exciton reduced mass obtained
assuming α2

n = 1 lead to hole masses which are too large or
even unphysical (negative). In contrast, using α2

n � 0.71 gives
reasonable hole masses which mostly agrees within error with
the full hydrogen model.

This finding suggests that effective masses, determined
from the low field �E = σB2 throughout the literature, need
to be corrected to take into account the missing numerical
factor α2

n � 0.71 in the generally accepted expression for the
diamagnetic shift.

ACKNOWLEDGMENTS

This study has been partially supported through the EUR
Grant NanoX No. ANR-17-EURE-0009 in the framework of
the “Programme des Investissements d’Avenir.”

155201-7



MAUDE, PLOCHOCKA, AND YANG PHYSICAL REVIEW B 109, 155201 (2024)

[1] W. Grochala, First there was hydrogen, Nat. Chem. 7, 264
(2015).

[2] A. I. M. Rae and J. Napolitano, Quantum Mechanics, 6th ed.
(CRC Press, Boca Raton, FL, 2015).

[3] C. Cohen-Tannoudji, B. Diu, and F. Laloë, Quantum Mechanics
Volume1 (Wiley, Berlin, 2019).

[4] N. Miura, Physics of Semiconductors in High Magnetic Field
(Oxford University Press, New York, 2007).

[5] K. Cong, G. T. Noe II, and J. Kono, Excitons in Magnetic
Fields, in Encyclopedia of Modern Optics, 2nd ed., edited by
B. D. Guenther and D. G. Steel (Elsevier, Oxford, 2018), pp.
63–81.

[6] H. Friedrich and H. Wintgen, The hydrogen atom in a uniform
magnetic field - An example of chaos, Phys. Rep. 183, 37
(1989).

[7] M. Aßmann, J. Thewes, D. Fröhlich, and M. Bayer, Quantum
chaos and breaking of all anti-unitary symmetries in Rydberg
excitons, Nat. Mater. 15, 741 (2016).

[8] A. Miyata, P. Mitioglu, A Plochocka, O. Portugall, J. T. W.
Wang, S. D. Stranks, H. J. Snaith, and R. J. Nicholas, Di-
rect measurement of the exciton binding energy and effective
masses for charge carriers in organic-inorganic tri-halide per-
ovskites, Nat. Phys. 11, 582 (2015).

[9] K. Galkowski, A. Mitioglu, A. Miyata, P. Plochocka, O.
Portugall, G. E. Eperon, J. T.-W. Wang, T. Stergiopoulos,
S. D. Stranks, H. J. Snaith, and R. J. Nicholas, Determi-
nation of the exciton binding energy and effective masses
for methylammonium and formamidinium lead tri-halide per-
ovskite semiconductors, Energy Environ. Sci. 9, 962 (2016).

[10] Z. Yang, A. Surrente, K. Galkowski, N. Bruyant, D. K. Maude,
A. A. Haghighirad, H. J. Snaith, P. Plochocka, and R. J.
Nicholas, Unraveling the exciton binding energy and the dielec-
tric constant in single-crystal methylammonium lead triiodide
perovskite, J. Phys. Chem. Lett. 8, 1851 (2017).

[11] Z. Yang, A. Surrente, K. Galkowski, A. Miyata, O. Portugall,
R. J. Sutton, A. A. Haghighirad, H. J. Snaith, D. K. Maude,
P. Plochocka, and R. J. Nicholas, Impact of the halide cage on
the electronic properties of fully inorganic cesium lead halide
perovskites, ACS Energy Lett. 2, 1621 (2017).

[12] P. C. Makado and N. C. McGill, Energy levels of a neutral
hydrogen-like system in a constant magnetic field of arbitrary
strength, J. Phys. C 19, 873 (1986).

[13] V. Fock, Bemerkung zur Quantelung des harmonischen Oszil-
lators im Magnetfeld, Z. Phys. 47, 446 (1928).

[14] C. G. Darwin, The diamagnetism of the free electron, Math.
Proc. Cambridge Philos. Soc. 27, 86 (1931).

[15] G. E. Stillman, C. M. Wolfe, and J. O. Dimmock, Magnetospec-
troscopy of shallow donors in GaAs, Solid State Commun. 7,
921 (1969).

[16] S. Narita and M. Miyao, Shallow donor states in high purity
GaAs in magnetic field, Solid State Commun. 9, 2161 (1971).

[17] R. Dingle, Magneto-optical investigation of the free-exciton
reflectance from high-purity epitaxial GaAs, Phys. Rev. B 8,
4627 (1973).

[18] S. Tarucha, H. Okamoto, Y. Iwasa, and N. Miura, Exciton
binding energy in GaAs quantum wells deduced from magneto-
optical absorption measurement, Solid State Commun. 52, 815
(1984).

[19] Y. Nagamune, Y. Arakawa, S. Tsukamoto, M. Nishioka,
S. Sasaki, and N. Miura, Photoluminescence spectra and
anisotropic energy shift of GaAs quantum wires in high mag-
netic fields, Phys. Rev. Lett. 69, 2963 (1992).

[20] P. Plochocka, A. A. Mitioglu, D. K. Maude, G. L. J. A. Rikken,
A. Granados del Águila, P. C. M. Christianen, P. Kacman, and
H. Shtrikman, High magnetic field reveals the nature of excitons
in a single GaAs/AlAs core/shell nanowire, Nano Lett. 13, 2442
(2013).

[21] M. Shinada, O. Akimoto, H. Hasegawa, and K. Tanaka, On the
nodal surfaces of hydrogen eigenfunctions in a magnetic field,
J. Phys. Soc. Jpn. 28, 975 (1970).

[22] N. Kuroda, Y. Nishina, H. Hori, and M. Date, Validity of the
conservation rule of nodal surface numbers in the wave function
of hydrogenic exciton in magnetic field, Phys. Rev. Lett. 48,
1215 (1982).

[23] S. Adachi, GaAs, AlAs, and AlxGa1−xAs: Material parameters
for use in research and device applications, J. Appl. Phys. 58,
R1 (1985).

[24] A. L. Mears and R. A. Stradling, Cyclotron resonance and Hall
measurements on the hole carriers in GaAs, J. Phys. C 4, L22
(1971).

[25] P. Lawaetz, Valence-band parameters in cubic semiconductors,
Phys. Rev. B 4, 3460 (1971).

[26] J. Wagner and M. Ramsteiner, Binding energies of shallow
donors in semi-insulating GaAs, J. Appl. Phys. 62, 2148
(1987).

[27] I. Strzalkowski, S. Joshi, and C. R. Crowell, Dielectric constant
and its temperature dependence for GaAs, CdTe, and ZnSe,
Appl. Phys. Lett. 28, 350 (1976).

[28] W. J. Moore and R. T. Holm, Infrared dielectric constant of
gallium arsenide, J. Appl. Phys. 80, 6939 (1996).

[29] H. Künzel and K. Ploog, The effect of As2 and As4

molecular beam species on photoluminescence of molecu-
lar beam epitaxially grown GaAs, Appl. Phys. Lett. 37, 416
(1980).

[30] M. S. Skolnick, C. W. Tu, and T. D. Harris, High-resolution
spectroscopy of defect-bound excitons and acceptors in GaAs
grown by molecular-beam epitaxy, Phys. Rev. B 33, 8468
(1986).

[31] M. S. Skolnick, D. P. Halliday, and C. W. Tu, Zeeman spec-
troscopy of the defect-induced bound-exciton lines in GaAs
grown by molecular-beam epitaxy, Phys. Rev. B 38, 4165
(1988).

[32] G. Saintonge and J. L. Brebner, Magneto-optical properties of
the GaxIn1−xSe system near the fundamental band gap, Phys.
Rev. B 30, 1957 (1984).

[33] N. Miura, Solid state physics in megagauss fields generated by
electromagnetic flux compression and single-turn coils, Phys.
B: Condens. Matter 201, 40 (1994).

[34] M. Hirasawa, T. Ishihara, T. Goto, K. Uchida, and N. Miura,
Magnetoabsorption of the lowest exciton in perovskite-type
compound (CH3NH3)PbI3, Phys. B: Condens. Matter 201, 427
(1994).

[35] A. V. Stier, K. M. McCreary, B. T. Jonker, J. Kono, and S. A.
Crooker, Exciton diamagnetic shifts and valley Zeeman effects
in monolayer WS2 and MoS2 to 65 Tesla, Nat. Commun. 7,
10643 (2016).

155201-8

https://doi.org/10.1038/nchem.2186
https://doi.org/10.1016/0370-1573(89)90121-X
https://doi.org/10.1038/nmat4622
https://doi.org/10.1038/nphys3357
https://doi.org/10.1039/C5EE03435C
https://doi.org/10.1021/acs.jpclett.7b00524
https://doi.org/10.1021/acsenergylett.7b00416
https://doi.org/10.1088/0022-3719/19/6/008
https://doi.org/10.1007/BF01390750
https://doi.org/10.1017/S0305004100009373
https://doi.org/10.1016/0038-1098(69)90543-2
https://doi.org/10.1016/0038-1098(71)90383-8
https://doi.org/10.1103/PhysRevB.8.4627
https://doi.org/10.1016/0038-1098(84)90012-7
https://doi.org/10.1103/PhysRevLett.69.2963
https://doi.org/10.1021/nl400417x
https://doi.org/10.1143/JPSJ.28.975
https://doi.org/10.1103/PhysRevLett.48.1215
https://doi.org/10.1063/1.336070
https://doi.org/10.1088/0022-3719/4/1/024
https://doi.org/10.1103/PhysRevB.4.3460
https://doi.org/10.1063/1.339514
https://doi.org/10.1063/1.88755
https://doi.org/10.1063/1.363818
https://doi.org/10.1063/1.91927
https://doi.org/10.1103/PhysRevB.33.8468
https://doi.org/10.1103/PhysRevB.38.4165
https://doi.org/10.1103/PhysRevB.30.1957
https://doi.org/10.1016/0921-4526(94)91047-2
https://doi.org/10.1016/0921-4526(94)91130-4
https://doi.org/10.1038/ncomms10643

