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Entanglement and topology in Su-Schrieffer-Heeger cavity quantum electrodynamics
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Cavity materials are a frontier to investigate the role of light-matter interactions on the properties of electronic
phases of matter. In this work, we raise a fundamental question: can nonlocal interactions mediated by cavity
photons destabilize a topological electronic phase? We investigate this question by characterizing entanglement,
energy spectrum, and correlation functions of the topological Su-Schrieffer-Heeger chain interacting with an
optical cavity mode. Employing density-matrix renormalization group and exact diagonalization, we demonstrate
the stability of the edge state and establish an area law scaling for the ground state entanglement entropy, despite
long-range correlations induced by light-matter interactions. These features are linked to gauge invariance and
the scaling of virtual photon excitations entangled with matter, effectively computed in a low-dimensional
Krylov subspace of the full Hilbert space. This work provides a framework for characterizing novel equilibrium

phenomena in topological cavity materials.
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I. INTRODUCTION

Ever since Purcell’s seminal discovery [1] that light-matter
interactions (LMI) can be controlled by engineering electro-
magnetic vacuum, cavity quantum electrodynamics (cQED)
[2,3] has been a fruitful platform to create and manipulate
light-matter hybrids. Notable experimental progress in the
last decade has enabled ultra-strong coupling regimes where
LMI is comparable to or even more significant than the bare
cavity and matter excitation energy scales [4—7], opening a
promising path to alter the equilibrium properties of quantum
materials with quantum light [8—15].

Quantum entanglement is inherently part of the descrip-
tion of strongly interacting light-matter systems, for LMI
entangles photons and charged particles, resulting in hybrid
many-body states containing virtual excitations [16]. Nev-
ertheless, the nature of quantum entanglement when light
strongly interacts with many-body electronic systems remains
to be harnessed. In particular, contrasting with the pivotal
role played by entanglement as a universal marker of long-
range entangled topological order [17-20] and short-range
entangled symmetry-protected topological states [21-26], the
scaling regimes of entanglement in topological matter inter-
acting with cavity fields remain poorly understood. Not only
does entanglement provide a new framework to characterize
topological phenomena in cavities [27-32], but it also is cen-
tral to a potential classification of hybrid light-matter phases,
as well as a timely endeavor given the observed breakdown of
topological protection in quantum Hall systems [33] strongly
interacting with THz cavity modes.
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In this Letter, we investigate the one-dimensional (1D)
Su-Schrieffer-Heeger (SSH) spinless fermionic chain [34]
coupled to a single optical mode as a paradigm to address
the effects of LMI onto equilibrium properties of topological
fermionic matter. At half-filling, the SSH chain has a trivial
and a topological gapped phase separated by a phase transition
upon tuning the intra- and inter-unit cell hopping amplitudes,
as shown in Fig. 1. While both phases display similar area law
scaling of the ground state entanglement entropy (EE), the low
eigenvalues of the entanglement spectrum are twofold degen-
erate due to the presence of nontrivial edge states [21-23].
In the SSH-cQED system with electrons strongly interact-
ing with a single photonic mode, a burning question is to
characterize the role of photon-mediated nonlocal interactions
on the system’s short-range entanglement and topological
properties.

We address these issues through analytical and numerical
methods that reveal a detailed account of the entanglement
features, spectral properties, and edge states of SSH-cQED
low energy states. Departing from previous mean-field [30]
and small-system exact diagonalization [31] studies, we em-
ploy density-matrix renormalization group (DMRG) as a
nonperturbative method to extract the structure of entangle-
ment between light and electrons of the SSH chain as a
function of light-matter coupling and of system size. Our
DMRG analysis shows that, while LMI induces an expected
increase in EE due to LMI, this entanglement contribution sat-
urates with system size despite the nonlocality of light-matter
interactions. This behavior is associated with a many-body
state characterized by dressed photon and electronic states
which, nevertheless, preserve the area-law scaling of entan-
glement and the topological edge states, which are the central
results of this work.

Our DMRG analysis establishes an interesting correlation
between EE saturation and the diamagnetic response of the
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FIG. 1. Fermionic Su-Schrieffer-Heeger chain interacting with
an optical cavity mode (purple). Intra- and interhopping amplitudes
t, and t,, respectively, represented by red and blue bonds.

ground state. This response is a non-perturbative feature that
highlights the importance of gauge invariance in describing
the interaction of Bloch electrons with quantum light [35,36].
While gauge invariant diamagnetic effects have been linked
with stability against superradiant phase transitions [37—41],
the link between diamagnetism and quantum entanglement is
a new aspect of LMIs that this work uncovers.

Furthermore, we corroborate the DMRG results by per-
forming exact diagonalization (ED) and by identifying a
closed Krylov subspace where light-matter entanglement can
be efficiently described when the number of virtual photons
in the ground state is small. The Krylov subspace is generated
from the decoupled state of matter and photons by action of
a composite operator involving creation and annihilation pho-
tons operators and a many-body fermionic current operator.
This subspace spans the many-body ground state characteriz-
ing short-range entanglement of light and matter degrees of
freedom observed in DMRG.

II. MODEL

Adopting the Coulomb gauge [42], we consider a half-
filled chain of spinless fermions with L = 2N sites described
by creation (annihilation) operators c; (c;j) coupled to a single
cavity transverse photonic mode of frequency w represented
by bosonic operators ¢’ and a, described by the Hamiltonian

H = Z tjei itAo (‘”’“T)c; cjy1 +He 40 wa'a, (2.1)
J

where interactions V; jc:'c,-c';c ; mediated by the longitudinal
component of the gauge field are disregarded since fermionic
matter is weakly correlated. In the regime of a single electron
orbital per site adopted in this work, the absence of orbital
mixing effects [35,36,43] leads to the LMI being encoded via
the gauge invariant Peierls substitution.

Nearest-neighbor intra- (inter-) unit cell real hopping am-
plitudes are, respectively, t,; =, and ;1| =1, (see Fig. 1),
with ¢, > ¢, giving the topological SSH phase. The distance
between neighboring sites is £, and e is the electron charge.
The vector potential, polarized along the chain direction, has

_h

amplitude Ay = where V is the cavity volume and € is

2wVe

the dielectric constant.
The Hamiltonian Eq. (2.1) is symmetric under
time-reversal symmetry, inversion, and an antiunitary

chiral/sublattice symmetry S taking ¢; — (—1) c; and
i — —i. We fix the cross-sectional area of the cavity and

consider the same length L for the cavity and the chain
(Fig. 1). As such, the Peierls phase in Eq. (2.1) % =g/VL
explicitly encodes the chain size and the dimensionless
strength g of LMI, which shall be varied from weak- to
ultrastrong coupling regimes. We measure length in units of £
and regard L as dimensionless.

III. NUMERICAL ANALYSIS

Using TeNPy [44], we conducted a DMRG study of the
model Eq. (2.1), varying the system size up to L = 200 and
capping the number of photons to 100. The DMRG results
presented here are for the quasiresonance condition hiw =
2t, = 2, but we have verified that no qualitative changes incur
upon varying w. In this study, the dimensionless coupling
g is varied over a wide range between the weak coupling
(g < 1) and ultrastrong coupling (g > 1) regimes, with
DMRG analysis for g € [0.1, 2.5] presented here, and ad-
ditional data including for smaller system sizes with g =
100 shown in the Appendix A. As shown in Figs. 2(a) and
2(b) obtained for the dimerized limit 7, = 1 and ¢, = 0, both
the ground state energy change due to light-matter coupling
AE =E(g) — E(g=0) and the number of photons N,, =
(a'a) plateau to a constant value as system size L increases,
with the value of the plateau increasing with increasing g.
Notably, while the lowest-order term in expansion of the
Hamiltonian (2.1), 8H; = (g/~/L)(a + a") Zj it c; cjt1 +
H.c., yields a negative Lamb shift [42], the AE > 0 plateau
in Fig. 2(a) highlights animportant diamagnetic effect, which
contributes to the suppression of the number of ground state
virtual photons as displayed in Fig. 2(b).

An important finding of this work is the stability of the
topological edge states, despite the nonlocality of the cavity
mode. This is seen explicitly in the dimerized limit #, = 0
where the edge fermion operators ¢y and ¢y, remain decoupled
from the bulk owing to the gauge invariant form of the LMI.
We explicitly confirmed the stability of the edge states away
from the dimerized limit by studying the case ¢, =1 and
1, = 0.5; the resulting electron density (n;) = (C;Cj) along a
chain of length L =200 for a system at half-filling minus
one electron is shown in Fig. 2(c), where the edge states
are clearly seen as positive charge excess on both sides of
the SSH chain. Note that the electron density for different g
are identical within numerical precision, indicating that the
light-matter coupling does not affect the electron density at all.
Furthermore, an ED analysis [see inset of Fig. 2(c)] confirms
the existence of two quasidegenerate lowest energy states
separated by a gap A that exponentially decreases increasing
system size.

The robustness of the edge states in DMRG is verified deep
in the ultracoupling regime (g ~ 100), see Appendix A. The
same plateau behavior displayed in Fig. 2 is observed for AE
and Ny, away from the dimerized limit, though the plateaus
are not reached as quickly as in the dimerized limit. In contrast
to Ref. [31], we find that chiral symmetry S is not sponta-
neously broken, and, moreover, that the edge states transform
canonically under inversion symmetry. Furthermore, the topo-
logically trivial chain (¢, < t,) displays similar bulk behavior
for AE, Ny, and nj, except for edge states that are not present
in this case.
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FIG. 2. DMRG simulation of cavity SSH system for light-matter coupling g € [0.1, 2.5] (color coding legend on the right) for system
sizes incremented in steps of 4 up to L = 200. (a) Change in ground state energy in the presence of light-matter coupling in the dimerized
limit (¢, = 0), AE = E(g) — E(0). Diamagnetic response (AE > () saturates to a finite value for large L. (b) Average number of photons
Ny = {(a®a) in presence of light-matter coupling in the dimerized limit (¢, = 0). N, also saturates to a finite value, much smaller than one for
the considered values of g. (c) Electron density n; = (c;c ;) for L = 200 shows the robustness of topological edge states away from dimerized
limitz, =t,/2 = 0.5, for a system at half-filling minus one electron. The states can be seen as charge deficit at the two ends of the chain, which
is insensitive to the strength of the light-matter coupling within numerical precision. Inset shows ED spectral gap A for (L < 12) exhibiting

the expected exponential decay with system size.

The spectral features described above are consistent with
the structure of entanglement in the many-body ground state
found in the DMRG simulation. This can be seen in Figs. 3(a)
and 3(b) for the dimerized limit, showing the system size
scaling of the EE between the photon and the chain of elec-
trons Sy, = —Tr[pp, In ppy], and the EE of half of the electron
chain (with the entanglement cut across the strong bond) with
the rest of the chain and the photon S, = —Tr[pe In p.],
where p,;, and p. are the corresponding reduced density
matrices. The observed area law scaling of EE in the pres-
ence of light-matter coupling is another key result of this
work. The behavior of §,, in Fig. 3(a) is similar to the
saturation of the virtual photons N, in Fig. 2(b), as fur-
ther discussed in Eq. (4.5). Moreover, LMI generates an
additional contribution to the electronic EE S,; in addition
to In2 for g=0 in the dimerized limit 7, =0 (assum-
ing L is divisible by four such that a nontrivial bond is
cut in the bipartition), signifying that electronic states are
dressed by the photon while the system remains short-ranged

entangled. The stability of the short-range entangled symme-
try protected topological (SPT) phase of the SSH chain is
further confirmed by the double degeneracy of the entan-
glement spectrum of p,; [21-23] (in both dimerized and
nondimerized limits, see Fig. 4). We confirm that the area law
holds away from the dimerized limit as well, see Fig. 5.

The additional EE indicates the presence of interaction-
induced correlations in the system: although, as seen in
Fig. 2(c), the excess electron density (n;) = (n;) — 1/2 is
unchanged by the light-matter coupling, we find that it in-
duces charge fluctuations (dn;0n;) (for i # j, j£ 1) with a
characteristic 1/L decay while having an infinite correlation
length for fixed system size, as seen in the constant value of
(dn;dn;) as a function of separation between the sites |i — j|
at fixed system size L = 200 (the fluctuations change sign
between even and odd values of |i — j|; only even values are
shown for clarity). This infinite correlation range persists to
changes away from dimerized limit and stronger LMI, and is
an important signature of the LMI. In the dimerized limit, it
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FIG. 3. Entanglement entropy and density correlations of the cavity SSH system in the dimerized limit (¢, = 0) found in DMRG for the
same parameters as in Fig. 2. (a), (b) The entanglement entropies between the photon and the fermions, S,;, and between the right half of
the chain and the rest of the system, S,;, versus system size. Both exhibit area law behavior in the thermodynamic limit. In the absence of
light-matter coupling, S,; = In2 due to the nontrivial topology of the SSH chain. (c) Charge density correlation function (én;6n;) for i and j
not belonging to the same dimer; as shown in the inset, the charge correlation function is independent of i and j (however, the sign alternates
as (3n;6n;) o (—1)*7; not shown in the figure for clarity). The correlation length is infinite for fixed L, with a magnitude that decays as 1/L.
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FIG. 4. The entanglement entropy spectrum & = —2logA (where A are the singular values of p,;) found for g € [0, 1.75], hw = 1.5,
L =100,1, =1 and (a) z, = 0 and (b) 7, = 0.2. In both cases, we find that the spectra are twofold degenerate, within numerical accuracy in
(a) and within at most 0.01% in (b). We note that distinct &; are equally spaced in the dimerized limit #, = 0, with the spacing decreasing with
increasing g in both (a) and (b).

follows from a permutation symmetry of Hamiltonian (2.1)
that exchanges pairs of dimers, resulting in many-body states
where photons are entangled with gas of delocalized dimers

that mediate such long-range correlation functions. However,
despite the constancy of these correlations for fixed system

size, the 1/L behavior indicates the absence of long-range
order in the thermodynamic limit.

IV. PHYSICAL INTERPRETATION
OF LOW ENERGY STATES

Physical insight into numerical results can be gained by

NG

recasting Hamiltonian (2.1) as

H = Hycos iL(a+aT)+Jsin
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FIG. 5. (a) Ground state energy change AE, (b) number of photons N,;, (c) entanglement entropy between the photon and the fermions
Spn, and (d) between the right half of the chain and the rest of the system S, versus system size L, away from the dimerized limit: hiw =1,
t, =1, and 7, = 0.2. Similar behavior as in Figs. 2(a) and 2(b) and Figs. 3(a) and 3(b) is seen, including in particular the area law of the

entanglement entropy.
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where Hy = Zj tjcj.cﬂ_l +H.c.andJ = Zj itjC;Cj+1 + H.c.
are the SSH Hamiltonian and electron current operators in
the absence of LMI, respectively. Importantly, the hopping
imbalance ¢, # ¢, of the SSH chain is responsible for quantum
fluctuations ([J, Hy] # 0) that manifest in matter sector of
the ground state, as follows. In the dimerized limit, many-
body eigenstates of Hj are tensor products of dimer states
[+ = (1001, 127) £ |121_1,021))/«/§ expressed in occu-
pation number basis, where [ =1,...,N, = (L —2)/2 is a
dimer index, N, being the number of nontrivial bonds (re-
call that the j = 0, L sites decouple from the Hamiltonian).
ObservethatJ =), J; =), it,)c;j_lczj + H.c., where J; act
as ladder operators on the dimer states: J;|¥;+) = %it,|Y).
Let us therefore denote product states with dimers [y, ..., [,
in excited states |,+) as |Wy, ;). This allows us to identify
the Krylov subspace of the ground state Hy [¥?) = &), [v¥,-)
by successive applications of J. This subspace is spanned by
|[Ww©) and the orthonormal states |¥™) describing uniform
superpositions of all (A:l’) states with n excited dimers, similar
to Dicke states [45]:

D
\/@ O<ly<lh<--<l,<N,—1

Importantly, the Hamiltonian can thus be brought into block-
diagonal form with one of the blocks acting only on this (N, +
1)-dimensional Krylov subspace.

At weak coupling, the ground state wavefunction is in
the Krylov subspace of |W?) and can thus be expressed as
|E) = >, &I¥™)|y,) where |y,) are photon states. Further-
more, noting that N,, < 1 for small g as seen in Fig. 2(b),
the ground state can be further approximated by capping the
photon number to one, yielding an effective Hamiltonian

}qjll,lz ..... ln)' “4.2)

H' = Hycos(g/~/'L) + J sin(g/v/L)o* — hja) (¢ —1),
“4.3)

where the Pauli matrices o/ act on the two-state trun-
cated photon Hilbert space. Upon projecting the Hamiltonian
Eq. (4.3) onto the Krylov subspace, we obtain |y,) = |n
mod 2) and the matrix equation

E + (Ny — 2n)t,cos(g/~/L) + (1 — (=1)Y")hw/2
t,sin(g/~/L)

=iy (n+ DN, — )iy — iyn(Np —n+ 1§, (4.4)

for £ and &,, which can be efficiently solved numerically
for large system sizes. Remarkably, all observables including
the energy, entanglement entropies and correlation functions
obtained by solving (4.4) are identical within numerical
precision to those obtained in DMRG with photon number
restricted to at most one, confirming that |E) is an exact
ground state of H'. In particular, the number of photons
is Ny = Y, 1&2m+11> and the photon EE takes an intuitive
Gibbs form

Spn = —(1 = Npp) In(1 — Npp) — Npp In Ny, 4.5)
since either a photon is created or not created in the weak
coupling limit. Equation (4.5) then relates the area law for the
photon EE seen in Fig. 3(a) and the saturation of the photon
number N, in Fig. 2(b) Analogous but lengthier expressions
for S,; and (dn;8n;) are given in Appendix B.

&

We next perform perturbation theory of the Krylov theory
to leading order in g by taking &, = 0 for n > 1. Note that
the first-order perturbation theory for H and H’ are equivalent
as only zero and one photon states appear in both cases. This
yields

£ 1-2/L
Npp=laiP =& —— 20 46
L I YL TRS (4.62)
hw
AE = <1 + 27>th””’ (4.6b)
1—-Ny, Ny. N,
St = —(1 = Npy) In ——22 2Py 20
2 8
(4.6¢)
Ny,
(0norp18nar41) = I Z 2 (4.6d)

with [ # [’ in the last expression; for S, we further as-
sumed that L is large. We note that the charge fluctuations
are related to current fluctuations in the space of dimer
states, since dny;41|¥i+) = FiJ;/(2t,)|¥+), and in particular
(J1Jy) = 4t2(8noy418nap41) to leading order in perturbation
theory. This is in agreement with the recent result in Ref.
[46] that found that S,;, = 0 iff (J;J;) = 0. However, the scal-
ing analysis of the EE and the stability of the topological
edge states, which are central results of this work, were not
discussed in Ref. [46]. The excess in EE may therefore be
measurable in transport experiments, which are sensitive to
current fluctuations, for example in a setup proposed in [47].
Equations (4.5) and (4.6) capture all of the qualitative
aspects of the DMRG results shown in Figs. 2 and 3: since
AE, Spi, and S,; are determined by N, the saturation of N,
in the thermodynamic limit dictates similar behavior for all
other quantities. The EE in particular follows the area law.
Because the photon couples to fermions via the total current
J, Ny, scales linearly with L; however, it is also proportional
to the square of the light-matter coupling strength g?/L. It is
the precise cancellation between these two factors that result
in the saturation of N,;,. Furthermore, DMRG simulations
confirm that the qualitative features of the weak coupling
regime described by Egs. (4.5) and (4.6) persist all the way
to the ultrastrong coupling (see Appendix A). In particular,
while more photons are virtually created in the ground state at
stronger LMI, correlation functions (dn;én;) in the dimerized
limit display long-range behavior consistent with the ground
state being spanned by a uniform superposition of dimers
belonging to the Krylov subspace of |¥(?)). The identification
of this subspace strongly suggests a remarkable connection
between light-matter entanglement and Hilbert space frag-
mentation [48-52], a scenario worthy of further examination.

V. DISCUSSION

In summary, we have characterized the effects of light-
matter interaction on the SSH-cQED low energy states,
employing numerical methods (DMRG, ED) and a low-
dimensional Krylov subspace effective theory. We have
established the stability of the topological edge states
despite long-range correlations induced by the interaction
of electrons with a uniformly extended cavity mode. This
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FIG. 6. (a)—(c) Same as Fig. 2, (d)—(f) same as Fig. 3, but with the number of photons capped to at most one. Both DMRG and expression
found using solutions of Eq. (4.4) in the Krylov subspace produce identical plots (a) and (b) and (d)—(f), within numerical precision. For plot
(c) showing edge states in the local electron density we took L = 40 and g = 0 and 100, which have equal electron densities within numerical

precision.

work highlights how gauge invariance, diamagnetic effects,
and electron-photon entanglement give rise to an area law
scaling of the entanglement entropy despite the nonlocality
of light-matter interactions. Extending this approach to higher
dimensional topological phases in cavity material systems,
and investigating the interplay between topology and pho-
ton condensation in magnetic cavities [53—-58] are promising
paths to classify novel light-matter hybrid states. We leave
such matters for future investigation.
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APPENDIX A: ADDITIONAL DMRG DATA

Here we present some plots for additional parameter val-
ues. Figure 6 shows the same plots as in Figs. 2 and 3, but
with the number of photons capped to at most one, i.e., for
the Hamiltonian in Eq. (4.3). Both DMRG and theexpression
found using solutions of Eq. (4.4) in the Krylov subspace pro-
duce identical plots (a) and (b) and (d)—(f), within numerical
precision. We note that the number of photons, and conse-
quently other quantities, is somewhat overestimated for larger

values of g. Figure 7 is also the same as Figs. 2 and 3, but with
gincreased by a factor of ten. Some slight changes can be seen
as the average number of photons exceeds 1, in particular N,
develops an inflection point and is no longer always increasing
in g at fixed small L. In the thermodynamic limit, however, the
qualitative behavior is the same as at small g.

APPENDIX B: CALCULATIONS OF EE
AND CORRELATIONS FROM SOLUTIONS OF EQ. (4.4)

Here we calculate EE for arbitrary connected bipartitions
of the cavity-SSH system in the dimerized limit and with
the number of photons capped to one, given the solution of
Eq. (4.4) |E) = Y, &|¥™). Since |¥™) are uniform super-
positions of |y, 4, . ;) that are all orthonormal states, the
singular values for an arbitrary cut of the chain are relatively
easy to find. We need to perform a a Schmidt decomposition
over the bonds and the photon. First let us assume the cut
happens on a non-trivial bond, with n; bonds/dimers fully
on the left of the cut and ngi fully on the right, so that
Ny=np+ng+1Mm =ng= N”Tfl for a half-chain cut). To
carry out the Schmidt decomposition we first need to write
the eigenstate as

nL nR

18) =) Yz W)LY )c W)

m=0 n=0

1+1
<n+m+T> mod2>

np ng

= D 3 WYLy ) [l

1=0,1 m=0 m=0

X

(BI)
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FIG. 7. (a)—(c) Same as Fig. 2, (d)—(f) same as Fig. 3, but with the g increased by a factor of ten. For plot (c) showing edge states in the
local electron density we took L = 40 and g = 0 and 100, which have equal electron densities within numerical precision. We note that in (e)
the S,; = 0 points at L = 4 appear to be numerical aberrations, as varying g slightly above 25 again gives S,; = In2; we speculate that this may
be due to states from two different Krylov subspaces being close in energy around those values of g.

where

— ¥
(") i<ir=<im

Wy, g = ¥ ik (B2)

with [W;, 5 i )i/ defined the same way as [V}, ;, ;) but
with the dimer indices restricted to the left or right sides,
Jis+--, jm € LorR.aisconsequently a (n, + 1) x 2(ng + 1)
matrix with elements o, 2017 = Y, (—1yn+n+, and we have

ny ngr Nb
Ynt = §m+n+l\/<m><n>/<n+m+ 1)’
Wmn— = gm+n\/<nL> (nR>/( N >’ (B3)
m n n—+m

which we note means that |1/,,,+|> asymptotically follow the
hypergeometric distribution.

Since the central dimer is split into left and right parts as
well

L
V2

the matrices we actually want to carry out the singular
value decomposition on are a/v/2 and o/’ /v/2 with &, ., =
(—1y™"+l g, 5,.. Note that @’ and a have the same singular
values (since we can take [{+) — Z|¥+)). There are thus in
general 2 min[n; + 1, 2(ng + 1)] twofold degenerate singular
values 1, of o, and the entanglement entropy is given by

Syy = =2 Z A2 1In A2 (B5)

[Wi)e = (10)z|1)gr £ [1)210)R), (B4)

with S,; = Syy for np = ng = (N, — 1)/2 (which assumes N,
is odd).

The calculation is essentially the same when the chain is
cut at a trivial bond, and in fact a bit simpler, since now the
eigenstate can be written simply as

nr ng
1) =D ) Yl W)Ll RI(n +m)  mod 2)
m=0 n=0
nyp ng

=3 3 st W) LW 1) (B6)

[=0,1 m=0 n=0

With 0t 2041 = Ymndi,(m+n) mod 2 and

e D)

but now with ny + ng = N,. In this case the singular values
are not doubly degenerate. The entanglement entropy is com-
puted the same way as before. As a special case, we consider
the entanglement entropy of the photon with the whole chain,
i.e.,ny = Nyandng = 0. Wethenhaven =0,m =0, ..., N,
SO Y0 = &n. To find the singular values, we can compute
aa’, which in this case is a 2 x 2 matrix:

o Ny =" amacgy = Y (€aml 810 + |Eam1810)810,
m m

(B8)
so the squares of the singular values are simply IAZ =
22:'" |€ym|* and )»% => . |€3m11|%. Note that Ny, = {a'a) =
A7
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1. Correlation functions

Here we compute the correlation function (dn;0n;), with
én; = cj'ci — 1/2. To do this, we first observe that when acting

on dimer states,
Smist |Wix) = 8mais1 (10241, Loia) & |Loi, 02i42))/v/2
= |¥ix)/2, (B9)
and similarly

Snaiga|Vix) = (B10)

—1izx)/2,

so that acting on the dimer states dny;1 = FiJ;/(2t) where
Ji = itcéiJrlCzH_z + h.c.

From this, we can deduce the action of én; on the |[W™)
states:

A )y _ _ g+ AR
28npi4 Wy = 1 Nb|\yl )+ /Nb|xp/ ), (B11)

Thus [W"*D) comes from applying 8nyy; to dimer states
in | ™) in which the i* dimer is not excited (and becomes
excited), while |W™) comes from the dimer states in which

the i dimer is excited (which becomes unexcited).
We then need to compute the inner products for the |\Ill.("))

and |\I//(”) ) states. First, we have

m n n—
(wf >|\y; =8+ (1 _8’7)8’””N—— (B13)
The second coefficient comes from the fact that the inner prod-

uct of the dimer states [¥;, ;. ;) in [W™) and [¥;, ;)

in |\I/(")) are nonzero only for i # j when one of i; = j (there

is then exactly one |W;, ; ;) with the same excited dimer

configuration). There are ( g 22) such |W;, ., i), while the
Np— ])

normalization is 1/ ( By similar reasoning, we find

Ny—n—1
where we deﬁned \I/(m) \Ij(n) = 5[" 1-— 5[' Smnb— B14
</ \/) j+( /) N, 1 (B14)
(n)
‘\Iji Z Z ’ Z i) and
Jn VF i u—2<Jn— i#j1<ja
m n n(Nb - I’l)
w (W) = (1 — 88 . (B15)
|w ™) / Z Yoo >y (B12) / N, — 1
V ) it i Using these expressions, we compute
(0naip10n2j41) = (E|0n2iqy10n2j41|E) = ZS,:Sn<\y(m)|8n2i+13n2j+l |p ) (B16)
for i # j (when i = j we simply get 1/4). The result is
1 Al
(Onaig10nyjy1) = AT 2;(2n(Nb — n)|&, > 4 2Re[EF ,&,/n(n — 1) (N —n+2)(N, — n + 1)]) (B17)
(for concreteness, we take £, = & | = 0). We also observe that the current-current correlations have a similar form:
12 N
i) = = ;@n(m — m|Es|> — 2Re[£}_s,/n(n — DN, — 1+ 2)N, — n + D]) (B18)

with the main difference being the sign in the second term.

2. Perturbation theory

Assuming sin8 < 1 (i.e., B « 1), in leading order of
perturbation theory we can keep &, only up to n = 1. The

J

(

Hamiltonian projected onto this restricted space reads simply

—i+/Npt sin B

Nyt cos B
(Np — 2)t cos ,3)’ (BI9)

H — (ftsmﬂ Ao —

From this, we find that for the ground state

1
E = z(ha) —2(L—1)tcos B — \/(ha) + 2t cos g)? + 4Lt? sinzﬁ) ~ —Npt +

N Nyt? g2 /Nyt B
(6o, §1) ~ (1 T2+ ho 2+ an))

Equation (4.6a—d) in the main text follows with 8 = g/~/L.

tﬁa)ﬁzNh
4t + 2hw

(B20)
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