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Two-dimensional hydrodynamic electron flow through periodic and random potentials
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We study the hydrodynamic flow of electrons through a smooth potential energy landscape in two dimensions,
for which the electrical current is concentrated along thin channels that follow percolating equipotential contours.
The width of these channels, and hence the electrical resistance, is determined by a competition between viscous
and thermoelectric forces. For the case of periodic (moiré) potentials, we find that hydrodynamic flow provides a
route to linear-in-T resistivity. We calculate the associated prefactors for potentials with C3 and C4 symmetry. On
the other hand, for a random potential the resistivity has qualitatively different behavior because equipotential
paths become increasingly tortuous as their width is reduced. This effect leads to a resistivity that grows with
temperature as T 10/3.
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Introduction. Under conditions where electrons collide
much more frequently with one another than with any-
thing else, the current carried by an electron system flows
like a fluid rather than satisfying the usual Ohm’s law.
This hydrodynamic electron regime was described by Gurzhi
in the 1960s [1,2], and it has attracted significant atten-
tion during the last decade owing largely to its realization
in graphene [3–36]. Recent experiments have demonstrated
a variety of transport phenomena associated with hydro-
dynamic electrons, including negative nonlocal resistance
[8,9,13–15,27,37], Pouiselle-like flow profiles [18–22,28,38],
superballistic flow [11,12], Wiedemann-Franz law violations
[10,25,39–49], and bulk field expulsion [29–31].

Where disorder effects are included in descriptions of
hydrodynamic electron flow, these effects are usually im-
plemented via a finite momentum relaxation rate. Such a
description is equivalent to imagining spatially uncorrelated,
delta-function scatterers. On the other hand, in Ref. [50] An-
dreev, Kivelson, and Spivak (AKS) considered hydrodynamic
electron flow through a smooth random potential that varies
on a length scale that is long compared to the electron-electron
mean free path �ee. AKS considered two contributions to the
electrical resistance in this setting, arising from viscous shear
stresses and thermoelectric fields. Using an “energy mini-
mization” argument (properly, entropy maximization, as we
explain below), they argued that when the electronic viscosity
or thermal conductivity is low enough, the electric current in
two dimensions is concentrated along narrow channels that
follow equipotential contours, as sketched in Fig. 1. AKS de-
rived a corresponding result for the resistivity (up to numeric
prefactors).

In this paper, we reconsider the problem of hydrodynamic
flow through a smooth potential and provide two important
updates to the AKS result. First, we consider the flow through
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a periodic (moiré) potential. We derive the corresponding re-
sistivity, which follows the same form as the AKS result, and
we give appropriate numeric prefactors for periodic potentials
with C3 and C4 symmetry. We further show that, for electron
systems obeying Fermi liquid theory, the result implies a
linear-in-T dependence of the resistance.

These results may have a direct connection to recent trans-
port experiments. Strong, slowly varying periodic potentials
now abound experimentally due to the explosion of interest in
moiré systems [51–63]. In both twisted bilayer graphene [64]
and TMD (transition metal dichalcogenide) systems [65,66],
regimes of linear-in-T resistivity have been experimentally
discovered near strongly correlated phases. As both pedestrian
explanations and exotic conjectures have been put forth for
this temperature dependence [67–71], it is important that we
understand all possible routes to linear-in-T resistivity.

Second, we turn our attention to the case of a spatially
random potential. We show that the AKS result no longer ap-
plies because current-carrying channels become increasingly
tortuous as their width decreases. Instead, the resistivity is
governed by nontrivial critical exponents associated with two-
dimensional (2D) percolation, leading to a superlinear T 10/3

dependence of the resistivity on temperature. We conclude
with some brief remarks on how both results may be tested
experimentally.

Mathematical setup. The hydrodynamic equations that
govern viscous electron flow are

− ∇P − enE − ∇Udis − mnν∇ × ∇ × v

+ mn

[
D − 1

D
2ν + ζ̃

]
∇∇ · v = mnv · ∇v, (1)

κ∇2T + 1

2
mnν

(
∂iv j + ∂ jvi − 2

D
δi j∂kvk

)2

+ mnζ̃ (∇ · v)2 = mnT v · ∇s, (2)

∇ · (nv) = 0, (3)
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(a)

(b)

FIG. 1. A device sketch with the imposed external potential
U (blue and red contour lines), where the shaded dark-blue lines
correspond to current flow under the applied electric field E . The
thin current channels of width h are concentrated about equipoten-
tial contours of U . (a) The case of square periodic potential U =
U0 cos(2πx/ξ ) cos(2πy/ξ ). (b) The case of a random potential, for
which the equipotential contours and the current channels meander
and become tortuous in nature, controlled by the hull correlation
length ξh and the hull perimeter �h.

where m is the hydrodynamic mass, −e is the electron charge,
and D = 2 is the dimensionality. The hydrodynamic variables
are the velocity v, the pressure P, the particle density n.
We treat the electric field E as a weak, externally applied
field. Equation (1) is the Navier-Stokes (momentum) equa-
tion, with kinematic shear viscosity ν and kinematic bulk
viscosity ζ̃ , as well as the externally imposed disorder po-
tential Udis. Equation (2) is the heat (energy) equation, with
thermal conductivity κ and entropy per unit mass s. Finally,
Eq. (3) is the density continuity equation. To complete the
set of equations, we need constitutive relations between our
hydrodynamic variables. Since (s, T ) and (n, P) are thermo-
dynamically conjugate variables, we choose one from each
set to be our independent variables. In particular, we choose
variables n and T so that

∇P(n, T ) = ∂P

∂n
∇n − mn2 ∂s

∂n
∇T, (4)

∇s(n, T ) = ∂s

∂n
∇n + ∂s

∂T
∇T, (5)

where ns ≡ mns is the entropy density and we used
the thermodynamic relation (∂P/∂T ) = −mn2(∂s/∂n). For

simplicity, we assume that ∂P/∂n > 0 and ∂s/∂n < 0 are
constants. Finally, we consider a rectangular domain [0, Lx] ×
[0, Ly] as shown in Fig. 1. For boundary conditions (BCs), we
fix T = T and take periodic BCs for n on the x boundaries.
Furthermore, we take for simplicity periodic BCs on the y
boundaries [72].

We are interested in the linear-response theory of the above
equations without assuming that ∇Udis is weak. Therefore,
we look to organize our solution in a formal perturbative
scheme v = v(0) + v(1) + . . ., and similarly for the other
hydrodynamic variables. We will determine the explicit
nondimensionalized perturbative parameter ex post facto. Of
course, physically the expansion is controlled by the pertur-
batively weak electric field E. At leading (zeroth) order, we
consider the equilibrium situation where we expect v(0) = 0
and T (0) = T . Therefore, the only nontrivial equation at ze-
roth order is

−∇P(0) − ∇Udis = 0, (6)

where we have kept Udis since it is not perturbatively small.
From the constitutive relations, this implies that ∇n(0) ∝
∇Udis ∝ ∇s(0). Thus, the density and entropy per mass pro-
files are inherited from the disorder potential at leading order.

We now consider the first-order hydrodynamic equations,
driven by a perturbatively weak field E. These are given by
the equations

− ∇P(1) − en(0)E − mn(0)ν∇ × ∇ × v(1)

+ mn(0)

[
D − 1

D
2ν + ζ̃

]
∇∇ · v(1) = 0, (7)

κ∇2T (1) = mn(0)T v(1) · ∇s(0), (8)

∇ · (n(0)v(1) ) = 0, (9)

where we treat E as a first-order perturbation. Equations (7)–
(9) are equivalent to those in Ref. [50], with the perturbation
theory considerations manifestly written. It is crucial that one
utilizes the temperature dependence in Eq. (4); otherwise,
Eq. (7) decouples from Eq. (8). This dependence provides a
“thermoelectric” contribution to Eq. (7), which is the key term
in restricting current to flow along narrow channels [73].

A convenient way to obtain the two-terminal resistance R
is to compute the total entropy generation. The relation be-
tween these two quantities is subtle, and proceeds as follows.
One can show that the entropy production of a hydrodynamic
system is given by [74]∫

dV
dns

dt
= −

∮ (
nsv + κ∇T

T

)
· dA +

∫
dV

q

T
(10)

with

q ≡ 1

T
κ (∇T )2 + 1

2
mnν

(
∂iv j + ∂ jvi − 2

D
δik∂lvl

)2

+ mnζ̃ (∇ · v)2. (11)

Note that q/T is positive semidefinite and can therefore be
interpreted as the bulk entropy production. In steady state the
left-hand side of Eq. (10) vanishes, and thus all the bulk-
generated entropy flows out through the contacts held at T .

155145-2



TWO-DIMENSIONAL HYDRODYNAMIC ELECTRON FLOW … PHYSICAL REVIEW B 109, 155145 (2024)

On physical grounds, we assume that this entropy outflow
is gained as heat by the environment through the contacts at
temperature T . Thus, by equating the dissipated I2R power to
the environmental heating, we have

I2R = T
∫

dV
q

T
. (12)

When the variations of T are small such that T ≈ T , we have
the simpler relation I2R = ∫

dV q as written by Ref. [50].
Only in this limit of δT � T̄ can one interpret Eq. (12) as
energy conservation with q as the “local power dissipation”
[75]. Throughout this paper, we make the assumption δT �
T (1) � T (placing a bound on the true perturbative parameter
E) and therefore use the simpler relation.

Periodic potential. Using Eqs. (11) and (12), we calculate
the resistance for different cases of the disorder potential.
Let us first consider the case of a square periodic potential
Udis, sq = U0 cos(2πx/ξ ) cos(2πy/ξ ) with periodicity ξ [see
Fig. 1(a)]; this case was sketched by Ref. [50]. As we argued
above, the zeroth order density n(0) and entropy density s(0)

also fluctuate around their mean values with the same spatial
periodicity. In the strong disorder limit, we make the ansatz
that the flow is isolated to thin horizontal channels of width h
and length � = Lx, centered around the equipotential lines of
s(0) = s [see Fig. 1(a)]. Each of the N = Ly/ξ such channels
carries an equal amount of current I/N , where I is the total
current. We further assume that the flow is incompressible,
i.e., that ∇ · v = 0. This incompressibility assumption is justi-
fied if (n(0) − n) � n within the channel [76]; we show below
that this assumption is valid for h/ξ � 1. Finally, we assume
that the temperature fluctuations outside of the channel are
negligible, since the dominant heating is isolated to within the
thin channels.

Assuming that the flow chooses an optimum channel width
h to minimize the total dissipated power, we estimate the
power dissipation. Implicit in this assumption is that the heat
current influences flow, e.g., through a thermoelectric term.
In the incompressible limit, the leading order contribution to
dissipation is

I2R = N
∫

ch
dV

1

T0
κ (∇T (1) )2 + mnν

2

(
∂iv

(1)
j + ∂ jv

(1)
i

)2
,

(13)

where the integral is over a single channel and we can ap-
proximate n(0) ∼ n. By a scaling estimate similar to the one in
Ref. [50], we find

I2R ∼ I2

Ne2

�

ξ

[
T

κ
(mδs)2

(
h

ξ

)3

+ mν

nξ 2

(
ξ

h

)3
]
, (14)

where δs is the characteristic amplitude of the entropy fluc-
tuations and we have used Eq. (8) and the approximations
h � ξ , vy � vx, ∂x ∼ 1/ξ , and ∂y ∼ 1/h. From Eq. (14) one
can see that there are two resistance contributions, which
compete in determining the channel width h. The first term,
corresponding to dissipation from thermoelectrically driven
heat currents, favors narrow channels. The second term, cor-
responding to dissipation from viscous shearing, favors wide
channels. Minimizing the dissipated power against h, we find

the channel width to scale as

h

ξ
∼ α−1/6, (15)

where

α ≡T δns
2
ξ 2

κη
(16)

is the ratio of “thermal” to viscous dissipation [see Eq. (14)],
δns = mnδs is the characteristic strength of entropy density
fluctuations and η = mnν is the dynamic viscosity. Therefore,
we find perturbative control when α 	 1 (and, correspond-
ingly, channels are narrow). Furthermore, we need to ensure
that the thermoelectric term in Eq. (4) is sufficiently large
to ensure that channels actually form. A perturbative solu-
tion around ∂s/∂n = 0 does not form channels; since Eq. (8)
decouples in this limit, the solution has nonzero velocity ev-
erywhere with velocity variations set by ξ from the continuity
equation [Eq. (9)]. Via a scaling estimate, this perturbative
ansatz fails when (n/δs)|∂s/∂n|α 	 1. Finally, our incom-
pressibility assumption is valid if (δn/n)α−1/6 � 1 for δn
the characteristic strength of density fluctuations. Thus, all
our assumptions are controlled by α 	 1 up to dimensionless
factors. We note that the explicit bounds on the validity of
the thin channel ansatz was not previously treated by AKS;
in particular, a nontrivial thermoelectric term (i.e., ∂s/∂n) is
necessary.

Plugging Eq. (15) into Eq. (14), we find the resistivity to
be [77]

ρ ∼ 2

e2

√
T η(mδs)2

κn2ξ 2
. (17)

This equation recovers the results of Ref. [50]. Below we
numerically verify these results and determine the proportion-
ality coefficient [see Eq. (22)]. For a Fermi liquid, Eq. (17)
implies a particular temperature dependence of the resistance.
Specifically, a Fermi liquid has viscosity η ∼ T −2, thermal
conductivity κ ∼ T −1, and entropy density δns ∼ T [50].
These substitutions give h ∝ 1/T and we find a linear ρ ∝ T
scaling, as mentioned above.

Numerical simulation. For the case of periodic potentials,
we can provide direct numerical solutions of the hydrody-
namic equations to verify our scaling results. Specifically, we
solve Eqs. (7)–(9) with the above BCs using the spectral PDE
solver Dedalus [78]. We emphasize that for these simulations
we make no assumptions about n(0) and in particular do not
assume incompressibility. For simplicity, we assume the bulk
viscosity ζ̃ = 0 in our simulations; numerically tuning this
parameter has little effect on the qualitative flow profile. This
irrelevance of ζ̃ is as expected, since we expect flow to be
approximately incompressible when thin channels form. In
addition to the square potential, we consider a class of tri-
angular potentials that describe the moiré pattern arising from
mismatched hexagonal lattices (as in graphene or transition
metal dichalcogenides) [60]. Such potentials have one free
parameter, ψ , that describes the phase difference between
the moiré reciprocal lattice vectors (see the Supplemental
Material [79] for details). The results of these numerical sim-
ulations are shown in Fig. 2 for a range of values of α. We
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FIG. 2. Numerical solutions for the current density j in various
periodic potentials. Each row corresponds to a particular type of
potential, illustrated in the first column (top to bottom: square po-
tential, triangular potential with ψ = π/6, triangular potential with
ψ = 0). Columns 2–4 show the simulated current density (arrows
show direction and color darkness shows magnitude) for each poten-
tial. Columns 2–4 correspond to α ∼ 103, 105, and 107, respectively.
As α increases, the current-carrying channels become increasingly
narrow.

observe the formation of current-carrying channels along the
equipotential contours that span the system. Furthermore, the
channels become increasingly narrow as α is increased, as
predicted.

In order to provide a quantitative calculation of the re-
sistance, we adopt a variational approach that assumes a
parabolic flow profile within each channel. Specifically, we
assume a current density jx(x, y) = 6(I/N )[(h/2)2 − y2]/h3

within each channel (with y = 0 corresponding to the center
of a given channel) and zero elsewhere. The width h of the
channel is treated as a variational parameter; see Fig. 3 for a
comparison between our ansatz for jx(y) and exact numerical
solutions. This ansatz for j = env yields a temperature T (1)

via Eq. (8). Consequently, we arrive at analytic expressions
for both of the power dissipation terms in Eq. (14), in the
limit of h � ξ , with exact numerical prefactors for square and
triangular potential profiles,

Qth = Cth
I2LxT

e2Lyκ
(mδs)2

(
h

ξ

)3

, (18)

Qvis = Cvis
I2Lxmν

e2Lynξ 2

(
ξ

h

)3

, (19)

Cth, sq = π4

35
, Cth, tri = 4π4

630
, (20)

FIG. 3. Numerical results for the averaged current density profile
〈 jx〉x ≡ ∫

dx jx/Lx in a square-periodic potential, normalized by total
current I . The three values of α are the same as those in Fig. 2.
The solid lines correspond to the results of direct numerical simu-
lation, while dashed lines correspond to our approximate variational
solution.

Cvis, sq = 24, Cvis, tri = 24(
1 − δn√

6 n
cos(3ψ )

)2 , (21)

where Qth and Qvis correspond to the thermal (first) and vis-
cous (second) terms in Eq. (14).

As before, we look for a channel width h such that Qth +
Qvis is minimized. We plot the variational result for the current
density in Fig. 3 along with the corresponding result from
direct numerical simulation, which shows close agreement.
Finally, we compute the resistivity by evaluating the total
power with the variationally determined channel width h. This
procedure gives

ρ = C

e2

δns

n2ξ

√
T η

κ
. (22)

This result validates the scaling result of Eq. (17) up to the nu-
merical prefactor C, which for square and triangular potentials
are given by

C = 4π2

√
6

35
(square), (23)

C = 8π2

√
105

(
1 − δn√

6 n
cos(3ψ )

) (triangular) (24)

(see the Supplemental Material [79] for details).
Random potential. We now turn our attention to the case

of a smooth random potential with a correlation length ξ

[80]. Such random potentials arise, for example, from charged
impurities in the substrate or an adjacent delta-doping layer,
for which that the typical wave vector of the disorder poten-
tial is much smaller than the electron wave vector (see, e.g.,
Ref. [81] and references therein). This consideration is distinct
from a model of point defect scatters studied in, e.g., Ref. [82].
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The key conceptual novelty of a random potential is that
equipotential lines are very tortuous [83], and therefore so
are the current-carrying channels [see Fig. 1(b)]. In particular,
the number of parallel current-carrying channels N and the
contour length � of each channel now depend on percolation
exponents. In 2D, the hull correlation length exponent is νh =
ν = 4/3 and the hull perimeter exponent is dh = 7/4 [83].
Taking ξ to be the disorder correlation length and ξh, �h to
be the hull correlation length and hull perimeter, respectively,
[see Fig. 1(b)] we have

ξh

ξ
∼

(
ξ

h

)4/3

, (25)

�h

ξ
∼

(
ξh

ξ

)7/4

∼
(

ξ

h

)7/3

. (26)

One can think that current-carrying channels form a random
network, with ξh being the typical spacing between neigh-
boring nodes in the network and �h being the length of the
tortuous links between nodes.

With these results, we can again minimize the dissipated
power [Eq. (13)]; the only difference from the periodic case is
that the number of channels N ∼ Ly/ξh and the channel length
� ∼ (Lx/ξh)�h have nontrivial dependencies on the channel
width h. With these new estimates, we find

h

ξ
∼

(
T δns

2
ξ 2

8κη

)−1/6

∼ α−1/6. (27)

Surprisingly, the channel width h has the same scaling behav-
ior as in the periodic case. However, the scaling behavior of
the resistance is different, namely

ρ ∼ 2

e2

√
T η(mδs)2

n2ξ 2
(α1/6)7/3. (28)

Thus we obtain a similar result as the periodic case [Eq. (17)]
since N and � only provide an overall scaling factor of

(ξ/h)7/3 to the total power. Using the Fermi liquid scaling
relations as before, we find ρ ∝ T 10/3.

Conclusions. In this paper, we have analyzed the resistance
of hydrodynamic flow through both periodic and random
smooth potentials. We find a mechanism for linear-in-T resis-
tance associated with hydrodynamic flow through a periodic
potential, which we confirm by numeric simulations and vari-
ational calculations that allow us to precisely determine the
relevant prefactors for square-periodic and triangular-periodic
potentials. If systems can be made sufficiently clean, it may
be possible to engineer moiré potentials to see such a linear-
in-T resistance, similar to what has been seen near strongly
correlated phases of moiré systems [53,64,65,69,84–87]. For
generic random potentials, on the other hand, the tortuous
nature of the current paths leads to a resistance temperature
scaling of T 10/3. Such behavior may arise in a clean, hydro-
dynamic 2D electron system adjacent to a delta doping layer
or a substrate with dilute charged impurities.

Throughout this paper, we have assumed rotational in-
variance and Galilean invariance of the fluid (excluding the
smooth potential). We expect these assumptions to apply for
electron systems with nearly circular Fermi surfaces and at
sufficiently low temperatures that only one band of carriers is
relevant for conduction. In graphene and graphene multilay-
ers, these assumptions usually translate to a Fermi energy EF

that is low compared to the band width (for which the Fermi
surface becomes nearly circular) and a temperature that is low
compared to EF /kB. For specific moiré systems of interest,
one may need to weaken these assumptions to include effects
such as a noncircular Fermi surface [24,88] and intrinsic (or
incoherent) conductivity [39,40,89]. The loss of rotational
symmetry promotes viscosity from a scalar to a tensor, and the
inclusion of intrinsic conductivity will lead to an additional
dissipation mechanism to compete with the “thermal” and
viscous dissipation terms. We leave the treatment of these
additional effects to future work.
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