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Role of interband and intraband current in laser interaction with bichromatic quasiperiodic crystals
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We study the role of the inter- and intraband current in the laser interaction with the bichromatic quasiperiodic
crystals. The interaction dynamics are simulated by solving the time-dependent Schrödinger equation in the k
space, and time evolution of the inter- and intraband current is obtained in a gauge-invariant form. We observed
that for certain bichromatic potential ratios, the energy band structure of the “valence band” and the “conduction
band” facilitates the interband transitions only at the center or at the edge of the Brillouin zone, which leads
to a very interesting population transfer mechanism between the bands. The temporal profile of the inter- and
intraband current gives a detailed account of the interaction. The higher-order harmonic generation is also studied
for these bichromatic optical lattices, and the resultant harmonic yield is commented upon.
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I. INTRODUCTION

High-harmonic generation (HHG) from solids is gaining
consistent traction and a field of contemporary interest around
the globe because of the applications it promises in strong-
field and attosecond physics. Though the HHG by the atomic
gases formed the basis for the attosecond science, the neces-
sity of the complex setups with vacuum environments and
sophisticated optics, along with the lower conversion effi-
ciency of the HHG, poses significant challenges from the
applied view. Solid-state HHG, from this perspective, has
simplified operational details, with lower laser intensities and
strong electron dynamics within the bands, which is remedied
after the advent of the HHG by the Bloch oscillations in the
solids [1–6]. As a result, solid-state HHG promises a compact
source of the XUV radiations and attosecond spectroscopy
[7–11]. The pioneering work on the HHG in the bulk ZnO
crystal [1] has opened the avenues in this vast field, and later
the HHG has been demonstrated in a wide range of materi-
als such as large-band-gap dielectrics [7], metasurfaces [12],
graphene [13], transition metal dichalcogenides [14], topo-
logical insulators [15], and many more. For harmonic cutoff
enhancement, yield, and optimization, numerous studies have
reported wherein synthesized laser fields are used [16–18].

The solid-state HHG is mainly understood in terms of the
delicate interplay between the two prominent physical mech-
anisms: interband polarization and the laser-driven intraband
currents [14,19–26]. It has been observed that the harmonics
caused by the interband current always dominate the harmon-
ics generated by the intraband current in the nonperturbative
regime (harmonics above the minimum band gap energy);
however, in the perturbative regime, the intraband and in-
terband harmonics are comparable with intraband harmonics
being slightly stronger [19,27]. The gauge-independent (ve-
locity or length) formulation of the inter- and intraband
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current for the HHG in the solids is presented in [22,25]. The
inter- and intraband transitions can also be understood from
the motion of the Bloch electrons moving with the phase and
group velocities in the coordinate space under the influence of
the laser fields [26].

The interband transitions typically happen when the elec-
tron passes through the region where the corresponding band
gap between valence and conduction (or any other neigh-
boring bands) is minimal, resulting in rapid changes in the
electron population. In the context of the light-matter in-
teraction, time-dependent population inversion between two
energy levels is referred to as Rabi oscillations. The time
evolution of the conduction band population in the context of
the Rabi flopping/oscillations has been previously reported
[28,29]. The carrier-envelope phase of the driving laser pulses
has also been found to significantly affect the band population
[28,30]. The control over the energy states of the electron
using some external agency is desirable for understanding the
underlying quantum dynamics.

For a given periodic crystal, the control over the dynamics
or outcome of the solid-state HHG relies on tweaking the
inter- and intraband currents using the synthesized laser fields.
The band structure of the periodic crystal significantly affects
the inter- and intraband current dynamics, and so the HHG
[32]. The intraband current can have the clear signature of the
band structure of the periodic crystal under study [33]. To this
end, the optical lattices provide flexibility in terms of tweaking
the lattice spacing and so the band structure [34,35]. The
optical lattices are routinely used to trap the atoms. Recently
an experimental demonstration of the one-dimensional (1D)
optical lattice has been reported [36]. Lately, the trapping of
171Yb atoms through 1D optical lattice has been demonstrated
[37]. Trapping of neutral atoms in optical lattices enables the
study of fascinating quantum dynamics [38].

Given the feasibility of engineering an optical lattice in
1D, we restrict ourselves to 1D bichromatic optical lattice
potential to study the inter- and intraband current dynamics
interplay. The exploration of the higher-dimensional optical
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lattices we defer to carrying out elsewhere. In this work,
we have explored the interaction of the laser pulse with
quasiperiodic crystals (which can be envisaged through opti-
cal lattices) and the role the inter- and intraband current plays
in populating higher-energy bands and the HHG. We have
solved the one-dimensional (1D) time-dependent Schrödinger
equation (TDSE) in the quasimomentum space or k space.
The inter- and intraband currents are calculated in a gauge-
invariant form along with the time-dependent population of
the valence and conduction band. It is observed that the in-
terference of the inter- and intraband current plays a very
crucial role in suppressing high-energy harmonics. The paper
is organized as follows: in Sec. II, we discuss the theoretical
and simulation details, followed by the results in Sec. III and
summary in Sec. IV. Throughout the manuscript, we have
used the atomic units (a.u.), i.e., |e| = me = h̄ = 1.

II. THEORETICAL METHODS

A. Bichromatic potential

We study the interaction of the linearly polarized laser with
the one-dimensional bichromatic periodic crystal. The laser
polarization direction is considered to be along the optical
lattice, and the bichromatic potential is modeled as [39]

V (x) = −V0[A + B − A cos(gσ1x) − B cos(gσ2x)]. (1)

Here, V0 denotes the depth of the potential, g ≡ 2π/d , and
σ1 and σ2 determine the respective frequencies of the bichro-
matic potential. Moreover, d = 8 a.u. is the lattice constant,
and A and B control the depth of the bichromatic potential.
However, in our work we have set A = B = 1. There are two
characteristic lengths in a unit cell: interatomic separation and
the lattice constant d . In Fig. 1(a), we present the normalized
potential for a unit cell with different frequency ratios σ1 : σ2.
The energy band structure for the frequency ratios 1:2, 1:3,
and 5:8 is presented in Figs. 1(c), 1(d) and 1(e), respectively,
where V0 = 0.3 a.u. is used. Throughout the manuscript, we
have considered that the electron is initially in the second
band referred to as the “valence band” (VB2). However, the
higher-lying bands will be referred to as the “conduction
band” CB1 (third band), CB2 (fourth band), etc. The lower
band gap between VB2 and CB1 near k = 0 for the ratio 5:8
makes it very interesting from the inter- and intraband current
dynamics perspective, which we will discuss later in the paper.
As can be understood from Fig. 1(a), the ratio 0:1 signifies
1 atom per cell, 1:2 denotes 2 atoms per cell, 1:3 denotes 3
atoms per cell, and 5:8 denotes 8 atoms per cell. The results
are checked for convergence.

B. TDSE solver

The electron wave function can be expanded in Bloch state
basis |φn

k 〉 for a particular value of the crystal quasimomentum
k and band index n in order to numerically solve the TDSE
in the velocity gauge [40,41]. The Bloch states are evaluated
by solving the single-electron stationary Schrödinger equa-
tion with field-free Hamiltonian Ĥo = p̂2/2 + V (x):

Ĥo

∣∣φn
k

〉 = En
k

∣∣φn
k

〉
. (2)

FIG. 1. The normalized potential denoted by Eq. (1) for 0:1, 1:2,
1:3, and 5:8 are presented in (a). The corresponding band structure
showing the first four bands is shown for the ratios 1:2 (c), 1:3 (d),
and 5:8 (e). The minimum band gap between the VB2 and CB1 is
9.4 eV for 1:2 (c), 0.85 eV for 1:3 (d), and 0.012 eV for 5:8 ratio
(e). The ratio 0:1 is the fairly standard Mathieu-type potential [31],
and hence the associated band structure is not presented. The k-
dependent matrix element of transition from the second band (VB2)
to the third band (CB1) is presented in (b), i.e., p23

k = 〈φ2
k | p̂|φ3

k 〉.

In position basis, the Bloch states can be written as

〈
x
∣∣φn

k

〉 ≡ φn
k (x) =

Nmax∑
�=1

Cn
k,� ei(k+2π�/d )x, (3)

where Nmax = 19 are used throughout the work and respective
convergence is checked. The TDSE can be solved for elec-
tronic wave function |ψk (t )〉 as

i
∂

∂t
|ψk (t )〉 = [Ĥo + Ĥint]|ψk (t )〉, (4)

where, Ĥint = A(t ) · p̂ and A(t ) ≡ − ∫ t E(t ′)dt ′ is the vector
potential associated with the laser pulse under the dipole
approximation with the electric field E(t ) polarized along
the x direction as E(t ) = E0 sin4(πt/T ) sin(ω0t + θ ) ex; here,
E0 [a.u.] ∼ 5.342 × 10−9

√
I0 is the field amplitude with I0

being the peak intensity of the pulse in W/cm2, T is the pulse
duration, ω0 is the fundamental frequency of the laser pulse,
and θ is the carrier-envelope phase of the pulse (considered
to be zero unless stated otherwise). Furthermore, at any given
time instant, the time-evolving state |ψk (t )〉 can be expanded
in the Bloch basis,

|ψk (t )〉 =
Nmax∑
n=1

αn
k (t )

∣∣φn
k

〉
, (5)

where αn
k (t ) are the time-dependent expansion coefficients.

Using Eq. (5) in Eq. (4), the following coupled differential
equations need to be solved [40]:

i
∂αs

k (t )

∂t
= Es

kα
s
k (t ) + A(t )

Nmax∑
u=1

psu
k αu

k (t ). (6)
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Here, psu
k is the matrix element of the momentum operator,

which can be calculated as

psu
k = 〈

φs
k

∣∣ p̂
∣∣φu

k

〉 =
Nmax∑
�=1

(k + 2π�/d )
(
Cs

k,�

)∗
Cu

k,�. (7)

If we consider the electron initially in the band q, then the
initial condition for solving Eq. (6) is αs

k (0) = δqs. Finally, the
single-electron current density for a particular channel k can
be calculated as

jks(t ) = −Re[〈ψks| p̂ + A(t )|ψks〉]. (8)

In Eq. (8), the subscript s denotes that the electron was in
the band s before the interaction. Total current density can be
calculated by summing over all the bands and integrating over
the first Brillouin zone (BZ) as

jtotal(t ) =
∑

s

∫
jks(t )dk. (9)

C. Band population calculation

In order to estimate the instantaneous band population of
the band m at a given instant of time, the projection operator
is expressed in terms of the field-free Bloch basis [25],

�̂mk = ∣∣φm
k

〉〈
φm

k

∣∣. (10)

In the velocity gauge the projection operator of Eq. (10) would
transform as [42]

�̂vel
mk = e−iA(t )x̂ �̂mk eiA(t )x̂, (11)

where A(t ) is the vector potential associated with the driver
field. The time-dependent population of the band m is hence
obtained by calculating the expectation value of the operator
given in Eq. (11) as [25]

Pm(t ) =
∫

BZ
〈ψk (t )|�̂vel

mk|ψk (t )〉dk. (12)

D. Inter- and intraband current and HHG calculation

In Eq. (9), we obtained temporal dependence of the total
current. To understand the inter- and intraband contribution
in total current [Eq. (9)], typically, one needs to rely on the
Houston state basis [4] when working in the velocity gauge;
however, it has some numerical limitations to be used with
a large number of bands. To remedy this, we used the Bloch
state basis–based gauge-independent formulation, and accord-
ingly, the inter- and intraband currents are calculated [25] in
terms of the population operator [Eq. (11)]:

jinter(t ) = −
∑

m,m′ 	=m

∫∫
BZ

dkdk′ �̂vel
mk ( p̂ + A(t )) �̂vel

m′k′ , (13)

jintra(t ) = −
∑

m

∫∫
BZ

dkdk′ �̂vel
mk ( p̂ + A(t )) �̂vel

mk′ , (14)

such that jtotal(t ) = jinter(t ) + jintra(t ).
The spectra of the emitted harmonics can be estimated by

doing the Fourier transform of the current density and are
given as

Stotal(ω) = |Fω[ jtotal]|2, (15)

where Fω[g(t )] = ∫
g(t ) exp[−iωt]dt is the Fourier transform

of the time-dependent function g(t ). However, it can also be
interpreted as the summation of the harmonic spectra from the
jinter(t ), jintra(t ), and the interference of both [24] as follows:

Stotal(ω) = Sinter(ω) + Sintra(ω) + Sintfer(ω), (16)

where

Sinter,intra(ω) = |Fω[ jinter,intra]|2 (17)

and

Sintfer(ω) = F∗
ω[ jinter]Fω[ jintra] + F∗

ω[ jintra]Fω[ jinter] (18)

denote the harmonic contribution from the interband and
intraband current [Eq. (17)] and the interference of both is rep-
resented as Eq. (18). The harmonic yield Y for the frequency
range ω1 to ω2 is calculated as Y = T −1

∫ ω2

ω1
Stotal(ω)dω. Fur-

thermore, the phase of the emitted harmonics is obtained
as ϕi(ω) = arctan2[Im{Si(ω)}, Re{Si(ω)}], with i associated
with either “inter,” “intra,” or “total” spectra.

III. RESULTS AND DISCUSSION

The interaction of the 10 cycles, 3.2 µm laser with a peak
intensity of 6 × 1011 W/cm2 is considered with the quasiperi-
odic crystals with frequency ratios 1:2, 1:3, and 5:8, having
V0 = 0.3 a.u., and 10% contribution (�k/BZ ≡ 10%) around
k = 0 in the BZ is considered, i.e., −0.1 < kd/π < 0.1 (un-
less otherwise stated) in order to understand the underlying
interaction dynamics.

A. HHG for different ratios σ1 : σ2

The decomposition of the HHG spectra with inter- and
intraband contributions is presented in Figs. 2(a)–2(c). In the
perturbative regime of the solid HHG, inter- and intraband
HHG are dominant with intraband current, and so the har-
monics are stronger. However, in the nonperturbative regime
mainly interband current contributes, though both the inter-
and intraband currents show the plateau structures [19,24,26].
Here, we can corroborate these findings in Fig. 2(a) for the
frequency ratio 1:2, where in the below-band-gap harmonics
(� 9.4 eV) the intraband contribution (Sintra) is comparable to
the interband (Sinter) one. However, in the range �9.4 eV, Sinter

overlaps Stotal (total contribution), implying the interference
(Sintfer) and the Sintra terms are less significant. Furthermore,
the bichromatic frequency ratio is 1:3 [Fig. 2(b)], showing
a very crucial role played by the Sintfer terms in the total
spectra. It can be seen from Fig. 2(b) that in the perturbative
regime (� 0.85 eV), the Sintra is slightly dominant and in
the nonperturbative regime up to harmonic cutoff (�0.85 eV
and � 10 eV) the Sinter is slightly stronger than the Sintra.
However, in this case, Sintfer is very strong and significantly
affects the HHG process; as can be seen from Fig. 2(b) after
the cutoff, Sintfer negates the contribution from Sinter and Sintra,
giving a clear harmonic cutoff around ∼10 eV. Moreover, the
dominance of the interference term Sintfer is found to be very
stark for the case when the frequency ratio is changed to 5:8,
i.e., Fig. 2(c). In this case, mostly all the HHG spectra are in
the nonperturbative regime as the minimum band gap of VB2

and CB1 is ∼0.01 eV (refer to Fig. 1). It can be seen from
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FIG. 2. The HHG spectra for the frequency ratios 1:2 (a), 1:3 (b),
and 5:8 (c) are presented for Sinter, Sintra, and Stotal. The red arrow
represents the minimum band gap between the VB2 and CB1 for
respective cases (refer to Fig. 1). The respective inter- and intraband
currents are presented for 1:2 (d), 1:3 (e), and 5:8 (f). As mentioned,
the inter- and intraband currents in (d)–(f) are plotted on the same
axis with different scaling parameters a and b.

Fig. 2(c) that the contributions of Sinter and Sintra are exactly
identical and the contribution from the Sintfer term reduces the
combined contribution of Sinter + Sintra significantly and gives
rise to the clean harmonic cutoff at ∼12 eV. Later, we will
discuss how the minute phase difference between Sinter and
Sintra exactly mimics the total HHG obtained and reinforces
the importance of the interference of the inter- and intraband
currents.

The inter- and intraband current for all these three cases
is also illustrated in Figs. 2(d)–2(f), and for visual appeal jinter

and jintra are plotted on the same scale with appropriate scaling
factors. It should be noted that as the minimum band gap
reduces for cases from Figs. 2(a)–2(c), the interband currents
gain very fast Rabi-like oscillations, which effectively cause
the rapid oscillations of the population between VB2 and CB1.
As a result, the distinction between Sinter and Sintra [which are
Fourier transforms of the jinter(t ) and jintra(t )] is completely
lost in Fig. 2(c), because, say, the fast depletion in one band is
fast accumulation in another band in the time domain. Hence,
in the spectral domain, these two events are the same. These
fast oscillations in the interband current [Fig. 2(f)] occur near
the point where the vector potential A(t ) ∼ 0, which happens
near k ∼ 0. In order to further elucidate this fast oscillating
nature of the inter- and intraband current near zero crossing of
the vector potential, we have presented the zoomed version of
Fig. 2(f) along with the respective band population in Fig. 3.

The detailed inter- and intraband current features for the
frequency ratio 1:3 and 5:8 are presented in Fig. 3. The band
population is calculated using Eq. (12), and it can be seen from
the temporal profile of the band population that the dynamics
are effectively reduced to a two-band problem for the given
laser and potential parameters. If we compare the interband

FIG. 3. Temporal evolution of the interband current, along with
the VB2 and CB1 band population, is presented for frequency ra-
tio 1:3 (a) and 5:8 (b). The zoomed version of (b) in the range
2.6τ � t � 3.3τ is shown in (c), with τ being an optical cycle.
In (c), the temporal profile of the vector potential (dashed line) is
also shown along with the intraband current. In order to represent
band population (P) and the interband current on the same scale, an
appropriate scale factor δ is mentioned for interband current, and the
quantity 4P − 2 is plotted, such that P = 0 corresponds to −2 and
P = 1 corresponds to +2 on the y scale.

current of the 1:3 and 5:8 frequency ratio in Figs. 3(a) and
3(b), then it is observed that the band population perfectly os-
cillates between VB2 and CB1 for the 5:8 frequency ratio, the
feature which is missing for the 1:3 ratio (later we will discuss
this aspect). The zoomed version of Fig. 3(b) is illustrated as
Fig. 3(c) and the following observations can be made from the
same:

(1) During the complete cycle of the pulse, these rapid os-
cillations in the interband current happen near the point where
A(t ) = 0, which corresponds to the electric field maxima for
that particular cycle in the pulse.

(2) There are two parts in each cycle; in the first half, the
population is transferred from CB1 to VB2, and in the second
half, the reverse happens, and the population transfers from
VB2 to CB1. In between successive cycle, the VB2 and CB1

are equally populated with P = 0.5.
(3) The rapid time variation of the intraband current is out

of phase with the interband current.
(4) These time variations of the interband currents only

last till the population transfers complete from VB2 to CB1

and vice versa.
(5) The time interval for a complete cycle of populat-

ing and then depopulating the CB2 reduces in the window
3.15τ < t < 3.3τ (with τ being one optical cycle) as com-
pared to the time window 2.6τ < t < 2.8τ .

(6) All the above points can easily be understood in terms
of the Rabi oscillations. The Rabi frequency is given by

�R(k, t ) ∝ |E(t )|
〈
φ

CB1
k

∣∣ p̂
∣∣φVB2

k

〉
ECB1

k − EVB2
k

. (19)
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FIG. 4. Harmonic spectra associated with the interband, intra-
band, and interference terms [refer to Eqs. (17) and (18)] are
presented for the bichromatic ratio 1:3 (V0 = 0.3 a.u.) (a), 5:8 with
V0 = 0.3 a.u. (b), and V0 = 0.6 a.u. (c). On the right panel, the respec-
tive total HHG spectra are plotted in (d)–(f). The phase difference �ϕ

[refer to Eq. (20)] is also shown in the figure.

The strong field amplitude in the window 3.15τ < t < 3.3τ

manifests in higher Rabi frequency, and hence the population
transfer from the VB2 to CB1 and vice versa takes less time.
These features are consistent if we see the time dependence
over a complete laser pulse duration [Fig. 3(b)].

(7) The transition matrix element between VB2 and CB1,
along with the band gap between the two for particular k
values, also plays a very crucial role in determining the Rabi
frequency. In this particular case of the 5:8 ratio, we see
that the transition matrix element in the momentum space
〈φCB1

k | p̂|φVB2
k 〉 only peaks near minimum band gap, i.e., at

k = 0 [refer to Fig. 1(b)]. However, for the 1:3 ratio the
contribution from the neighboring Bloch states also plays a
role and so the interband current and the band population are
not similar as they are with the 5:8 ratio.

B. Interference of inter- and intraband currents

We learned from Figs. 2 and 3 how the electric field am-
plitude and the matrix element of the dipole operator affect
the Rabi oscillations between the VB2 and CB1, which even-
tually affect the respective band population. In order to further
understand the nature of the HHG spectra and the role of
interference of inter- and intraband contribution, the HHG
spectra for the 1:3 and 5:8 cases are shown in Fig. 4. It can be
understood from this figure that for the case of the 5:8 ratio,
the inter- and intraband harmonics “almost” overlap with each
other, and the interference between the two causes the emer-
gence of the total HHG spectra with multiple plateaus. As we
saw previously in Fig. 3, the population transfer in the case of
5:8 occurs only near the peak of the electric field (minimum
of vector potential), and as a result, the process repeats in
each half cycle, and hence only the odd-order harmonics are

FIG. 5. Harmonic spectra for 1:3 and 5:8 cases are illustrated
in (a) and (b), respectively, for different values of the V0 [refer to
Eq. (1)]. The energy bands VB2, CB1, and CB2 for V0 = 0.3 and 0.6
a.u. cases are illustrated for 1:3 (c) and 5:8 (d) ratios. The temporal
evolution of the population of CB2, i.e., PCB2 , are compared for
V0 = 0.3 and 0.6 a.u. cases for 1:3 (e) and 5:8 (f) ratios.

prominently visible for inter- and intraband HHG in Figs. 4(b)
and 4(c) for the 5:8 case. However, for the 1:3 case, no such
observation is made [refer to Fig. 3(a)]. The amplitude of
the interference term is of the order of addition of inter-
and intraband harmonics, hinting toward strong destructive
interference, and as a result, the clear odd-order harmonics
are not visible in the total HHG spectra in Figs. 4(d)–4(f).
Furthermore, the phase difference between the inter- and in-
traband harmonics is defined as

�ϕ = 1 − 1

π
|ϕinter − ϕintra|. (20)

The offset from perfect destructive interference (�ϕ = 0)
between the inter- and intraband harmonics is observed to
accurately manifest in the observed cutoff energies of full
HHG spectra.

C. Effect of potential depth V0 on the HHG spectra

So far, we learned that the typical characteristics of the
5:8 ratio make it interesting from the interaction perspective,
as the transition to higher bands happens either at the center
of the BZ or at the edge of the same. In order to further
elucidate this aspect, in Fig. 5, we have presented the HHG
spectra for the 1:3 and 5:8 cases for different potential depth
V0 [refer to Eq. (1)]. It can be seen from Figs. 5(a) and 5(b)
that with the increase in the potential depth, the efficiency of
the secondary plateau ∼ 20–40 eV decreases for the 1:3 ratio
and correspondingly increases for the 5:8 ratios. This can be
understood by studying the energy bands for the 1:3 and 5:8
ratios for different V0 values. We have presented the VB2,
CB1, and CB2 energy bands for both the 1:3 and 5:8 cases
in Figs. 5(c) and 5(d) for V0 = 0.3 and 0.6 a.u. The photons in
the energy range ∼ 20–40 eV (which comprises the secondary
plateau) are mostly emitted by the transition from the CB2

to the underlying band, and hence the time-dependent band
population of CB2 can be a good measure to co-relate to the
harmonic efficiency of the radiation in the secondary plateau.
It can be seen that for the case of the 1:3 ratio, the energy
difference between CB1 and CB2 increases from ∼7.6 eV to
∼12.6 eV with an increase in the potential depth from 0.3 a.u.
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FIG. 6. The variation of the harmonic yield with the potential
depth V0 is presented for three different bichromatic ratios in (a).
However, the maximum of the band population PCB2 dependence on
the V0 is shown in (b). In (a), plots above (below), the black dashed
line represent the harmonic yield in the energy range 3–10 eV (20–
30 eV).

to 0.6 a.u., and so the instantaneous band population of CB2

reduces implying the lower probability to Zener tunneling to
CB2 [refer to Fig. 5(e)]. On the contrary, for a 5:8 ratio, as we
increase the V0, the bands CB1 and CB2 flatten a bit at the edge
of the BZ. As a result, the Zener tunneling increases, giving
enhanced population for CB2. This enhanced population of
CB2 manifests in enhanced efficiency in HHG yield for the
energy range ∼ 20–40 eV.

In Fig. 6, the variation of the harmonic yield and maxi-
mum of the CB2 population with V0 is presented for different
bichromatic ratios. The harmonic yield in the energy range
20–30 eV is not plotted for the 1:3 and 3:5 ratios for V0 >

0.5 a.u. [Fig. 6(a)], as the secondary plateau completely di-
minishes for V0 > 0.5 a.u. It can be understood from this
figure that the harmonic yield in the energy range belonging
to the secondary plateau increases (decreases) with V0 which
is reflected by the increase (decrease) in the population of the
band, which contributes to the said energy range in HHG spec-
tra [Fig. 6(b)]. The harmonics in the energy range 3–10 eV
(primary plateau) arise mainly by the transition from the CB1

to VB2 in all the cases. For the 5:8 case, as the V0 increases,
the band gap between VB2 and CB1 increases, and the band
slopes near k = 0 reduce. This combined effect causes en-
hanced Zener tunneling to higher bands, enhancing harmonic
yield in the 3–10 eV range and the secondary plateau by
subsequent promotion to CB2.

We learned that for the case of the 5:8 ratio, the Zener
tunneling to higher bands only happens either at the center
or at the edge of the BZ, which is also quite visible from
the temporal evolution of the interband current jinter(t ) as dis-
cussed in detail in Fig. 3. This fact brings us to a question, how
does the strength of jinter affect the HHG yield? In order to
explore this facet, in Fig. 7 we have analyzed jinter for different

FIG. 7. Temporal dependence of jinter is presented for three dif-
ferent values of V0 for 5:8 ratio case (a). The zoomed version of (a) is
illustrated in (b), and the variation of a maximum of jinter with V0 is
shown in (c). It should be noted that for visual appeal, the temporal
profiles in (a) for V0 = 0.5 a.u. and 0.6 a.u. are intentionally shifted
by 10 and 20 cycles, respectively, and the arrows in (a) show the
region of the temporal domain zoomed in (b).

potential depths V0. It can be observed from Figs. 7(a) and
7(b) that as we increase V0, the peak value of the interband
current increases; this is due to the enhanced Zener tunneling
among bands [lower “velocity” ∼∇kE (k) near the edge of the
BZ] with increase in V0 for the 5:8 ratio. Furthermore, as V0

increases, the band slope decreases, and so the neighboring k
values also contribute to the transition or in other words, the
p23

k (k) broadens [refer to Fig. 1(b)]. This results in the disap-
pearance of Rabi-type fast oscillations, as we have seen for the
V0 = 0.3 a.u. case. Typically, we observe these Rabi type of
oscillations when mostly only two energy levels are involved
near k = 0. However, as more and more k values are partici-
pating in the transition, this assembly of a “two-level” system
at k = 0 breaks down and rapid oscillations are replaced by
the strong interband current. The strong interband current
eventually populates higher conduction bands, enhancing the
harmonic yield in the secondary plateau region. However,
it should be noted that even in this scenario, the interband
current only contributes near the peak of the electric field or
the temporal points where A(t ) ∼ 0. The maximum interband
current variation with the potential depth is also presented in
Fig. 7(c); it is observed that the maximum interband current is
positively correlated with the harmonic yield of the secondary
plateau [Fig. 6(a)]. In order to further understand the HHG
spectra and the role of interband current, next we discuss the
time-frequency analysis for the two cases of 5:8 with V0 = 0.3
and 0.6 a.u.

D. Time frequency analysis of HHG

As we discussed in Figs. 3 and 4, the peculiar feature the
bichromatic ratio 5:8 is that the transition to higher bands only
happens at the center or at the edge of the BZ, which implies
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FIG. 8. The time frequency analysis for 5:8 case with V0 = 0.3
a.u. (a) and 0.6 a.u. (b) is shown. In both the figures, the horizontal
dashed gray lines show even harmonics. The temporal profile of the
jinter is also superimposed on these plots.

that if one considers the bands VB2 and CB1 (corresponding
to the primary plateau � 15 eV) the interband transition will
only happen near k ∼ 0 as p23

k is maximum only for k = 0
[refer to Fig. 1(b)]. This condition will be met only when
A(t ) ∼ 0 and the transition is facilitated, giving rise to jinter.
This process will happen at each half cycle, giving rise to only
the odd-order harmonics as seen in Figs. 4(b) and 4(c); how-
ever due to the interference between the inter- and intraband
harmonics, clear odd-order harmonics are not that prominent
[refer to Figs. 4(e) and 4(f)]. In Fig. 8 we have presented the
time-frequency analysis of the HHG spectra for a 5:8 ratio
for two different values of V0. It is observed that even in
the total HHG spectra, the intensity of the even harmonics
is significantly reduced, as shown by the dashed horizontal
lines in Figs. 8(a) and 8(b). We have also superimposed the
temporal profile of the interband current and it can be seen that
the intensity of the harmonics between two consecutive peaks
of jinter is smaller than the one observed at peaks of jinter. This
further establishes the fact that the interband current plays a
prominent role in the HHG process from the (quasi)periodic
crystals and reduction of the same is reflected in weaker
harmonic efficiency. These missing even harmonics are not
observed for the 0:1, 1:3, and 3:5 cases, as the interband
current in those scenarios is the superposition of all different
channels corresponding to different k values.

E. Effect of initial contribution �k/BZ

So far, we have studied all the aspects of the interaction
dynamics with the initial contribution �k/BZ ≡ 10%, and we
were able to understand the role played by the inter- and in-
traband current in the HHG by quasiperiodic crystals. In order
to explore the effect of initial contribution on the underlying
dynamics, we have now considered �k/BZ ≡ 30% for the
5:8 frequency ratio, and the results are presented in Fig. 9.
It was observed that beyond �k/BZ ≡ 30% the HHG spectra
are not further modified and hence we restrict to this value for
the results presented in this discussion. The HHG spectra for
different potential depths with �k/BZ ≡ 30% are shown in
Fig. 9(a). The main characteristic of the spectra we witnessed
in Fig. 5(b), that for larger V0, the harmonic yield is higher, is
seen in Fig. 9(a) as well; however, the harmonic yield of the
secondary plateau is found to be enhanced as compared to the

FIG. 9. For 5:8 frequency ratio, the contribution �k/BZ ≡ 30%
around k = 0 is considered, and the HHG spectra for different po-
tential depth is presented in (a). The results presented in (b), (c),
and (d) are for the case when V0 = 0.6 a.u. is used. The harmonic
spectra associated with intraband, interband, and interference terms
are illustrated in (b). The temporal variation of VB1,VB2, CB1, and
CB2 are shown in (c). The star on VB1 and CB2 legends in (c) means
they are scaled up by the factor 5 and 50, respectively. The inter- and
intraband current is presented in (d). The respective scaling factors
for inter- and intraband currents are mentioned in the legend of (d).

Fig. 5(b) cases where we relied on �k/BZ ≡ 10%. The more
significant portion of the BZ is now contributing to the inter-
and intraband current, and as a result, at the peak of the laser
pulse, the population transfer to VB1 is observed in Fig. 9(c)
because of enhanced carrier scattering at the edges of BZ.
We also notice that in this case, the CB2 band population is
∼0.003, which was ∼10−6 for the case with �k/BZ ≡ 10%.
This enhanced band population of CB2 might have reflected
in enhanced harmonic yield for the secondary plateau (∼ 20–
40 eV). Furthermore, in Fig. 9(b), the harmonics contributing
to the interference term are found to be weaker and narrower
in energy range as compared to one we observed in Fig. 4(c);
this also contributed to enhanced harmonic yield in the energy
range ∼20–40 eV. We have also presented the temporal evolu-
tion of inter- and intraband current in Fig. 9(d), which has the
typical characteristic that we already discussed in great detail
in Fig. 3.

IV. SUMMARY

In summary, we have studied the role of inter- and intra-
band current on the HHG by the laser interaction with the
bichromatic quasiperiodic crystals with the frequency ratios
σ1 : σ2 being 1:3, 3:5, and 5:8 [Eq. (1)]. It is observed that
the typical characteristics of the energy bands associated with
the 5:8 ratio make it possible to have the transition between the
bands only at the center or at the edge of the BZ, which leads
to very interesting population transfer mechanism between
the bands. The effect of the potential depth on the generated
harmonics and the interband current is also studied, and it is
observed that the harmonic yield of the secondary and primary
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plateau increases with increasing the potential depth for a 5:8
ratio, which is positively correlated to the strength of the in-
terband current. The harmonic enhancement with the increase
in the potential depth is also related to the flattening of the
bands at the edge of the BZ. As a result, the Zener tunneling at
the edge of the BZ is enhanced, increasing harmonic yield in
the secondary plateau region. Overall, the small-gap materials
with flat bands at edges might be helpful for the generation
of high-energy harmonics and, eventually, to the generation
of attosecond pulses. The conclusions are vindicated by also
studying the time-dependent instantaneous band populations.
The presented analysis is also observed to be true even when
the decoherence effects are included in a phenomenological

manner [41,43]. The laser field parameters and their respective
influence on the HHG by these quasiperiodic crystals are be-
yond the scope of the current manuscript and are reserved for
future studies. The temporal control of the band population for
such optical lattices might interest the “quantum-computing”
fraternity.
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