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Moiré semiconductors on the twisted bilayer dice lattice
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We propose an effective lattice model for the moiré structure of the twisted bilayer dice lattice. In the chiral
limit, we find that there are flat bands at the zero-energy level at any twist angle besides the magic ones and these
flat bands are broadened by small perturbation away from the chiral limit. The flat bands contain both bands
with zero Chern number which originate from the destructive interference of the states on the dice lattice and
the topological nontrivial bands at the magic angle. The existence of the flat bands can be detected from the
peak-splitting structure of the optical conductance at all angles, while the transition peaks do not split and only
occur at magic angles in twisted bilayer graphene.
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I. INTRODUCTION

The search for a flat-band system has become one of the
new trends over the past few decades. Due to the large ef-
fective mass of the quasiparticles in the flat-band system, the
density of states (DOS) is high and the kinetic energy of the
carriers is strongly quenched. Therefore, the flat-band system
is a good candidate for studying strongly correlated electronic
states induced by strong Coulomb interaction, such as fer-
romagnetism [1–3], heavy fermions [4,5], fractional Chern
insulators [6,7], Wigner crystals [8,9], and unconventional
superconductivity [10–12].

Traditionally, the nearly-flat-band system can be achieved
by invoking fine-tuned nearest-neighbor hoppings or long-
range hoppings or by breaking time-reversal symmetry.
Several lattice models have been proposed along these lines in
kagome [13], Lieb [14], and dice lattices [15]. The existence
of the flat band is guaranteed by the destructive interference of
the Wannier functions of the lattice structure, and the flat-band
states are identified as compact localized states [8,9,15–19].
This destructive interference protection can also be general-
ized to lattices with mirror symmetry [20]. Usually, this kind
of flat band has a zero Chern number in the lattice model
with nearest-neighbor hopping only [21]. On the dice lattice,
the flat band can acquire a nonzero Chern number by invok-
ing Rashba spin-orbital coupling and exhibits an anomalous
quantum Hall effect by adding on-site Hubbard interac-
tions, which could be realized in the transition-metal oxide
SrTiO3/SrIrO3/SrTiO3 trilayer heterostructure by growing in
the (111) direction [22]. Materials with flat-band structures
along these lines have also been reported in Cu(111) confined
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by CO molecules [23], optical lattices, and cold-atom systems
[24–29]. The topology of the dice lattice with non-Hermiticity
has also been studied [30]. In three dimensions, a famous
example is the Kane semimetal, where the flat-band structure
is associated with the triplet degenerate nodes and can be
described by a three-dimensional Lieb lattice model [31]. The
low-energy quasiparticle, the Kane fermion, can be viewed
as a fermionic photon, i.e., a spin-1 fermion. The effective
Hamiltonian near the triplet degenerate node is Hjk = εi jk pi,
where εi jk is the totally antisymmetric tensor and pi is the mo-
mentum. By squaring the Hamiltonian, H2 ∼ pi p j − p2δi j ,
which is related to the Hamiltonian of the photon. The case
here is similar to squaring the Dirac Hamiltonian to obtain
the Hamiltonian for the Klein-Gordon equation. Therefore,
the Kane fermion can be viewed as a fermionic photon and the
flat band of the Kane fermion corresponds to the longitudinal
mode of the photon. Experimentally, the spinful Kane fermion
has been reported in Hg1−xCdxTe [32] and Cd3As2 [33]. The
existence of the flat band is shown in the optical conduc-
tance by the large peaks near zero frequency [32,34]. The
spinless Kane fermion is proposed to exist in materials with
space groups 199 and 214, such as Ag3Se2Au and Pd3Bi2S2

[35]. Band structures with triple nodal points have also been
proposed in ZrTe [36], LaPtBi [37], and APd3 (A = Pb, Sn)
[38]. More kinds of topological materials would be found by
the method of symmetry indicators and topological quantum
chemistry [39–41].

A new mechanism for generating a flat band was found
in twisted bilayer graphene (TBG) at a magic twist angle θ ∼
1.08◦ [42,43]. Unlike the destructive-interference-induced flat
band, the flat-band structure of TBG originates from the ex-
tremely large band folding of the moiré structure, and TBG
becomes a strongly correlated electron system. Very soon
thereafter, superconductivity was reported in TBG [44,45].
The flat band in TBG has a nontrivial Chern number [46],
which can be explained by the zeroth chiral Landau levels
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FIG. 1. (a) Structure of the dice lattice. Blue, red, and black dots
correspond to A, B, and C sites, respectively. The lattice vectors
are denoted by a2 and a2. (b) Bilayer dice lattice in A-B (Bernal)
stacking. The vector τ labels the position of the sublattice site in a
unit cell.

of Dirac/Weyl fermions [47]. Away from the half filling,
the fractional Chern insulator phase was also proposed and
reported in TBG [48–50] and the twisted bilayer MoTe2

[51–53].
In this paper we consider the combination of moiré struc-

ture and destructive-interference-induced flat bands, namely,
a twisted bilayer dice lattice (TBD). Inspired by Bistritzer
and MacDonald’s continuum lattice model for TBG [42], we
construct a lattice model for the TBD in the reciprocal space.
We find that there are flat bands with zero energy in the
chiral limit at any twist angle besides the magic ones that
are broadened by small perturbation away from the chiral
limit. The flat bands are contributed from the ones with zero
Chern number as in the Dice lattice and the nontrivial ones
at the magic angle; therefore, the TBD is a playground for
studying the interplay between the zero-Chern-number flat
bands and nontrivial ones. We further confirm this scenario
by considering the pseudo-Landau-level description [47] and
its optical conductance.

The paper is organized as follows. In Sec. II we provide
the detailed construction of the lattice model of the TBD. We
also introduce the concept of chiral limit to the TBD. From the
chiral limit of the TBD, we show the origin of the flat bands
in the TBD. There are flat bands in the TBD in the chiral limit
at all angles other than the magic ones. We also numerically
calculate the Bloch band structure and compare it with that
of TBG. In Sec. III we use the pseudo-Landau-level language
to describe the physics of the flat bands in the TBD, where
the pseudomagnetic field is caused by the interlayer hopping.
We can directly find that, besides the topological zeroth Lan-
dau level, the higher Landau levels which are topologically

trivial also contribute to the flat bands. In Sec. IV we use the
degenerate perturbation method to calculate the optical con-
ductance of the TBD and we find that the flat bands contribute
a peak-splitting structure, which is conclusive evidence of the
experimental prediction for the existence of the flat bands.
This phenomenon also exists at all angles besides the magic
ones when compared with TBG. Section V provides a brief
summary and discussion of our conclusions.

II. EFFECTIVE MODEL OF THE TBD

The dice lattice can be viewed as two honeycomb lattices
A-B and B-C sharing the same sublattice site B. The lattice
base vectors are a1 = a( 1

2 ,
√

3
2 ) and a2 = a(− 1

2 ,
√

3
2 ) and the

corresponding reciprocal vectors b1 = 4π√
3a

(
√

3
2 , 1

2 ) and b2 =
4π√

3a
(−

√
3

2 , 1
2 ), where a = √

3d is lattice constant and d is
the distance between two nearest sites [see Fig. 1(a)]. For
simplicity, we consider a spinless lattice model with nearest-
neighbor hopping only. Due to this similarity, the TBD has the
same moiré structure as TBG [see Fig. 2(a)]. There is a flat
band E = 0 in the lattice spectrum. The low-energy behavior
near the Dirac point can be captured by Heff = k · S, where
k = (k1, k2, 0) is the lattice momentum and S is the spin-1
generalization of the Pauli matrix that acts on sublattice space
of the order of A, B, and C,

S1 =
⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠, S2 =

⎛
⎝0 −i 0

i 0 −i
0 i 0

⎞
⎠,

S3 =
⎛
⎝1 0 0

0 0 0
0 0 −1

⎞
⎠. (1)

Since the dice lattice can be realized in the
SrTiO3/SrIrO3/SrTiO3 trilayer heterostructure by growing
in the (111) direction [22], it is possible to realize the TBD in
this material by twisting when growing.

For TBG, Bistritzer and MacDonald proposed a low-
energy effective continuum Dirac model of the moiré structure
for a small twist angle θ < 10◦ using Bloch bands near the
Dirac points. The effective model consists of two isolated
graphene layers and hopping terms between them. With this
model they reveal flat Bloch bands in the electronic structure
at magic twist angles which give rise to a high DOS [42].
Similar to the case of TBG, we follow Ref. [42] to construct
a continuum model for the TBD. In principle, for the Bloch-
band-based effective theory to be valid, the valley structure
should be present. However, the global flat band in the single-
layer dice model may negate this validity. This obstacle could
be avoided by including the second-nearest-neighbor hopping
in the lattice model such that the global flat bands become
dispersive and acquire the valley structure. In a recent pa-
per [54] Zhou et al. confirmed that the flat-band structure
is substantiated in the TBD in the absence of the second-
nearest-neighbor hopping. Therefore, we can only consider
the nearest-neighbor hopping in the TBD for simplicity. Later
we will show that this is the case in the chiral limit of the
continuum model and there are exact flat bands at all angles.
In contrast, away from the chiral limit, the results would be
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FIG. 2. (a) Moiré period structure of the TBD with unit lattice
vectors am

1 = Ls(
√

3
2 , − 1

2 ) and am
2 = Ls(

√
3

2 , 1
2 ), where Ls = a

2 sin(θ/2)
is the size of the moiré unit cell. (b) Reciprocal space of the TBD
with reciprocal vectors bm

1 = 4π√
3Ls

( 1
2 , −

√
3

2 ) and bm
2 = 4π√

3Ls
( 1

2 ,
√

3
2 ).

The coordinate (l1, l2) means the vector b = l1bm
1 + l2bm

2 . The red
dashed line marks the first Brillouin zone with green dashed lines
marking the reciprocal path for calculating the TBD band structure.

less predictive if the second-nearest-neighbor hopping were
zero and the valley structure were absent due to the flat bands.

In the TBD, we keep the top layer 1 fixed and rotate the
bottom layer 2 by θ with respect to layer 1. The effective TBD
Hamiltonian contains intralayer and interlayer parts. The low-
energy intra-Hamiltonian reads

H = v f

∑
k

ψ
†
1,kS · kψ1,k + v f

∑
k

ψ
†
2,kSθ · kψ2,k, (2)

where ψ1,2 are the annihilation operators in layers 1 and 2,
respectively, and Sθ = e(iθ/2)S3 (S1, S2)e(−iθ/2)S3 .

For the interlayer hopping term H⊥, we consider nearest-
neighbor hopping from layer 1 in the α (α = A, B,C)
sublattice to the closest sublattice β (β = A′, B′,C′) in layer 2
(see Fig. 1). The hopping amplitude depends on the difference
between the two sites. We have

H⊥ =
∑

k1,k2,α,β

ψ
†
1,α (k1)T α,β

1,2 (k1, k2)ψ2,β (k2) + H.c., (3)

with

T α,β

1,2 (k1, k2) = 1

AUC

∑
G1,G2

e−iG1×τ1,α t (K1 + k1 + G1)

× e−iG2·τ2,β δK1+k1+G1,K2+k2+G2 , (4)

where AUC is unit cell area and K1,2 represent the Dirac point
for each layer which satisfies K2 = Rθ · K1, where Rθ is the
rotation matrix. Here τ1/2,α/β is a vector connecting the two
sites in the unit cell. For the TBD, we consider the A-B
stacking (Bernal) configuration coordinates as τ1,A = τ2,B′ =
(0, 0), τ1,B = τ2,C′ = (0, d ), and τ1,C = τ2,A′ = (0, 2d ) [see
Fig. 1(b)]. To compare the results with TBG, we choose
d = 1.42 Å, the lattice constant of graphene. Here t (k) is the
Fourier transformation of the tunneling amplitude t (r) which
satisfies tα,β

1,2 (r1, r2) = tα,β

1,2 (r1 + τ1,α − r2 − τ2,β ) and decays
rapidly if k in reciprocal space exceeds the Dirac point [42].
Considering this property, we only need to choose three vec-
tors Gl = g(l ),1, g(l ),2, g(l ),3, with g(l ),1 = 0, g(l ),2 = b(l ),2, and
g(l ),3 = −b(l ),1 the reciprocal lattice vectors, (l ) = (1), (2)
the layer index, and b(1),i = Rθb(2),i. Substituting these three
vectors into the hopping matrix (4), we have

T1,2(k1, k2) = Tqb
δk1−k2−qb

+ Tqtr
δk1−k2−qtr

+ Tqt l
δk1−k2−qt l

,

(5)

where qb = 8π sin(θ/2)
3a (0,−1), qtr = 8π sin(θ/2)

3a (
√

3
2 , 1

2 ), and

qt l = 8π sin(θ/2)
3a (−

√
3

2 , 1
2 ) are the vectors connecting the near-

est Dirac points of the two layers in the moiré Brillouin zone
[see Fig. 2(b)] and

Tqb
= W

⎛
⎝1 1 1

1 1 1
1 1 1

⎞
⎠,

Tqtr
= We−ig1,2·τ0

⎛
⎝ eiφ 1 e−iφ

e−iφ eiφ 1
1 e−iφ eiφ

⎞
⎠,

Tqt l
= We−ig1,3·τ0

⎛
⎝e−iφ 1 eiφ

eiφ e−iφ 1
1 eiφ e−iφ

⎞
⎠, (6)

where W = t (|K|)
AUC

, with |K| = 4π/3
√

3d , and φ = 2π/3. Here
we choose W = 110 meV as in graphene [42]. We choose also
τ0 = 0, which is the translation vector of the TBD. For later
convenience, we also denote the transition amplitude between
the two layers by Wαβ .

A. Chiral limit of the TBD

The origin and topological nature of the flat bands can be
revealed in the chiral limit. In Ref. [48] Tarnopolsky et al.
proposed the chirally symmetric continuum model for TBG,
which is also known as the chiral limit. In their model they
considered a Hamiltonian

HTBG =
(

0 D∗(−r)

D(r) 0

)
, D(r) =

(
−i∂̄ αU (r)

αU (r) −i∂̄

)
,

with the basis �(r) = (ψ1, ψ2, χ1, χ2)T , where 1 and 2 are
the layer indices and ψ and χ correspond to the sublat-
tice. Here α is a parameter, U (r) is the interlayer potential,
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and ∂̄ = ∂x + i∂y. The chiral symmetry is manifested by the
particle-hole symmetry {H, σz ⊗ 1} = 0, where σz acts in the
sublattice space. The flat bands in TBG satisfy Dψk(r) = 0,
which also determines the magic angle, and the flat-band wave
function ψk(r) behaves like the one in the quantum Hall
effect on a torus [48]. Therefore, these flat bands in TBG
are topological. Another reason is that the flat bands can be
explained as the zeroth Landau level of the Weyl fermion
under a pseudomagnetic field which comes from the lattice
distortion of the twisting [47] and the zeroth Landau level of
the Weyl fermion is topological.

Inspired by this model, we generalize the chiral limit to the
TBD model by substituting from the Pauli matrices that act on
the sublattice space to the 3 × 3 S matrices defined in (1),

HTBD =

⎛
⎜⎝ 0 D∗(−r) 0
D(r) 0 D∗(−r)

0 D(r) 0

⎞
⎟⎠, (7)

with the particle-hole symmetry {HTBD, S3 ⊗ 1} = 0. The ba-
sis is now � = (ψA

1 , ψA
2 , ψB

1 , ψB
2 , ψC

1 , ψC
2 )T , where ψA,B,C

labels the sublattice. Therefore, the generalized chiral sym-
metry in the TBD corresponds to choosing WAA′ = WBB′ =
WCC′ = WAC′ = WCA′ = 0, and the hopping matrices defined
in (6) become

T c
qb

= W

⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠,

T c
qtr

= We−ig1,2·τ0

⎛
⎝ 0 1 0

e−iφ 0 1
0 e−iφ 0

⎞
⎠,

T c
qt l

= We−ig1,3·τ0

⎛
⎝ 0 1 0

eiφ 0 1
0 eiφ 0

⎞
⎠. (8)

Now we can count the number of flat bands. The usual
band counting from TBG at the magic angle is one flat
band per valley per spin, with a total number of four, from
each of Dψ = 0 and D∗ψ = 0. In the TBD, there are two
kinds of flat bands. One is similar to the case of TBG,
which comes from DψA = 0 and D∗ψC = 0. They produce
four flat bands each. The A and C sublattice indices corre-
spond to the valley indices in TBG. For ψB, both DψB =
0 and D∗ψB = 0 should be satisfied for flat bands. In the
α = 0 limit, this means ψB should be both holomorphic
and antiholomorphic, which is a constant if ψB has no sin-
gularity. Therefore, ψB does not generate flat bands. The
other kind of flat bands originates from the destructive in-
terference of the states on the dice lattice structure. We can
construct these wave functions in the α = 0 limit, to which
the model is continuously connected [48], namely, �0 ∝
(ai∂̄∗�1(r), bi∂̄∗�2(r), 0, 0, ai∂̄�1(r), bi∂̄�2(r))T , where a
and b are constants and �1,2 are some arbitrary functions of r
without singularities. The Chern number of these flat bands
is zero. This is also confirmed in the pseudo-Landau-level
description discussed in Sec. III. From the Landau-level point
of view, the flat bands corresponding to the zeroth Landau
level are topological and the ones from the nth (n > 1) Landau
level are trivial.

FIG. 3. Band structure of the A-B stacking untwisted bilayer
dice lattice model. Here we set the reciprocal path the same as for
graphene [55]; the lattice vector and coordinates of atoms in the
unit cell are the same as in Fig. 1(b). The other parameters are
WAB′ = WBC′ = 0.33 eV and (a) WAC′ = 0.33 eV (the chiral symme-
try is broken) and (b) WAC′ = 0 (the chiral symmetry is preserved).

The chiral symmetry of the Hamiltonian (7) can also be
confirmed without twisting (see the Appendix). For A-B stack-
ing, finite WAC′ will break the particle-hole symmetry [see
Fig. 3(a)].

B. Comparing the band structures of TBG and the TBD

After building the effective model of the TBD, we now can
compare the band structures of TBG and the TBD. Similar to
Bistritzer and MacDonald’s model for TBG [42], the Hamil-
tonian for a layer with the twist angle θ near the Dirac point
Kθ can be written as

HKθ
(qθ ) = v f qθ

⎛
⎝ 0 e−i(θq−θ ) 0

ei(θq−θ ) 0 e−i(θq−θ )

0 ei(θq−θ ) 0

⎞
⎠, (9)

where qθ = qθ (cos θq, sin θq) is the momentum measured
from the Dirac point Kθ in the moiré Brillouin zone with
the unit vectors bm

1 = 4π√
3Ls

( 1
2 ,−

√
3

2 ) and bm
2 = 4π√

3Ls
( 1

2 ,
√

3
2 ),

where Ls = a
2 sin(θ/2) is the size of the moiré unit cell [see

Fig. 2(b)]. By using the Bloch bands, we can truncate the
TBD model Hamiltonian near the Dirac points in the moiré
Brillouin zone. For example, by defining b = l1bm

1 + l2bm
2 , the

simplest case is to truncate to the first moiré Brillouin zone
[42], namely, l1 = l2 = 1. The truncated Hamiltonian has the
form

Htr =

⎛
⎜⎜⎜⎜⎝

H1
K(q) Tqb Tqtr Tqt l

T †
qb

H2
K(q + qb) 0 0

T †
qtr

0 H2
K(q + qtr ) 0

T †
qt l

0 0 H2
K(q + qt l )

⎞
⎟⎟⎟⎟⎠,

(10)

where H1 (2)
K is the kinetic part of (9) in layer 1 (2). The basis

of the above Hamiltonian is four three-component spinors
with the momentum near the central Dirac point in layer 1
and qb, qtr , and qt l in layer 2 [see Fig. 2(b)]. The chiral limit
is obtained by replacing the hopping matrices Tqb , Tqtr , and Tqt l

with T c
qb

, T c
qtr

, and T c
qt l

, respectively.
In the numerical calculation, we choose WAA′ = WBB′ =

WCC′ . In TBG, the absolutely flat band at the magic angle
θ ≈ 1.08◦ can be obtained in the chiral limit, namely, by
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FIG. 4. Here WAB′ = W = 0.11 eV. The band structure of TBG
in the chiral limit is shown at twist angles (a) θ = 0.5◦, (c) θ = 1.08◦,
and (e) θ = 5◦. The flat band only occurs at the magic angle θ =
1.08◦. The band structure of the TBD in the chiral limit is shown
at twist angles (b) θ = 0.5◦, (d) θ = 1.08◦, and (f) θ = 5◦. Totally
flat bands with a high level degeneracy appear at zero energy at
all angles. The band structure of the TBD is shown (g) at magic
angle θ = 1.08◦, with WAA′ = 0 eV and WAC′ = 0.1 eV, and (h) at
θ = 5◦, with WAA′/WAB′ = 0.5 eV. In (g) and (h) the chiral symme-
try is broken and the degeneracy is lifted. The momentum labels
1 → 2 → 3 → 4 → 1 are defined in Fig. 2(b).

choosing WAA′ = 0 [48]. In the chiral limit of the TBD, highly
degenerate flat bands at zero energy also exist. We truncate the
Hamiltonian at the order of l1 = l2 = 3 and we choose three
moiré angles θ = 0.5◦, 1.08◦, 5◦ The final results of the band
structures of TBG and the TBD are summarized in Fig. 4.

Unlike TBG, which only has flat bands near magic angles,
the TBD has flat bands at all angles, which is a manifestation

of the flat band of the single-layer dice lattice model. These
TBD flat bands are highly degenerate in the chiral limit, more
than the usual band counting. When chiral symmetry is broken
by finite WAA′ or WAC′ , the original exactly flat bands in the
chiral limit now spread from zero energy and become nearly
flat; this behavior is similar to that of Landau levels [see
Figs. 4(g) and 5(b)]. Numerically, we find that for small per-
turbations that break the chiral symmetry, the nearly flat bands
are now away from zero energy and the gaps among them and
the conduction and valence bands remain [see Figs. 4(g) and
4(h)]. This, however, could be an artifact of the continuum
model due to flat bands and the lack of valley structure, which
is the limitation of the continuum model away from the chiral
limit. To further verify the validity of the continuum model in
the flat-band regime, a more controlled calculation, such as a
real-space commensurate one, is needed, which is beyond the
scope of the present work. Therefore, besides the theoretical
analysis in the preceding section, we also numerically confirm
that in order to obtain the band structure of exact flat bands at
zero energy, namely, the chiral limit, both parameters WAA′ and
WAC′ must be zero.

Before ending this section, we would like to comment on
the degeneracy of the flat bands of the TBD. In general, the
degeneracy is lower when away from the magic angle or the
chiral limit. In numerical calculations, apply different cutoff
parameters for different twist angles, because the size of the
unit cell dependent on the twist angle |AMUC| = |am

1 × am
2 | =

(3
√

3d2)/[8 sin2(θ/2)]. The smaller the twist angle is, the
more Dirac points will be folded in this cutoff. A consequence
is that the number of degenerate flat bands decreases as the
twist angle increases. Further, the number of flat bands is
nearly one-third the number of sites, showing that most of the
flat bands originate from the destructive interference of the
states on the dice lattice. Our results are consistent with those
in Ref. [54].

III. THE SU(2) GAUGE POTENTIAL AND
PSEUDO-LANDAU-LEVEL STRUCTURE

The chiral limit is an ideal model to study the flat-band
structure, while in reality the chiral limit is violated by finite
WAA′ or WAC′ arising from different atomic stacking and atomic
layer deformation [56]. Fortunately, Liu et al. showed that
Bistritzer and MacDonald’s model for TBG at a small magic
angle can be effectively described by pseudo-Landau levels
under an SU(2) gauge potential [47]. After a gauge transfor-
mation on the Bloch functions and expanding the tunneling
potential to the linear order of r/Ls, Liu et al. arrived at the
pseudo-Landau-level Hamiltonian for TBG,

H p
TBG = −h̄v f

(
k − e

h̄
Aτ2

)
· σ + 3u0τ1, (11)

where A = 2πu′
0/Lsev f (y,−x) is the SU(2) gauge potential

and the Pauli matrices τ1,2 act on the layer index. In addition,
u′

0 denotes the hopping parameters WAB′ and u0 denotes WAA′ .
The effective magnetic field B = ∇ × A ≈ 120 T for TBG
at θ ≈ 1.08◦ [47,57,58]. The effective magnetic fields have
opposite directions on each layer; therefore, we can define
a time-reversal operator � = i(τ2 ⊗ σ0)K, where K means
complex conjugation. In addition, the time-reversal symmetry
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FIG. 5. Landau-level structure of (a) TBG and (b) the TBD, with u′
0 = 0.01 eV, u0 = 0.1 , and μ = 0.05 eV (red dotted line), and optical

conductance σxx of (c) TBG and (d) the TBD. We choose the room temperature T = 300 K. The symbol ± in (c) represents the two flat bands
near zero energy. For energy bands bigger (or smaller) than the zero energy with a typical Landau-level gap, we denote by L = 0±,±1, ±2, . . ..
For example, T±,0+ represents the contribution from two zero-energy bands to the first Landau level with positive energy denoted by L = 0+.
For the flat bands near zero energy in (d), we use their energy value to denote, for example, T−0.012,0+ , which represents the contribution from
the flat band with energy E = −0.012 eV to L = 0+.

is preserved. After a similar treatment, we can also derive the
pseudo-Landau-level Hamiltonian for the TBD. By replacing
σ , which acts on the sublattice index of graphene, by S, the
result is

H p
TBD = −h̄v f

(
k − e

h̄
Aτ2

)
· S + 3u0τ1, (12)

where u′
0 denotes hopping parameters WAB′ and WBC′ in the

TBD and u0 denotes WAA′ . In the following numerical calcu-
lations, we set u′

0 = 0.01 eV and u0 = 0.1 .
To discuss the Landau-level structure, we transform

the Hamiltonian (12) into the basis that diagonalizes
τ2,

H p
TBD(k) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 πx + iπy 0 3iu0 0 0
πx − iπy 0 πx + iπy 0 3iu0 0

0 πx − iπy 0 0 0 3iu0

−3iu0 0 0 0 π ′
x + iπ ′

y 0
0 −3iu0 0 π ′

x − iπ ′
y 0 π ′

x + iπ ′
y

0 0 −3iu0 0 π ′
x − iπ ′

y 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (13)

where πx = h̄v f kx − ev f Ax, πy = −h̄v f ky + ev f Ay, π ′
x =

h̄v f kx + ev f Ax, and π ′
y = −h̄v f ky − ev f Ay. Since u0 is small,

we can treat it as a perturbation. Then, for the unper-
turbed Hamiltonian H0, we define the Landau-level creation
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operators of the two layers, b† =
√

Ls
8πu′

0 h̄v f
(πx − iπy) and

a† =
√

Ls
8πu′

0 h̄v f
(π ′

x + iπ ′
y), and the nonzero commutators are

[b, b†] = [a, a†] = 1,

H0(k) = h̄ω

⎛
⎜⎜⎜⎜⎜⎜⎝

0 b 0 0 0 0
b† 0 b 0 0 0
0 b† 0 0 0 0
0 0 0 0 a† 0
0 0 0 a 0 a†

0 0 0 0 a 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (14)

where h̄ω =
√

8πu′
0 h̄v f

Ls
. The H0 is block diagonalized for

each layer. We denote by |� (1)〉 and |� (2)〉 the eigen-
values of the wave functions for layers 1 and 2, respec-
tively. The components of |� (1)〉 and |� (2)〉 are made of
Landau-level wave functions that satisfy b |n〉 = √

n |n − 1〉,
b† |n〉 = √

n + 1 |n + 1〉, a |m〉 = √
m |m − 1〉, and a† |m〉 =√

m + 1 |m + 1〉. To be more specific,

|� (1)〉 = (
A1

n|n〉, A2
n|n + 1〉, A3

n|n + 2〉)T
, (15)

|� (2)〉 = (
B1

m|m + 2〉, B2
m|m + 1〉, B3

m|m〉)T
, (16)

where Ai
n and B j

m are the normalizing coefficients and when
n(m) < 0, |n(m)〉 = 0.

For layer 1, there are three energies for n > 1,

E (1)
n,± = ±h̄ω

√
2n + 1, E (1)

n,0 = 0. (17)

In the wave function for E (1)
n,0, the second component A2

n,0 = 0,
which has a structure similar to that in the flat-band wave func-
tion of the dice lattice. For n = 1, there are two eigenenergies

E (1)
1,± = ±h̄ω, (18)

which are the first Landau levels, with the wave functions
�

(1)
1,± = 1√

2
(0,±|0〉, |1〉)T . Here n = 0 is the topological ze-

roth Landau level with E (1)
0,0 = 0 and |� (1)

0,0〉 = (0, 0, |0〉)T .
For layer 2, the derivation for the spectrum and wave func-

tion is similar. For m > 1, E (2)
m,± = ±h̄ω

√
2m + 1 and E (2)

m,0 =
0. The second component of |� (2)

m,0〉, B2
m,0 = 0. For m =

1, E (2)
1,± = ±h̄ω and |� (2)

1,±〉 = 1√
2
(|1〉,±|0〉, 0)T . For m = 0,

E (2)
0,0 = 0 and |�2

0,0〉 = (|0〉, 0, 0)T . We treat small u0 as a per-
turbation, which will mix the states between |� (1)〉 and |� (2)〉
and lift the degeneracy at zero energy. This is consistent with
the results in Sec. II because u0 corresponds to WAA′ , which
breaks the chiral symmetry. This behavior of small u0 is also
confirmed numerically [see Fig. 5(b)], which is similar to the
band structure in Fig. 4. Here we emphasize a difference be-
tween TBG and the TBD. Because of the lack of zero-energy
states |�n,0〉 for n > 1 in the pseudo-Landau levels of TBG,
the effect of u0 is of the third order [47], while in the TBD, it is
of the first order. Therefore, the optical conductance for finite
u0 will behave differently for TBG and the TBD (discussed
below). A similarity between TBG and the TBD is that, after
the perturbation of u0, a double degeneracy remains which is
related to the S3 symmetry [47].

IV. OPTICAL CONDUCTANCE

In reality, materials that rotate the polarization plane of
linearly polarized light have many applications in various
devices, which is usually achieved by magneto-optical effects,
the quantum Hall effect, and the Kerr and Faraday rotations by
invoking external magnetic fields [59–63], which also limits
the applications in small-scale devices. Therefore, searching
for materials with intrinsic properties that rotate light is ur-
gent for recent applications. The TBG is such a candidate for
advanced optical applications due to the tunable twist angles
[64,65]. The optical conductivity of the bilayer dice lattice
without twisting was studied before [66,67]. Here we study
the optical conductance of the TBD, which could be another
candidate for such applications.

We utilize the Kubo formula in the pseudo-Landau-level
basis to calculate the optical conductance of the TBD system
[68],

σα,β = ig

2π h̄l2
B

∑
LLs

f − f ′

ε′ − ε

〈�| jα|� ′〉 〈� ′| jβ |�〉
ω − (ε′ − ε) + i�

, (19)

where lB = √
Lshcv f /4πu′

0 is the magnetic length. Without
considering the spin degree of freedom, we can simply set
g = 2. Here f is the Fermi distribution and ω is the photon en-
ergy. Although we use the pseudo-Landau-level description,
no external magnetic field is applied. The pseudomagnetic
field is induced by the hopping of WAB′ and WBC′ , which can
also be induced by strain [69].

We take into account the contribution of all Landau lev-
els; however, the remaining double degeneracy of the band
structure will cause divergence in conductance. For a doubly
degenerate band, we set the divergent part of the Kubo for-
mula (19) as

lim
ε′−ε→0

f (ε) − f ′(ε′)
ε′ − ε

= e(ε0−μ)/kT

(e(ε0−μ)/kT + 1)2

1

kT
. (20)

From the Hamiltonian (14), the current is obtained as jα,β =
δH0(k)
δAα,β

.
The numerical results for μ = 0.05 eV and T = 300 K of

the conductance of TBG and the TBD are shown in Figs. 5(c)
and 5(d). Since the chemical potential we choose is close
to zero, all significant absorption peaks originate from tran-
sitions between the near-zero bands and the positive-energy
bands or between the negative-energy bands and the near-zero
bands. The double-peak structure of TBG is caused by the
splitting of double degeneracy, and the width of the splitting
is proportional to u′

0.
By comparing the result of TBG with that for the TBD,

we see that the double-peak structure of TBG does not exist
in the TBD. In the TBD, the peak splits into several small
peaks. This reflects that there are many states near zero energy.
In Fig. 5(c) the distance between the double peaks is �ω ∼
0.03 eV, which corresponds to 40 µm, while in Fig. 5(d) the
typical distance between the split peaks is �ω ∼ 0.015 eV
and the corresponding wavelength is about 80 µm, which
are all in the terahertz range and experimentally detectable.
Therefore, this peak-splitting structure provides proof of the
experimental prediction showing the existence of the large
degeneracy of the flat bands in the TBD.
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Although the Landau-level description for TBG fails when
the twist angle is away from the magic ones, the Landau-level
structure remains in the TBD [see Figs. 4(g) and 4(h)]. There-
fore, in the optical conductance at angles other than the magic
ones, the peak splitting structure remains in the TBD, whereas
the peaks arising from the transitions that form the flat bands
disappear in TBG, which is also a key experimental difference
between TBG and the TBD.

The transitions between these zero-energy levels are for-
bidden in the TBD, which means there are no peaks at low
frequency near ω ∼ 0, which is a key difference from the
three-dimensional Kane fermion [34]. The reason for this phe-
nomenon is attributed to the structure of the current and wave
function in two dimensions, that is, 〈�| jα|� ′〉 〈� ′| jβ |�〉 = 0
between those near-zero bands, and their contribution to the
optical conductance being zero, while in three dimensions the
k3S3 part will have a nontrivial contribution and the transi-
tion between different Landau levels has a nonzero k3, which
causes the peaks near zero frequency [34].

V. CONCLUSION

In this paper we constructed a lattice model for the TBD.
In the chiral limit, it has flat bands at all twisted angles be-
sides the magic ones and the flat bands are broadened when
chiral symmetry is broken, which could be confirmed by the
peak-splitting structure of the optical conductance near the
magic angles. Away from the magic angles, the peak splitting
remains in the TBD, whereas these peaks disappear in TBG
due to the nonexistence of the flat bands. The flat bands
in the TBD are composed of zero-Chern-number bands by
destructive interference of the states on the dice lattice as well
as the topological nontrivial bands by the moiré structure at
the magic angles. In this model we have neglected the spin
degrees of freedom of electrons. If the spin-orbital-coupling
interaction is added, the bands with zero Chern number may
become nontrivial [22]. It is possible to realize the TBD

in the transition-metal oxide SrTiO3/SrIrO3/SrTiO3 trilayer
heterostructure by growing and twisting in the (111) direction.
As a semiconductor, due to the high DOS of the flat bands
of the TBD, the TBD may have potential applications in
temperature-sensitive and photosensitive manipulations. With
interactions, the TBD may also be a good candidate as a
fractional Chern insulator.

ACKNOWLEDGMENT

This work was supported by the National Natural Science
Foundation of China through Grant No. 12174067.

APPENDIX: BILAYER DICE LATTICE
WITHOUT TWISTING

In the main text we discussed the effects of finite WAA′

and WAC′ on the flat-band structure of the TBD system; here
we consider their effects on the band structure in the aligned
bilayer case. The Hamiltonian of the A-B stacking bilayer dice
lattice reads

H =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 h(k) 0 0 WAB′ WAC′

h∗(k) 0 f (k) WBA′ 0 WBC′

0 f ∗(k) 0 WCA′ WCB′ 0
0 W ∗

AB′ W ∗
AC′ 0 h(k) 0

W ∗
BA′ 0 W ∗

BC′ h∗(k) 0 f (k)
W ∗

CA′ W ∗
CB′ 0 0 f ∗(k) 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(A1)

where h(k) = −τ (eik·τB + eik·(τB−a1 ) + eik·(τB−a2 ) ), f (k) =
−τ (eik·(τB−τC ) + eik·(τB−a1−τC ) + eik·(τB−a2−τC ) ), and τ =√

2v f h̄/3d . The basis of the aligned bilayer dice lattices
is �† = (c†

1,A, c†
1,B, c†

1,C, c†
2,A′ , c†

2,B′ , c†
2,C′ ). The positions

of atoms B and C in one unit cell are τB = d (0, 1) and
τC = d (0, 2) and d is a lattice constant. Here we have set
WAA′ = WBB′ = WCC′ = 0. The band structures with WAC′ �= 0
and WAC′ = 0 were plotted in Fig. 3, where the chiral
symmetry is broken for finite WAC′ .
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