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Dynamical mean-field theory describes the impact of strong local correlation effects in many-electron systems.
While the single-particle spectral function is directly obtained within the formalism, two-particle susceptibilities
can also be obtained by solving the Bethe-Salpeter equation. The solution requires handling infinite matrices
in Matsubara frequency space. This is commonly treated using a finite frequency cutoff, resulting in slow
linear convergence. A decomposition of the two-particle response in local and nonlocal contributions enables
a reformulation of the Bethe-Salpeter equation inspired by the dual boson formalism. The reformulation has
a drastically improved cubic convergence with respect to the frequency cutoff, considerably facilitating the
calculation of susceptibilities in multi-orbital systems. This improved convergence arises from the fact that local
contributions can be measured in the impurity solver. The dual Bethe-Salpeter equation uses the fully reducible
vertex which is free from vertex divergences. We benchmark the approach on several systems including the spin
susceptibility of strontium ruthenate Sr2RuO4, a strongly correlated Hund’s metal with three active orbitals.
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I. INTRODUCTION

Electronic correlations are present in many interesting
quantum materials, including Mott insulators [1], ruthenates
[2], iron pnictides [3], and cuprates [4]. In these materials,
the interaction between electronic quasiparticles is strong,
leading to the breakdown of the independent quasiparticle pic-
ture. The theoretical description of this quantum many-body
problem is hard and generally requires approximations. The
dynamical mean-field theory (DMFT) [5,6] approximation is
one prominent example, which quantitatively explains many
experimentally observed phenomena [2], although there are
also situations where it is insufficient [7,8].

The properties of a system of correlated electrons can be
described in terms of expectation values of the form 〈c†

αcβ〉,
〈c†

αcβc†
γ cδ〉, and so on, where cα , c†

α stand for the annihilation
and creation operator of an electron and α is a combined
time τ , space R, and spin-orbital a label α ≡ (a, R, τ ). Here
〈c†

αcβ〉 is called a single-particle quantity, 〈c†
αcβc†

γ cδ〉 a two-
particle quantity, and so on. With the increase in the number
of operators and labels in the correlation function, these
many-particle quantities become increasingly complicated. In
practice, expectation values with more than two pairs of oper-
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ators are often (but not always [9,10]) out of reach, but both
the single-particle and two-particle quantities are experimen-
tally accessible. A simplification of the structure is possible
for translational invariant systems in equilibrium where only
relative time and position matters. Whence, the number of
space-time (or momentum-frequency) labels in the correlation
function can be reduced by one. Another name for the two-
particle quantity is the generalized susceptibility χ , see Fig. 1,
since these correlation functions describe the linear response
of the electronic system to an external field according to the
fluctuation-dissipation theorem.

Experimentally, the susceptibilities are accessible via tech-
niques such as inelastic neutron scattering (INS) [11], electron
energy-loss spectroscopy (EELS) [12], or resonant inelastic
x-ray scattering (RIXS) [13]. Roughly speaking, these exper-
iments consist of shooting a probing particle with a known
energy Ein and momentum kin at the correlated material of
interest and measuring the distribution S over energy Eout

and momentum kout of the outgoing probing particle. The
energy and momentum difference between the ingoing and
outgoing particle is transferred to the sample, i.e. the energy
ω = Ein − Eout and momentum q = kin − kout are absorbed
by the correlated material, and large magnitudes of S indicate
that the material supports (collective) excitations at (ω, q).
Thus, the scattering amplitude S measured by these spectro-
scopic techniques is proportional to the susceptibility χ (ω, q)
of the material, up to further scattering matrix element and
interaction effects, see Fig. 1.

Thus, the experimental spectrum S only depends on
the transferred energy and momentum (ω, q), while the
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FIG. 1. Generalized susceptibility χ (top), schematic scattering
experiment (bottom).

generalized electronic susceptibility χ is a four-index object,
which depends on three frequencies and momenta due to
time-space translation symmetry. To get to the experimentally
relevant susceptibility, two of the frequencies and momenta
of the generalized susceptibility need to be traced out. To
understand the meaning of this trace, consider the momentum
labels q, k, k′ of the generalized susceptibility. These labels
correspond to an electronic transition k → k + q and another
electronic transition k′ + q → k′, see Fig. 1. In the theoretical
description, it is possible to calculate the likelihood of such a
transition as a function of both k and k′, as well as q, but in the
experiment, only the momentum transfer q is observable and
there is no way to determine the momenta of the electronic
states involved in the transition, and the trace takes the form

S(Eout, kout ) ∝ χ (ω, q) =
∑
kk′

∑
νν ′

χ (ω, q; ν, k; ν ′, k′).

Thus, there is a tremendous loss of information when going
from the full generalized susceptibility to a particular traced-
out version that is actually experimentally observable.

In this work, we show that this loss of information can
actually be used to our advantage when we want to calculate
the susceptibility in DMFT [6]. The usual formulation of the
Bethe-Salpeter equation in DMFT proceeds by first calculat-
ing the generalized susceptibility of the material, based on the
generalized susceptibility of the auxiliary impurity model, and
only taking the trace over momenta and fermionic frequencies
at the end. The disadvantage of this is that this formulation
of the Bethe-Salpeter equation converges only linearly with
respect to the number of internal frequencies used in the
calculation, especially for local scattering processes. Some
techniques have been developed to correct for the known high-
frequency asymptotics [14–19], but converging with respect
to the frequency grid remains a challenge for reaching exper-
imentally relevant and physically interesting temperatures.

An alternative formulation [20], which can be derived us-
ing the dual boson approach [21], takes advantage of the
distinction between local and nonlocal fluctuations in DMFT.
By using the local single-frequency and two-frequency
susceptibilities of the auxiliary impurity model (measured
directly in the impurity solver), it is possible to efficiently take
into account all local scattering processes, regardless of their
internal frequency. The resulting dual Bethe-Salpeter equa-
tion (DBSE) then only has to account for nonlocal scattering
processes [22–26], which converge cubically with respect to
the number of fermionic frequencies used in the calculation.

This is a substantial improvement that enables calculations at
lower temperature or in more complex systems, since the com-
putational complexity of the DBSE (and BSE) scales with the
number of orbitals, No, and the momentum discretization, Nk ,
as well as the number of fermionic frequencies, Nν , according
to O(N3

ν N6
o Nk ).

This dual boson based approach has previously been ap-
plied to charge [27] Sz [25] and full spin [28] susceptibility of
single-orbital models, and a multi-orbital implementation of
this scheme using a channel decomposition is available in the
Abinit ioD
A project [29]. Here, we present an open-source
implementation of the dual Bethe-Salpeter equation in the
two-particle response function toolbox (TPRF [30]), based on
the toolbox for interacting quantum systems (TRIQS [31]). We
provide a detailed benchmark of the static spin susceptibility
of Sr2RuO4.

II. THEORY

We consider lattice models in thermodynamic equilibrium
at finite temperature, using the imaginary time and Matsubara
frequency formalism. We start with a brief overview of the
susceptibility and how it is usually calculated in DMFT, in-
cluding our notation for describing it. Some familiarity with
these concepts is assumed, we refer the interested reader to
the literature [6,7,32–34] for more details. A discussion of the
relationship with previous works can be found in Sec. V.

A. Notation

The single-particle Green’s function is defined as
Gab̄(τ, R) = 〈c

τ,a,Rc†
0,b,0〉, where τ ∈ [0, β ) is the imaginary

time, a and b are combined spin-orbital labels, and R is
a lattice vector. We use ·̄ to denote indices that appear on
creation operators, which becomes very relevant for many-
particle Green’s functions. The Fourier transform of Gab̄(τ, R)
is Gab̄(ν, k), where ν is a fermionic Matsubara frequency and
k is the momentum in the first Brillouin zone.

Similarly, the generalized susceptibility χābc̄d (ω, q) is the
Fourier transform of

χābc̄d (τ, R) = 〈c†
τ,R,ac

τ,R,bc†
0,0,cc0,0,d〉

− 〈c†
τ,R,ac

τ,R,b〉〈c†
0,0,cc0,0,d〉

= 〈c†
τ,R,ac

τ,R,bc†
0,0,cc0,0,d〉

− Gbā(β, 0)Gdc̄(β, 0). (1)

Here, ω is a bosonic Matsubara frequency. For clarity, we use
q for the bosonic momentum and k for fermionic momenta,
both take values in the first Brillouin zone.

Note that the order of barred operators differs between the
single-particle Green’s function and the susceptibility. The
notation of the single-particle Green’s function is conven-
tional. For the susceptibility there are many notations found
in the literature, we follow the notation of TPRF [30], see also
Appendix.

The spin-orbital labels can be contracted to go from the
generalized susceptibility to a particular physical susceptibil-
ity, χAB(ω, q) = ∑

abcd AabBcdχābc̄d (ω, q), where A and B are
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matrices in spin-orbital space. As an example, the Sz com-
ponent of the spin susceptibility is obtained as χSzSz

(ω, q) =∑
abcd σ̂ z

abσ̂
z
cdχābc̄d (ω, q), where σ̂ z is the appropriate Pauli

matrix.
The static susceptibility χAB(ω = 0, q = 0) can be inter-

preted in linear response theory. Define the operators Â =∑
ab Aabc†

acb and B̂ = ∑
cd Bcd c†

ccd , which we assume to be
Hermitian. Then, the application of a spatially homogeneous
field λB̂, in the sense that the Hamiltonian changes as Ĥ →
Ĥ − λB̂, leads to a change in 〈Â〉, where the zero-field re-
sponse is d〈Â〉/dλ|λ=0 = χAB(ω = 0, q = 0). This definition
can be generalized to spatially inhomogeneous fields (finite
q) by considering enlarged unit cells [35], while finite ω

corresponds to time-dependent applied fields.

B. Bethe-Salpeter equation in dynamical mean-field theory

In DMFT, the susceptibility can be calculated using the
Bethe-Salpeter equation [6]. Here, we introduce the equa-
tions without orbital, frequency, and momentum labels to
emphasize the structure of the equations, explicit formulas
including labels are given later. To distinguish the physical
susceptibility χ of the system from the auxiliary impurity
quantities in DMFT, it is commonly called the lattice suscep-
tibility. In general, the Bethe-Salpeter equation for χ takes the
form

χ = χ0 + χ0
χ, (2)

where the bubble χ0 = G ∗ G denotes the independent propa-
gation of a particle-hole pair according to the Green’s function
G given by the DMFT approximation. 
 is the irreducible ver-
tex, which is assumed to be local in the DMFT approximation.
Both G and 
 can be extracted from the solution of DMFT’s
auxiliary impurity problem. The Bethe-Salpeter equation (2)
is a self-consistent equation for χ , which can be inverted to
give χ as a function χ0 and 
.

In DMFT, it is also possible to discuss the susceptibility of
the auxiliary impurity problem, X , which has its own Bethe-
Salpeter equation

X = X 0 + X 0
X. (3)

Here, the impurity bubble X 0 = g ∗ g is defined in analogy
with the lattice bubble, and g is the Green’s function of the
impurity model, see also Eq. (13). Importantly, within the
DMFT approximation the lattice and impurity vertices 
 are
identical. The frequency, momentum and orbital dependence
of the products in Eqs. (2) and (3) is here suppressed for
readability, cf. Sec. II F.

C. Locality

Locality is a central concept in DMFT. The DMFT self-
consistency condition guarantees that g is the local part of
G, which is often expressed as g = G(R = 0) = 1

Nk

∑
k G(k).

This implies that X 0 is the local part of χ0 as well, since
the bubble is a direct product in real space χ0(τ, R) =
−G(τ, R)G(−τ,−R), whence

χ0(τ, 0) = −G(τ, 0)G(−τ, 0) = −g(τ )g(−τ ) = X 0(τ ).

However, X is not the local part of χ [24] since the
Bethe-Salpeter equation (2) allows for processes where the
electron-hole pair moves to a different site and back. Phys-
ically, X corresponds to the linear response of the impurity
model while keeping the dynamical mean field fixed, whereas
χ corresponds to linear response where the mean-field is self-
consistently adjusted.

Although X is not identical to (the local part of) χ , it
might still be a much better starting point for the calculation
of χ than χ0, since X already contains local vertex correc-
tions in the form of Eq. (3). We should stress that X can be
extracted directly from the impurity model, without needing
to use the identity Eq. (3). Thus, the central idea of the dual
Bethe-Salpeter equation [21,22] is to express χ as X and some
corrections. Finally, we note that this idea has also been used
to decompose the polarization [26].

D. Dual Bethe-Salpeter equation: Idea

As mentioned above, it makes sense to pull apart the lat-
tice bubble χ0 into two parts, the impurity bubble X 0 and a
remainder χ̃0,

χ0 = X 0 + χ̃0. (4)

We are looking for an analogous separation of χ ,

χ = X + χ (5)

in terms of the impurity susceptibility X and a correction term
χ , derived below. Insertion of the Bethe-Salpeter equations (2)
and (3) gives

χ = χ − X = χ0

1 − χ0

− X 0

1 − X 0

(6)

= X 0 + χ̃0

1 − (X 0 + χ̃0)

− X 0

1 − X 0

(7)

= 1

1 − X 0


χ̃0

1 − χ̃0 

1−
X 0

1

1 − X 0

. (8)

The result can be further simplified by writing it in terms of
the impurity reducible vertex F , defined as

X = X 0 + X 0FX 0, F = 
 + 
X 0F, (9)

which gives the relations




1 − 
X 0
= F,

1

1 − X 0

= 1 + X 0F ≡ L. (10)

Here, we have introduced L to compactify the notation further.
Hence, the DMFT + DBSE approach gives the lattice

susceptibility χ in terms of the impurity susceptibility X and
the dual correction term

χ = X + L
χ̃0

1 − χ̃0F
L ≡ X + Lχ̃L, (11)

see Eqs. (22) and (23) for the complete frequency, momentum,
and orbital structure. Note that this formulation of the lattice
susceptibility only uses the reducible vertex F and is therefore
free from the issues related to divergences that occur in 


[36–39].
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Both formulations of the Bethe-Salpeter equations (2) and
(11) are matrix equations, and the matrix multiplication in-
volves a formally infinite sum over fermionic frequencies. In
practice, this sum has to be cut off at some Nν . In Sec. III,
we show that Eq. (11) converges more rapidly with respect to
Nν , making it superior for practical implementations. Before
studying the convergence, however, we first introduce how the
calculation is done in practice, with all relevant orbital and
frequency labels and prefactors.

E. Impurity correlators

To achieve the improved scaling with Nν , it is central that
the three constituents of the right-hand side of the DBSE
equation (11), X , L, and F are obtained from the impurity
model directly, as described below, from independent Monte
Carlo measurements. Note that, while it is possible to obtain
the components with zero or one fermionic frequency (X and
L) using sums over frequencies of the generalized two-particle
Green’s function (g(4) defined below), doing so would intro-
duce its own Nν-cutoff errors and would make the scaling with
the size of the frequency box worse.

The impurity susceptibility Xābc̄d (ω) is the Fourier trans-
form to Matsubara frequency of Eq. (1) for the impurity
model, i.e., without a spatial label R.

Similarly, for the fermion-boson vertex L, we start
with the impurity correlation function g(3)

ābc̄d (ω, ν) =
〈c†

ν,ac
ν+ω,b(c†

ccd )ω〉, where ν is a fermionic and ω a
bosonic Matsubara frequency. L is the amputated connected
component of g(3), i.e.,

− 1

T
geā(ν)gb f̄ (ν + ω)Lē f c̄d (ω, ν)

= g(3)
ābc̄d (ω, ν) − 1

T
gbā(ν)gdc̄(τ = 0+)δω,0. (12)

Here, g is the single-particle Green’s function of the impurity
model. To solve Eq. (12) for L, it is convenient to express it in
terms of the impurity bubble,

X 0
ābc̄d (ω, ν, ν ′) = − 1

T
δνν ′gdā(ν)gbc̄(ν + ω), (13)

so that Eq. (12) becomes

X 0
āb f̄ e(ω, ν, ν)Lē f c̄d (ω, ν)

= g(3)
ābc̄d (ω, ν) − 1

T
gbā(ν)gdc̄(τ = 0+)δω,0. (14)

This is a tensorial equation in orbital space while being
diagonal in both the fermionic and the bosonic Matsubara
frequency. L is obtained by multiplication with the inverse of
X 0, TPRF’s implementation of these operations is used and this
is the reason for the factor −1/T in our definition of L.

The fermion-boson vertex has some useful properties,
which have been discussed in detail for single-orbital DMFT
[40]. First, the impurity susceptibility X is equal to g(3) traced
over ν. Second, L describes the linear response of the self-
energy to an external field,

− 1

T

∑
cd

Bd̄cLābc̄d (ω = 0, ν) = Bāb + ∂�bā(ν)

∂λ
. (15)

Third, for a noninteracting impurity model, Lābc̄d (ω, ν) =
−T δādδc̄b, is constant, since −T g(3)

ābc̄d (ω, ν) = gdā(ν)gbc̄(ν +
ω) − gbā(ν)gdc̄(τ = 0+)δω,0. This expression for L is consis-
tent with the linear response of Eq. (15). It can also be shown
more generally that L asymptotically goes to a constant in the
limit of large ν, keeping ω fixed.

Finally, L has a symmetry with respect to complex conju-
gation. In general,

Lābc̄d (ω, ν − ω/2)∗ = Lb̄ad̄c(ω,−ν − ω/2). (16)

For real Hamiltonians, i.e., a Hamiltonian where all matrix
elements are real in the chosen orbital representation, which
includes all examples studied here, there is the additional
symmetry relation

Lābc̄d (ω, ν − ω/2)
real Ĥ= Lb̄ad̄c(−ω, ν + ω/2). (17)

This formula is obtained by reversing the arrow of all
fermionic lines (time-reversal), and re-arranging the diagram
to bring it back into the customary form. These formulas are
proven in Appendix 3.

From our definition in Eq. (12), L has units of energy
since T has units of energy, g(ν) has units of inverse energy,
and g(τ ) is dimensionless. For the linear response, it is con-
venient to define the operators Â and B̂ in a dimensionless
way (this includes the important examples of N̂ and Ŝi), so
λ has units of energy and the right-hand side of Eq. (15) is
dimensionless.

Another ingredient for the dual Bethe-Salpeter equation is
the reducible impurity vertex, Fābc̄d , which is the connected,
amputated two-particle correlation function of the impurity
model. This object is used in many DMFT-based theories
[7], and a variety of notations is used in the literature.
We use the same convention as TPRF for the particle-hole
channel, i.e.,

g(4)
ābc̄d (ω, ν, ν ′)

= geā(ν)gb f̄ (ν + ω)Fē f ḡh(ω, ν, ν ′)ggc̄(ν ′ + ω)gdh̄(ν ′)

+ βδ0,ωgbā(ν)gdc̄(ν ′) − βδν,ν ′gdā(ν)gbc̄(ν + ω). (18)

In practice g and g(4) are obtained from the impurity solver
and F is calculated using this relation by subtracting the
disconnected components from g(4) and then amputating the
four attached single-particle Green’s function legs by applying
four g−1 terms.

F. Dual Bethe-Salpeter equation in multi-orbital systems

The lattice Green’s function G in DMFT is defined by

δac̄ = [iνδab̄ − tab̄(k) − �ab̄(ν)]Gbc̄(ν, k), (19)

where � is the self-energy of the auxiliary impurity model.
We define the nonlocal single-particle Green’s function G̃ as

G̃ab̄(ν, R) =
{

Gab̄(ν, R) if R 
= 0

0 if R = 0,
(20)

where Gab̄(ν, R) is the Fourier transform of Gab̄(ν, k) to real
space. Corresponding to the nonlocal Green’s function G̃,
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FIG. 2. Diagrammatic representation of elements of the dual
Bethe-Salpeter equation. At the top, the orbital and frequency defi-
nition of L is illustrated. In our definition, L(ω, ν ) implies that the
incoming electron emits energy ω to the bosonic degree of free-
dom. At the bottom, the nonlocal contribution to the susceptibility
is drawn. In this process, energy ω and momentum q comes in
from the left, is transferred to an electron-hole pair that propagates
nonlocally (χ̃) and is then emitted. In the triangle on the left, since
the electron absorbs energy, the corresponding argument of the first L
in Eq. (23) is −ω.

there is a “bubble” χ̃0,

χ̃0
ābc̄d (ω, ν, ν ′, R) = − 1

T
δνν ′G̃dā(ν, R)G̃bc̄(ν + ω,−R).

(21)

This object is Fourier transformed back to momentum space,
giving χ̃0

ābc̄d (ω, ν, ν ′, q). Evaluating the bubble in real space
and Fourier transforming is more efficient than doing the cal-
culation directly in momentum space [41,42]. We should note
that χ̃0 is the nonlocal part of χ0 and χ̃0(ω, ν, ν ′, R = 0) = 0.
Since both Green’s functions in Eq. (21) have the same |R|,
there are no cross-terms with one local and one nonlocal part
of the Green’s function.

From χ̃0 and F , the dual or nonlocal Bethe-Salpeter equa-
tion

χ̃ābc̄d (ω, ν, ν ′, q) = χ̃0
ābc̄d (ω, ν, ν ′, q) + χ̃0

āb f̄ e(ω, ν, ν1, q)

× Fē f ḡh(ω, ν1, ν2)χ̃h̄gc̄d (ω, ν2, ν
′, q)

(22)

can now be solved for χ̃ by inversion, using the reducible
vertex F obtained from Eq. (18).

Finally, to get the physical susceptibility, we have to com-
bine the impurity susceptibility with the nonlocal correction,
adding fermion-boson vertices at the end, as sketched in
Fig. 2,

χābc̄d (ω, q) = Xābc̄d (ω) + L f̄ eāb(−ω, ν + ω)χ̃ē f ḡh

× (ω, ν, ν ′, q)Lh̄gc̄d (ω, ν ′). (23)

Using the symmetry (16) of L, this can be rewritten as

χābc̄d (ω, q) = Xābc̄d (ω) + L∗
ē f b̄a(−ω,−ν)χ̃ē f ḡh

× (ω, ν, ν ′, q)Lh̄gc̄d (ω, ν ′). (24)

FIG. 3. Flowchart summarizing the calculation. The blue boxes
are local two-particle correlation functions extracted from the impu-
rity solver. For clarity, orbital labels are suppressed here.

For real Hamiltonians, using the symmetry Eq. (17) of L, this
can be rewritten as

χābc̄d (ω, q)
real Ĥ= Xābc̄d (ω) + Lē f b̄a(ω, ν)χ̃ē f ḡh

× (ω, ν, ν ′, q)Lh̄gc̄d (ω, ν ′). (25)

Equations (24) and (25) perform better in terms of frequency
windows when ω is large, since ν + ω is replaced by ±ν. For
real Hamiltonians, Eq. (25) also has the advantage that it only
uses a single bosonic frequency ω. On the other hand, Eq. (23)
is obviously invariant under an orbital basis transformation
(counting barred and nonbarred occurrences of orbital labels
on both sides of the equation), while this is not obvious to see
in Eqs. (24) and (25).

The entire procedure is summarized in Fig. 3. The com-
putationally nontrivial step in this procedure is the inversion
of the DBSE in Eq. (22). It corresponds to a geometric series
with kernel χ̃0F , which is divergent if one of the eigenvalues
of the kernel is equal to +1, signaling a phase transition.
Thus, analysis of this kernel can give valuable insight into the
leading electronic fluctuations [39].

G. Comparison of dual and usual Bethe-Salpeter equation

The usual Bethe-Salpeter equation in DMFT is based on
the Green’s function G instead of G̃, and the vertex 
 instead
of F . The susceptibility is then obtained directly as the output
of the Bethe-Salpeter equation, i.e., without needing Eq. (23).
Diagrammatically, it corresponds to the repeated scattering
of electron-hole pairs propagating with the DMFT Green’s
function and interacting with the irreducible vertex 
.

Comparing the two formulations of the Bethe-Salpeter
equation, the dual boson based approach can be interpreted as
a resummation of the original Bethe-Salpeter equation where
terms in the geometric series are grouped together if subse-
quent vertices 
 lie at the same lattice site. This occurs in the
following way: If all vertices 
 involve only a single lattice
site, the diagram is a part of X . Otherwise, all vertices before
the first change of site are grouped into the L on the left and
all vertices after the last change of site are grouped into the
L on the right. In between, all vertices 
 that occur between
two changes of site are grouped into a single F . To avoid
double-counting of diagrams, the dual bubble χ̃0 is used to
enforce a change of sites between every vertex.

This construction provides for a one-to-one correspon-
dence of the original Bethe-Salpeter series and the new, dual
Bethe-Salpeter with all elements expressed in terms of 
 and
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bubbles. In the derivation, X and L are expressed using local
Bethe-Salpeter equations (9) and (10), but in practice they
are obtained directly from the impurity solver, see Fig. 3.
This eliminates cutoff errors associated with the local Bethe-
Salpeter equation.

H. Implementation details

After converging an ordinary DMFT self-consistency loop
using TRIQS and the CTHYB solver [43], we use W2DYNAMICS

[44] to measure the two-particle correlation functions with
one, two and three frequencies. Due to different conventions
the output of the W2DYNAMICS solver is then transformed to
the TPRF two-particle convention, see Appendix for details.
After postprocessing the two-particle correlation functions to
get X , L, and F , the dual Bethe-Salpeter equation is evaluated
and χ (ω, q) is extracted as in Sec. II F. This evaluation is the
main contribution of the present paper.

The DMFT + DBSE calculation is compute bound by
the measurements of the impurity correlation functions (using
QMC). The dual Bethe-Salpeter equation solver is memory
bound, since we use fast Fourier transforms to evaluate the
lattice bubble susceptibility χ0 as direct products in real space
and imaginary time (R, τ ). However, the DBSE equation is
diagonal in ω and q and can be evaluated one (ω, q) at a time.
All computationally nontrivial parts of the DBSE calculation
are performed using the two-particle response function tool-
box (TPRF) [30] with routines implemented in C + + using
hybrid OpenMP + MPI parallelization.

III. CONVERGENCE WITH RESPECT TO THE NUMBER
OF FERMIONIC FREQUENCIES

An important benefit of the dual version of the susceptibil-
ity calculation is the improved convergence with respect to the
number of fermionic frequencies Nν . Whereas the traditional
Bethe-Salpeter equation scales as N−1

ν , the new implementa-
tion generically scales as N−3

ν , as discussed below (see also
Ref. [26]). We discuss the general case first and then give a
few examples that are analytically tractable.

A. Cubic scaling of dual Bethe-Salpeter equation

Since we are interested in the formal asymptotic scaling
for large fermionic frequency, we eventually have ω � ν and
we can set ω = 0 for the analysis. In practice, for finite ω,
the asymptotic scaling sets in at larger Nν , and one typi-
cally needs Nν � βω/(2π ). In the analysis below, we drop
the orbital labels, which are not relevant for the asymptotic
analysis.

At large fermionic frequency, the single-particle Green’s
function behaves as G(iν, k) ∼ 1

iν + O(ν−2). In other words,
the leading term is k-independent and hence completely local,
and nonlocal parts of the Green’s function decay at least as
(iν)−2. Thus, G̃(iν, k) from Eq. (20) decays as (iν)−2 by
construction [45], since it is the Green’s function with the
local part removed. The dual bubble, Eq. (21) thus scales as
χ̃0(ω = 0, ν, ν, q) ∼ (iν)−4. It will turn out that this interme-
diate result is similar to the final result, so it is useful to have a
look at the cutoff error here. With a fermionic frequency box
of size Nν , the contribution from frequencies outside the box

scales as
∑

ν>Nν
χ̃0(ν) ∼ ∑

ν>Nν
(iν)−4 ∼ ∫ ∞

Nν
dx/x4 ∼ N−3

ν ,
i.e. the anticipated cubic scaling. Of course, the DBSE ex-
pression for the susceptibility is more complicated than just
the dual bubble, so we need to analyze the effect of vertex
corrections.

In the final expression for the susceptibility, Eq. (23), X
is independent of Nν , since it is measured directly in the
impurity solver. The vertex L(ω, ν), which (through g(3))
is also measured in the impurity solver, is asymptotically
constant in ν [40], so we can focus our attention on χ̃ ,
Eq. (22). The vertex F is asymptotically constant as a
function of the fermionic Matsubara frequency [18,46]. The
Bethe-Salpeter equation can be expanded as a geometric
series, where we only write fermionic frequency labels,

χ̃ (ν, ν ′) = χ̃0(ν)δνν ′ + χ̃0(ν)F χ̃0(ν ′)

+
∑
ν1

χ̃0(ν)F χ̃0(ν1)F χ̃0(ν ′) + · · · . (26)

For the dependence of the susceptibility on the fermionic
frequency box size Nν , we are interested in the error∑

νν ′ χ̃ (ν, ν ′) − ∑
νν ′�Nν

χ̃Nν (ν, ν ′), where χ̃Nν denotes that
the fermionic frequency sums on the right-hand side of
Eq. (26) are also cut off at Nν . The first term decays as
δνν ′ (iν)−4, which leads to N−3

ν as before. For the second
term, we need to distinguish between three cases [17,18]
for the cutoff error: (1) ν < Nν , ν ′ > Nν ; (2) ν > Nν , ν ′ <

Nν ; and (3) ν > Nν , ν ′ > Nν . For (1), we know that χ̃0 ∼
(iν)−4 so the asymptotic contribution is of order N−3

ν .
(2) is similar by symmetry. For (3), we have an error∫ ∞

Nν
dν(iν)−4

∫ ∞
Nν

dν ′(iν ′)−4 ∼ N−6
ν . Going to the third term in

(26) or even higher-order terms, more cases need to be distin-
guished, since it is now also possible for intermediate frequen-
cies to be large. The leading contributions are always of order
N−3

ν and come from the cases where precisely one fermionic
frequency is larger than Nν . Cases with more large fermionic
frequencies have corresponding higher powers of N−3

ν .
For the traditional BSE, the analysis proceeds in a very

similar way, but the difference is that χ0 is used instead of χ̃0,
and it scales as ν−2 only, leading to a cutoff error of N−1

ν . The
same scaling holds for the local BSE. In fact, one can see that
the trivial 1/iν asymptote of the Green’s function is respon-
sible for the slow scaling of the BSE. However, it contributes
in a nontrivial way: the BSE is a series of ladder diagrams,
and all orders in the series contribute to the Nν-asymptote via
processes where a single rung of the ladder has ν > Nν .

B. Example: The noninteracting dimer

Consider the Hubbard dimer in the limit U = 0, i.e., two
atoms with a hopping amplitude t . In that case, the Hamil-
tonian has two eigenvalues ε(k) = ±t and all calculations
can be done straightforwardly. Define sgn(k) = sgn(εk ), so
εk = tsgn(k):

G(iν, k) = 1

iν − tsgn(k)
, (27)

1

Nk

∑
k

G(iν, k) = 1

2

(
1

iν − t
+ 1

iν + t

)
, (28)
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= − iν

ν2 + t2
, (29)

G̃(iν, k) = sgn(k)
t

ν2 + t2
. (30)

The nonlocal bubble susceptibility at q = 0 and iω = 0 is

χ̃0(ω = 0, ν, ν ′) = −βδνν ′
1

Nk

∑
k

G̃(ν, k)G̃(ν, k) (31)

= −βδνν ′
t2

(ν2 + t2)2 (32)

= −βδνν ′
t2

ν4

1

(1 + t2/ν2)2 . (33)

From the final expression, it is clear that this frequency-
diagonal matrix element decays as (iν)−4. Given a fermionic
frequency box of size Nν , the estimated total contribution from
frequencies outside of the box scales as

∫ ∞
Nν

dx/x4 ∝ N−3
ν .

Thus, we find cubic convergence.
For the dimer, it is easy to verify that the other value of q

has the same magnitude and only differs in the sign. Thus, it
also has the same scaling.

For completeness, the conventional evaluation of the sus-
ceptibility in the dimer, at ω = 0 and q = 0, involves

χ0(ν, ν ′) = −βδνν ′
1

Nk

∑
k

G(ν, k)G(ν, k) (34)

= −βδνν ′
1

2

[
1

(iν − t )2 + 1

(iν + t )2

]
(35)

= −βδνν ′
−ν2 + t2

(ν2 + t2)2 . (36)

This matrix element decays as (iν)−2, so the total cutoff error
scales as N−1

ν , i.e., linearly.
The difference between χ0 and χ̃0 is given by the impurity

susceptibility, which satisfies

X = −β
∑

ν

(
1

Nk

∑
k

G(iν, k)

)2

(37)

= −β
∑

ν

−ν2

(ν2 + t2)2 . (38)

However, this fermionic frequency sum is not performed ex-
plicitly in the evaluation of the susceptibility. Instead, X is
measured directly in the impurity solver.

C. Tight-binding lattice model

The scaling in a tight-binding lattice model (the noninter-
acting Hubbard model) is the same as in the corresponding
noninteracting dimer, with the difference that the momentum
sums cannot be done analytically. A numerical illustration
of the scaling is given in Fig. 4 for a square lattice with
two orbitals per site. Note that the noninteracting model
with orbital-diagonal hopping is actually just a sum over
independent single-orbital models, so the orbital physics is

FIG. 4. Magnetic susceptibility at q = 0, ω = 0 in a two-orbital
square lattice tight-binding model (t = 1, U = 0, μ ≈ −1.84) as a
function of the number of frequencies Nν . The dual Bethe-Salpeter
equation (DBSE) converges as 1/N3

ν , whereas the usual Bethe-
Salpeter equation (BSE) converges only as 1/Nν , as is visible in the
log-log plot on the right.

trivial, but it is a useful test of the general implementa-
tion. As a reference, Fig. 4 uses the exact χ (q = 0, ω =
0) = dm/dh obtained using finite differences from the mag-
netization m(h), given by the Fermi-Dirac distribution for
noninteracting fermions. To achieve consistency, the same
momentum space discretization should be used in the BSE
and the linear response.

D. Atomic limit

In the atomic limit, tk = 0, we have χ (ω, q) = X (ω) and
the new formulation gives the exact result regardless of the
number of fermionic frequencies. Indeed, the dual bubble
vanishes in the atomic limit, χ̃0 = 0. On the other hand, the
conventional formulation of the Bethe-Salpeter equation does
depend on the finite box size in the usual linear way, since
the local Bethe-Salpeter equation of the Hubbard atom is
nontrivial [47].
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FIG. 5. Static magnetic susceptibility χ (0, 0) (q = 0, ω = 0) in
the square lattice Hubbard model as a function of the number of
frequencies Nν . The dual BSE result (DBSE) (orange) is compared
with the standard BSE (blue) and the linear response result from
self-consistent DMFT in an applied field extrapolated to zero field
(DMFT + Field) (green). (a) Infinite-frequency extrapolation (open
markers) of calculations for several values of Nν (filled markers) with
1/N3

ν frequency scaling on the x axis showing the DBSE asymptotic
1/N3

ν scaling. (b) Same as panel (a) but with 1/Nν scaling on the x
axis showing the BSE asymptotic 1/Nν scaling. (c) Magnetization M
curve in applied magnetic field B from self-consistent DMFT, used
for zero-field extrapolation (green).

IV. BENCHMARKS

To benchmark the dual BSE formulation, we apply it to two
strongly correlated models, namely, the single-band Hubbard
model on the square lattice and the three-band effective low-
energy model for strontium ruthenate (Sr2RuO4).

A. The single-band Hubbard model

The single band Hubbard model on the square lattice is
a canonical system for the study of strong correlations. Here
we benchmark the static spin susceptibility, computed using
dual BSE, against the standard BSE and the extrapolated zero-
field response from self-consistent DMFT calculations in an
applied magnetic field. The calculations are performed in the
strongly correlated regime with nearest-neighbor hopping t =
1 and local Hubbard interaction U = 10 in the paramagnetic
state at inverse temperature β = 1.

Figure 5(a) shows the convergence of the DBSE static
susceptibility (orange markers) using fermionic frequency
windows in the range 4 � Nν � 30, giving five digits of ac-
curacy and a quantitative agreement with the applied field
result (green diamond). In fact, the discrepancy between the
extrapolated DBSE result (orange open circle) and the applied
field (green diamond) can be attributed to MC errors and the

extrapolation to zero field in the linear response calculation [as
shown in Fig. 5(c)]. This should be contrasted with the BSE
results in Fig. 5(b) where the raw data (blue squares) only give
one digit of accuracy, requiring extrapolation to Nν → ∞ to
achieve any quantitative agreement (blue open square).

The expected cubic scaling with the size of the frequency
window Nν is clearly visible in the DBSE result [Fig. 5(a)]
allowing us to reach a higher accuracy than the conventional
BSE with linear convergence.

B. Three-band Hubbard model for strontium ruthenate

While computing the lattice susceptibility within DMFT
for the single band Hubbard model to higher accuracy is a
feat, the main motivation for implementing the DBSE is to
push the boundaries of applicability of the method to ma-
terial realistic models in order to connect to experimental
spectroscopies. This generally requires DMFT treatment of
multi-orbital models. For example, the correlated electrons in
transition metal compounds can often be described by effec-
tive low-energy Hubbard models with two to five orbitals per
unit cell.

One such strongly correlated material is strontium
ruthenate (Sr2RuO4) which has a substantial momentum-
dependence in its spin susceptibility due to the presence of
incommensurate spin fluctuations, as seen in INS experi-
ments [48,49] and reproduced by DMFT + BSE calculations
[35,50,51]. The combination of orbital and momentum struc-
ture is responsible for the observed phenomena, with both
strong local fluctuations and sharp features in momentum
space. This makes Sr2RuO4 suitable as a benchmark for our
dual Bethe-Salpeter equation implementation. Here, we fo-
cus on the frequency convergence of the implementation, the
physics of the spin susceptibility in this material is discussed
at length in Ref. [35].

Following Ref. [35], we construct a low-energy model
of Sr2RuO4 from the three bands crossing the Fermi level
with Ru-4d t2g symmetry. The corresponding Wannier model
was fit using WANNIER90 [52] on a 103 grid to the den-
sity functional theory band structure calculated with GPAW

[53,54], using the PBE exchange correlation functional [55],
with a 203 k-point grid, 600 eV plane-wave cutoff, and
25 meV Methfessel-Paxton smearing [56], using the exper-
imental crystal structure of Sr2RuO4 at 100 K [57]. The
interaction in the low-energy three-band t2g model was mod-
eled using the rotationally invariant Kanamori interaction,
with Hubbard U = 2.3 eV and Hund’s J = 0.4 eV and the
self-consistent dynamical mean-field calculations were per-
formed at T = 464 K using TRIQS [31] and TRIQS/CTHYB

[43] on a 163 k-point grid. The two-particle quantities were
measured using W2DYNAMICS [44] worm sampling [58] using
4 × 109 samples and a total compute budget of 110 000 core
hours on the EuroHPC Joint Undertaking system LUMI. The
static spin susceptibility χSzSz (q, ω = 0) was finally computed
on the level of DMFT + BSE and DMFT + DBSE using the
two-particle response function toolbox TPRF [30] using a 483

k-point grid.
Figure 6 shows the resulting susceptibility along a high-

symmetry path through the Brillouin zone. Results are shown
for both the traditional implementation of the Bethe-Salpeter
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FIG. 6. (upper panel) Static spin susceptibility χSzSz (q) of stron-
tium ruthenate Sr2RuO4 at T = 464 K along the pseudotetragonal
high-symmetry path (
-X -M-
). Results for Nν = 5, 10, 20, and
40 fermionic frequencies are shown for the DMFT + BSE method
(dashed lines) and our dual BSE method (DMFT + DBSE) (solid
lines). (lower panel) Convergence close to the incommensurate peak
at q = (1/3, 1/3, 0) as a function of 1/Nν for 3 � Nν � 40. Extrapo-
lations to the infinite frequency limit Nν → ∞ are also shown (lines),
using the N−3

ν scaling (solid line) for the DMFT + DBSE results
(circles) and the N−1

ν scaling (dashed line) for the DMFT + BSE
results (squares). As an independent reference also the zero-field
extrapolated self-consistent DMFT result from Ref. [35] is shown
(magenta diamond marker).

equation (BSE) and our dual implementation (DBSE). In
both cases, relatively small frequency boxes are used (Nν =
5, 10, 20, 40). For the conventional BSE, the slow N−1

ν con-
vergence is observed, and extrapolation is needed to obtain
qualitatively correct results. On the other hand, the DBSE
yields qualitative results already for the smallest box size of
Nν = 5, which is a truly remarkable improvement. Enlarging
the frequency box, there is a small enhancement of the mo-
mentum dependence, but no overall qualitative change. This
is in stark contrast with the conventional BSE, where enlarg-
ing the fermionic frequency box increases the susceptibility
across the entire Brillouin zone. The origin of this difference
is clear: local spin fluctuations are the major contribution to
χ (q) and the dual Bethe-Salpeter equation includes all of
these in one go via the impurity susceptibility, independent
of the size of the fermionic frequency box.

For the computational efficiency of the approach, the
cost of obtaining the two-particle correlation functions of
the impurity model is also important. For this particular
case, the worm sampling [58] used here (as implemented
in W2DYNAMICS) is orders of magnitude more efficient than
the partition function sampling used in Ref. [35]. Together,
the improved convergence of the dual Bethe-Salpeter equa-
tion and the efficiency of the worm sampling make the

FIG. 7. Magnetic susceptibility of SrVO3. (upper panel) Suscep-
tibility along a path between high-symmetry points, the solid lines
are the DBSE and the dashed lines are the BSE. These calculations
are performed with the Hamiltonian of Galler et al. [29], where the
susceptibility was also calculated using the BSE (cf. their Fig. B.19),
although their code is also capable of using the DBSE. (lower panel)
Fermionic frequency convergence of the BSE and DBSE.

calculation of DMFT lattice susceptibilities in multi-orbital
models a routine task instead of a gargantuan undertaking.

C. Three-band Hubbard model for strontium vanadate

Strontium vanadate (SrVO3) is another famous correlated
material [59,60], with potential application as a transparent
conductor [61]. Galler et al. [29,62] have previously inves-
tigated the lattice susceptibility of SrVO3 and provided a
tight-binding Hamiltonian and reference data for the DMFT
susceptibility [29], which makes it a useful test case for our
current implementation. We have performed a self-consistent
DMFT calculation based on their Hamiltonian (U = 5, J =
0.75 eV, β = 10 eV, 20 × 20 × 20 k points), calculated the
necessary impurity correlation functions using W2DYNAMICS

[44] and subsequently calculated the lattice susceptibility us-
ing our implementation of the BSE and DBSE. Figure 7
shows the obtained magnetic susceptibility at ω = 0. For
Nν = 30, our results obtained using the BSE are consistent
with Fig. B.19 of Ref. [29], which uses the same frequency
box. We also performed susceptibility calculations at several
Nν � 30 using our code and that of Ref. [29] and found
relative deviations of approximately 2% for the magnetic sus-
ceptibility at q = 0. This is quite small given that we are
comparing calculations based on independent Monte Carlo
solver runs, and that the details of the implementation differ.
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As before, Fig. 7 shows that the frequency convergence
of the DBSE is so efficient that there is no visual differ-
ence between Nν = 10, 20, 30, for a parameter set where the
usual BSE has difficulty to reach convergence. Our converged
DBSE results are qualitatively consistent with the results in
Fig. 6 of Ref. [29], where a much larger frequency box Nν =
200 was used. Thus, also for SrVO3, we find that the DBSE
greatly improves the convergence.

V. DISCUSSION

Here, we provide an overview of the previous literature and
of similarities and differences between our implementation
and other recent works.

Early works showed that the locality of the self-energy
in infinite dimensions also leads to simplifications on the
two-particle level [63–65]. This led to a decomposition of the
susceptibility into local and nonlocal parts [20] similar to the
formulas implemented here.

A new view on momentum-resolved, dynamic susceptibil-
ities was given by the dual boson method [21] for correlated
systems. It was shown [22] that the dual boson expres-
sion for the susceptibility is fully equivalent to the usual
DMFT + BSE susceptibility under appropriate assumptions:
the equivalence holds when the interaction is fully local, no
nonlocal self-energy diagrams are included in the dual theory
and the same impurity model is used in both approaches.
This is an example of the more general phenomenon that
DMFT is included in the wider set of dual approximations
[45,66,67].

The dual formulation of DMFT, which makes a clear dis-
tinction between local and nonlocal processes, has certain
advantages. Two major motivations for dual theories [45]
are the faster decay with frequency and the good behavior
in the strongly correlated limit. Regarding the fast decay,
the anticommutation relation {ca, c†

b} = δab determines the
(iν)−1-coefficient of the Green’s function, which is therefore
one for the local, diagonal part of the Green’s function and
zero otherwise. For the calculation of the susceptibility, the
faster decay of the Green’s function directly leads to a faster
decay of the nonlocal bubble χ̃0 and forms the basis of
the proof of cubic convergence in Sec. III. For the second
point, we have seen in Sec. III D that the nonlocal contribu-
tion to the susceptibility vanishes in the atomic limit, which
suggests that this contribution will generically be small in
strongly correlated systems. This is indeed seen in the large
momentum-independent background of the magnetic suscep-
tibility in Sr2RuO4 (Fig. 6 and Ref. [35]) and SrVO3 (e.g.,
Fig. B.19 in Ref. [29] and our Fig. 7).

A similar decomposition of the susceptibility based on
local and nonlocal contributions was implemented in the
Abinit ioD
A [29,62,68] code by Galler et al. [29]. The
Abinit ioD
A code is set up to use SU(2) symmetry and a de-
composition into a charge and magnetic channel but should be
able to output full rank-4 susceptibilities with minor modifica-
tions. This Abinit ioD
A code is capable of reading measured
versions of the impurity susceptibility and fermion-boson
vertex, and should have improved frequency convergence
in that case. However, in their example calculations, the
one-frequency and two-frequency correlation functions are

obtained by tracing out frequencies in g(4)(ω, ν, ν ′), which
does not lead to the improved convergence. For example, their
Figs. 6 and B.19 are calculated with 200 and 30 fermionic fre-
quencies and show clear difference, a sign that the calculation
is not converged at 30.

Krien [26] has presented a further improvement of the
dual boson scheme based on the polarization instead of the
susceptibility. The essential point is that in the present formu-
lation, both χ̃0 and the vertex corrections have cutoff errors
at the 1/N3

ν level. For the vertex corrections, these originate
in processes where there is a single high-energy fermion
propagator in the ladder. These attach to the vertex F , which
is asymptotically constant and given by impurity processes
which are reducible with respect to the bare interaction Û . By
moving from the susceptibility to the polarization, this type
of Û -reducible diagrams is to be excluded, so the associated
Û -irreducible vertex F i decays asymptotically, instead of be-
ing constant. Thus, high-order diagrams in the Bethe-Salpeter
series converge with additional powers of Nν . As a whole,
Krien’s formulation still depends on the cutoff as 1/N3

ν , but
only via Lχ̃0L. By using a larger frequency cutoff for L than
for F , which is beneficial since L is typically much cheaper to
calculate, one can thus reduce the impact of frequency cutoffs
further. Krien’s work deals with the single-orbital Hubbard
model using charge and spin channels, but a generalization
of his approach to generic rank-4 interaction tensors seems
possible. Since the structure of this approach is similar, the
basic tools provided by current implementation of the DBSE
in TPRF could be used to implement Krien’s formula: one
needs to replace the input by their irreducible counterparts,
i.e., F by F i, L by Li, and X by X i = π (ω), then one calculates
the polarization via a DBSE structurally similar to the current
one, and finally one transforms the obtained polarization to a
susceptibility.

We should note that the improved frequency scaling we
obtain is due to the dual Bethe-Salpeter reformulation in
combination with a simple frequency cutoff. The improved
scaling originates from applying the frequency cutoff on a
different set of two-particle objects, with faster decaying
high-frequency asymptotics, than the terms in the standard
DMFT Bethe-Salpeter equation. Regarding the general
treatment of the Bethe-Salpeter equation, going beyond the
drastic hard frequency cutoff in Matsubara space, there are
several interesting approaches that incorporate the asymptotic
frequency dependence in different ways [14–19] or that use a
compact representation of the generic two frequency behavior
[69,70]. Generally, the dual Bethe-Salpeter equation would
benefit from these refined approaches, further improving the
convergence.

VI. CONCLUSION

We have presented an efficient implementation of the
DMFT susceptibility for general multi-orbital systems based
on the dual boson formalism. This algorithm reduces the
scaling with the inverse number of frequencies from linear
to cubic, leading to a dramatic speed-up of the calculation.
A comparison with linear response shows that convergence
with respect to the frequency box is much easier to achieve,
leading to several digits of accuracy in the resulting static
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susceptibility in our example, even before extrapolation with
respect to the size of the frequency box.

The implementation of the dual Bethe-Salpeter equation is
based on the TRIQS library [31] (in particular TPRF [30]) and
can in principle be used together with any impurity solver
that provides the required two-particle correlation functions.
An interface for the W2DYNAMICS solver is provided with
the implementation. We have found the worm sampling of
two-particle correlation functions in W2DYNAMICS to be very
efficient for the susceptibilities studied here. Compared with
the usual Bethe-Salpeter equation, one needs to compute two
additional impurity correlation functions with zero and one
fermionic frequencies, respectively. These are generally sim-
ilar in computational cost to the vertex with two fermionic
frequencies that is needed in both versions of the Bethe-
Salpeter equation. However, Monte Carlo sampling issues
have been observed for situations where the observables in the
susceptibility do not commute with the Hamiltonian [71]. The
difficulties associated with the solution of the impurity model
remain the main bottleneck in the calculation of susceptibili-
ties, and the more efficient convergence of the Bethe-Salpeter
equation reduces the requirements on that bottleneck.

This efficient implementation of the Bethe-Salpeter equa-
tion can be useful for the study of magnetic [35,72] and other
susceptibilities [73,74] in systems with multiple correlated
orbitals in the unit cell. In particular, the better scaling with
respect to the number of fermionic Matsubara frequencies
makes it possible to reach lower temperatures at a given com-
putational cost.
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APPENDIX: CONVENTIONS
FOR TWO-PARTICLE QUANTITIES

As discussed in the main text, the two-particle Green’s
functions of the impurity problem are a necessary ingredi-
ent for the dual Bethe-Salpeter equation. They are obtained
from the impurity solver, in this case TRIQS/CTHYB or
W2DYNAMICS. There are small differences in the definition
of these objects between the two codes, which are essential
for a correct implementation. This Appendix provides their
relation.

1. Two-particle Green’s function in the particle-hole channel

The four-point response function in TRIQS/CTHYB for the
particle-hole channel (PH) is

g(4)ph
abcd (ω, ν, ν ′) = 1

β

∫∫∫∫ β

0
dτ1dτ2dτ3dτ4 exp[iω(τ2 − τ3) + iν(τ2 − τ1) + iν ′(τ4 − τ3)]〈T c†

a(τ1)cb(τ2)c†
c (τ3)cd (τ4)〉.

(A1)

In the W2DYNAMICS documentation, the four-point response function for the particle-hole channel (PH) is defined as

g̃(4)ph
abcd (ω, ν, ν ′) =

∫∫∫∫ β

0
dτ1dτ2dτ3dτ4 exp[iω(τ1 − τ4) + iν(τ1 − τ2) + iν ′(τ3 − τ4)]〈T ca(τ1)c†

b(τ2)cc(τ3)c†
d (τ4)〉

=
∫∫∫∫ β

0
dτ1dτ2dτ3dτ4 exp[iω(τ2 − τ3) + iν(τ2 − τ1) + iν ′(τ4 − τ3)]〈T c†

b(τ1)ca(τ2)c†
d (τ3)cc(τ4)〉

= βg(4)ph
badc (ω, ν, ν ′). (A2)

Note that the bosonic frequency convention in W2DYNAMICS is controlled by setting the parameter WormPHConvention = 0 to
get the iω(τ1 − τ4) factor [setting WormPHConvention = 1 gives iω(τ2 − τ3) and is not directly compatible with TRIQS/CTHYB

+ TPRF].
In numerical comparisons, we have found that the actual output data of both solvers are related as

g(4)ph
abcd (ω, ν, ν ′) = βg̃(4)ph

badc (ω, ν, ν ′), (A3)

which differs from Eq. (A2) by a factor β2. This is the relation used in our implementation. It should be noted that factors of β

are not always written explicitly in parts of the literature, which can make it harder to translate equations from one notation to
another.
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2. Two-Particle Green’s Function in the Particle-Hole Channel with τ3 = τ4

The two-particle Green’s function with τ3 = τ4 following the TRIQS/CTHYB PH format from Eq. (A1) is

g(3)ph
abcd (ω, ν) =

∫∫∫ β

0
dτ1dτ2dτ3 exp [iω(τ2 − τ3) + iν(τ2 − τ1)]〈T c†

a(τ1)cb(τ2)c†
c (τ3)cd (τ3)〉. (A4)

The sampled quantity as defined from W2DYNAMICS is

g̃(3)ph
abcd (ω, ν) =

∫∫∫ β

0
dτ1dτ2dτ3 exp [iω(τ2 − τ3) + iν(τ1 − τ2)]〈T ca(τ1)c†

b(τ2)cc(τ3)c†
d (τ3)〉

=
∫∫∫ β

0
dτ1dτ2dτ3 exp [iω(τ1 − τ3) + iν(τ2 − τ1)]〈T c†

b(τ1)ca(τ2)c†
d (τ3)cc(τ3)〉

=
∫∫∫ β

0
dτ1dτ2dτ3 exp [iω(τ2 − τ3) + i(ν − ω)(τ2 − τ1)]〈T c†

b(τ1)ca(τ2)c†
d (τ3)cc(τ3)〉

= g(3)ph
badc (ω, ν − ω). (A5)

Note that the bosonic frequency convention produces a shift in the fermionic frequency. The implementation is not sensitive
to the WormPHConvention parameter. Hence both orbital label pair-permutations and a bosonic frequency shift are required to
transform from W2DYNAMICS to the TRIQS format:

g(3)ph
abcd (ω, ν) = g̃(3)ph

badc (ω, ν + ω). (A6)

The fermionic frequency shift, which is somewhat inconvenient, can be avoided by using time-reversal symmetry, as in Eqs. (16)
and (17),

g(3)ph
badc (ω,−ν)∗ = g(3)ph

abcd (ω, ν − ω) = g̃(3)ph
badc (ω, ν),

g(3)ph
badc (−ω, ν)

real Ĥ= g(3)ph
abcd (ω, ν − ω) = g̃(3)ph

badc (ω, ν).

3. Symmetry relation L

Performing complex conjugation on the relevant expectation value gives

g(3)
abcd (τ1, τ2, τ3)∗ = 〈T c†

a(τ1)cb(τ2)c†
c (τ3)cd (τ3)〉∗ (A7)

= 〈T c†
d (−τ3)cc(−τ3)c†

b(−τ2)ca(−τ1)〉
= 〈T c†

b(−τ2)ca(−τ1)c†
d (−τ3)cc(−τ3)〉

= g(3)
badc(−τ2,−τ1,−τ3). (A8)

Now, applying a time shift τ1 + τ2 to all arguments and using time-translation symmetry gives

g(3)
abcd (τ1, τ2, τ3)∗ = g(3)

badc(−τ2,−τ1,−τ3). (A9)

For the Fourier transform to frequencies, this means

[
g(3)

abcd (ω, ν)
]∗ =

∫∫∫ β

0
d3τi e−iω(τ2−τ3 )−iν(τ2−τ1 )g(3)

badc(−τ2,−τ1,−τ3)

=
∫∫∫ 0

−β

d3τ ′
i eiω(τ ′

1−τ ′
3 )+iν(τ ′

1−τ ′
2 )g(3)

badc(τ ′
1, τ

′
2, τ

′
3)

=
∫∫∫ β

0
d3τ ′

i eiω(τ ′
2−τ ′

3 )+i[−ν−ω](τ ′
2−τ ′

1 )g(3)
badc(τ ′

1, τ
′
2, τ

′
3) = g(3)

badc(ω,−ν − ω), (A10)

where the change of variables τ ′
1 = −τ2, τ ′

2 = −τ1, τ ′
3 = −τ3 and the (anti)-periodicity of the integrand has been used. Writing

the symmetry relation as [
g(3)

abcd (ω, ν − ω/2)
]∗ = g(3)

badc(ω,−ν − ω/2), (A11)

clearly shows the role of ω/2 as the center of the fermionic frequency structure. On the other hand, the measured box typically
takes ν ∈ [−Nν, Nν]. For ω > 0, we can use the symmetry relation to map some frequencies outside of the frequency box to those
inside of the frequency box. A similar relationship for density fluctuations in the single-orbital case was derived in Appendix F
of Ref. [23], albeit with other notational conventions.
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For real Hamiltonians, we can derive a further symmetry relation, since all relevant imaginary-time expectation values are
real. Thus, g(3)

abcd (τ1, τ2, τ3) = g(3)
badc(−τ2,−τ1,−τ3) and

g(3)
abcd (ω, ν − ω/2) =

∫∫∫ β

0
d3τ1eiω(τ2−τ3 )+i(ν−ω/2)(τ2−τ1 )g(3)

badc(−τ2,−τ1,−τ3)

=
∫∫∫ β

0
d3τ1e−iω(τ ′

1−τ ′
3 )+i(ν−ω/2)(−τ ′

1+τ ′
2 )g(3)

badc(τ ′
1, τ

′
2, τ

′
3)

=
∫∫∫ β

0
d3τ1e−iω(τ ′

2−τ ′
3 )+iω(τ ′

2−τ ′
1 )+i(ν−ω/2)(τ ′

2−τ ′
1 )g(3)

badc(τ ′
1, τ

′
2, τ

′
3)

=
∫∫∫ β

0
d3τ1e−iω(τ ′

2−τ ′
3 )+i(ν+ω/2)(τ ′

2−τ ′
1 )g(3)

badc(τ ′
1, τ

′
2, τ

′
3)

= g(3)
badc(−ω, ν + ω/2) for real Ĥ . (A12)

Here, we substituted τ ′
1 = −τ2, τ ′

2 = −τ1, and τ ′
3 = −τ3.

From Eqs. (13) and (14) it is possible to show that the triangular vertex L obeys the same conjugate symmetry as g(3) in
Eqs. (A11) and (A12). This completes the proof of Eqs. (16) and (17).
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