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Pairwise annihilation of Weyl nodes induced by magnetic fields in the Hofstadter regime
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Weyl semimetal, which does not require any symmetry except translation for protection, is a robust gapless
state of quantum matter in three dimensions. When translation symmetry is preserved, the only way to destroy a
Weyl semimetal state is to bring two Weyl nodes of opposite chirality close to each other to annihilate pairwise.
An external magnetic field can destroy a pair of Weyl nodes (which are separated by a momentum space distance
2k0) of opposite chirality, when the magnetic length lB becomes close to or smaller than the inverse separation
1/2k0. In this work, we investigate pairwise annihilation of Weyl nodes induced by an external magnetic field
which ranges from a small to a very large value in the Hofstadter regime. We show that this pairwise annihilation
in a Weyl semimetal featuring two Weyl nodes leads to the emergence of either a normal insulator or a layered
Chern insulator. In the case of a Weyl semimetal with multiple Weyl nodes, the potential for generating a
variety of states through external magnetic fields emerges. Our study introduces a straightforward and intuitive
representation of the pairwise annihilation process induced by magnetic fields, enabling accurate predictions of
the phases that may appear after pairwise annihilation of Weyl nodes.

DOI: 10.1103/PhysRevB.109.155142

I. INTRODUCTION

Weyl semimetals (WSMs) [1–10] are examples of three-
dimensional topological semimetals where nondegenerate
valence and conduction bands touch at an even number of
isolated points in the 3D Brillouin zone (BZ) called Weyl
nodes (WNs). Each WN carries a topological charge and has a
definite chirality. The fact that WNs carry nontrivial topologi-
cal charges leads to existence of special kind of surface states
called surface Fermi arc which joins the projections of WNs
of opposite chiralities onto the surface Brillouin zone (SBZ).

Weyl semimetal is a robust topological state of quantum
matter. When spatial translation symmetry is preserved, the
only way to destroy the state is to bring two WNs of op-
posite chiralities (or topological charges) close to each other
to annihilate them pairwise [1]. Weyl semimetals which are
known for many exotic properties such as chiral anomaly
[11–13], negative magnetoresistance [14–21], planar Hall ef-
fect [22–26], and Fermi arc mediated quantum oscillations
and 3D quantum Hall effect [27–36], require a presence of
external magnetic fields to exhibit the above mentioned prop-
erties. However, an external magnetic field, if strong enough,
can couple a pair of WNs of opposite chirality and can
potentially annihilate them to destroy the WSM state. The
authors in Refs. [37,38] found that pairwise annihilation of
WNs by external magnetic field can happen when the inverse
magnetic length l−1

B = √
eB/h̄ becomes close to or larger than

the momentum space separation 2k0 between the two WNs of
opposite chirality.

To investigate the pairwise annihilation of WNs induced
by external magnetic fields, the authors in Refs. [37,38]
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considered a simple model of WSM, with two WNs only, in
a continuum approximation. A Hamiltonian with two WNs
located at kw = (k0, 0, 0) and −kw may be approximated in a
continuum as

Hcon(k) = (
k2

0 − k2
x

)
σx + kyσy + kzσz. (1)

The WNs are separated along the kx axis and the distance
is 2k0 in momentum space. Pairwise annihilation of Weyl
nodes which causes a transition from gapless semimetal to
an insulator, has been also observed in the experiments by
measuring the resistivity of Weyl materials TaP [39] and TaAs
[40] at a high applied magnetic fields.

Working with the low-energy continuum Hamiltonian out-
lined in Eq. (1) for a WSM presents several limitations. Firstly,
the applicability of the continuum Hamiltonian in Eq. (1),
derived from the full lattice model of a WSM, is constrained
to situations where the separation 2k0 between the two Weyl
nodes is relatively small. Secondly, when dealing with strong
magnetic fields in the regime where the magnetic length lB
is comparable to the lattice constant denoted as a (Hofstadter
regime), any continuum approximation of the complete lattice
model exceeds its range of relevance. The efficacy of the low
energy continuum Hamiltonian in Eq. (1) for a WSM with
two Weyl nodes is confined to the conditions: �B � a and
1/2k0 � a.

The preceding discussion underscores the increasing com-
plexity associated with investigating pairwise annihilation of
WNs within a continuum model of WSMs featuring multiple
WNs (e.g., time-reversal preserved WSMs), especially when
multiple node separations are involved. Another crucial con-
straint is that a continuum model cannot anticipate the subse-
quent state following the pairwise annihilation of Weyl nodes.
This process may yield not only normal insulating states but
also states with nontrivial topological characteristics.
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Addressing the aforementioned challenges can be achieved
by exploring a lattice model of a WSM to investigate the pair-
wise annihilation of WNs induced by external magnetic fields.
The authors in Ref. [41], among other things, offered valuable
insights into this direction. In their work, they specifically ex-
amined a complicated lattice model of a time-reversal broken
WSM which involves many parameters, with a primary em-
phasis on constructing phase diagrams in the presence of com-
mensurate magnetic fields. Their findings revealed new phases
which include layered Chern insulator (LCI), insulator which
is trivial in the bulk but has counter propagating surface states
on certain open surface (I′), and a coexistent phase (W2′)
where Chern bands and WPs coexist with their own Fermi arc
surface states. The emergence of these diverse phases from a
given WSM state was not immediately apparent.

In examining the pairwise annihilation WNs, it is essential
to recognize that an external magnetic field, aligned with
the direction of separation between two WNs of opposite
chirality, cannot couple these two nodes. The possibility of
pairwise annihilation by an external field arises only when
the field is not parallel to the direction of separation between
two WNs of opposite chirality. To streamline the computa-
tion without sacrificing the essence of the problem, we will
presume that the external magnetic field’s direction is perpen-
dicular to the separation between two Weyl nodes of opposite
chirality.

In this work, first, we consider a simple model of time-
reversal broken WSM with only one parameter k0 (2k0 is
the separation between two WNs in the momentum space) to
understand how the pairwise annihilation of WNs induced by
external magnetic fields can lead to different states. We show
that the pairwise annihilation in a WSM with two WNs leads
to either a normal insulator (no surface states) or a layered
Chern insulator. Then based on the concept that a pair of
WNs (separated by 2k0) gets annihilated when lB ∼ 1/2k0,
we develop a model independent intuitive representation of
pairwise annihilation process (an example in Fig. 1) induced
by external magnetic fields. Importantly, this intuitive picture
of pairwise annihilation only requires information about the
Weyl nodes’ locations and the connectivities of Fermi arcs
in the surface BZ to accurately predict the phases which can
appear after pairwise annihilation of Weyl nodes. We apply
the intuitive picture of pairwise annihilation to demonstrate
how the states like LCI, I′ and W2′ can be straightforwardly
obtained from a simpler WSM state, without resorting to any
complicated model as was considered by Ref. [41].

Second, we consider a minimal model of time-reversal
preserved WSM with four Weyl nodes. The minimal model
with four WNs has two free parameters k1 and k2 which
provide momentum space separation between Weyl nodes of
opposite chirality. In a WSM with four WNs, there are three
distinct perpendicular directions in which a magnetic field can
be applied to induce pairwise annihilation of Weyl nodes.
We meticulously construct phase diagrams for each of the
three cases by solving the model with thorough effort. Sub-
sequently, we assert that these phase diagrams can be easily
derived from the intuitive representation of pairwise annihi-
lation of WNs, requiring only minimal information about the
WNs’ locations and the connectivities of Fermi arcs on the
surface BZ.

FIG. 1. An intuitive picture of how and when a normal insulator
(NI) and a LCI state appear after pairwise annihilation of two WNs
separated by a momentum space distance 2k0. (a) shows projections
of the WNs (black dots) and the Fermi arc in the kx-ky surface
BZ. The parameter 2k′

0 = 2π − 2k0 measure the inter-BZ separation
between the two WNs of opposite chirality. Two Weyl nodes get
pairwise annihilated by magnetic field when the inverse magnetic
length l−1

B becomes close to or larger then momentum space separa-
tion between them. There are two scenarios prevail. When k0 < k′

0,
the inverse magnetic length l−1

B first reaches the intra-BZ separation
2k0. In this case, when the magnetic field is increased, two WNs
approach each other along the Fermi arc to meet at a point inside
the BZ. This leads annihilation of the two nodes without leaving the
Fermi arc. Hence a normal insulator emerges. On the other hand, if
k0 > k′

0, pairwise annihilation occurs at the boundary of the BZ by
leaving the Fermi arc as depicted in (c). Hence a LCI state emerges.

We also touched upon pairwise annihilation of WNs in-
duced by magnetic fields in a WSM with six Weyl nodes.
We analyze a simple case where all the WNs are located in a
single plane. The intuitive picture of pairwise annihilation of
WNs immediately predicts emergence of two new coexistence
phases.

The plan of the paper is as follows. In Sec. II, we conduct
a thorough examination of pairwise annihilation of WNs by
external magnetic fields in a simple model of WSM with
two Weyl nodes (time-reversal broken case). Then in Sec. III,
we study the pairwise annihilation in a minimal model of
time-reversal preserved WSM with four WNs, which has two
free parameters—the separations between WNs of opposite
chirality. We discuss our findings in Sec. IV and summarize
them in Sec. V. In Appendix, we discuss about nature of the
insulating states which appear after pairwise annihilation of
WNs in the time-reversal preserved model.

II. TIME-REVERSAL BROKEN WSM

We consider the following lattice model of time-reversal
broken Weyl semimetal:

H (k) = (2 + cos k0 − cos kx − cos ky − cos kz )σx

+ sin kyσy + sin kzσz (2)

with minimal two WNs at kw = (k0, 0, 0) and −kw carrying
monopole charges C = 1 and −1, respectively. The two WNs
are separated along the kx axis by 2k0 and the parameter k0 lies
in the range 0 � k0 � π . It is easily checked that the Hamilto-
nian respects neither time-reversal or particle-hole symmetry.
However, the Hamiltonian is symmetric under space inversion
PH (k)P−1 = H (−k), with P= σx. Because of this inversion
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symmetry and mirror about the yz plane, the Fermi arc which
exist on kx-ky and kx-kz surface BZs is a straight arc joining
the projections of the two Weyl points [see Fig. 1(a)].

We want to investigate pairwise annihilation of WNs by
external magnetic fields for field’s strength which ranges all
the way from small (�B � a) to a very large value (�B ∼ a) in
the Hofstadter regime. Our goal is to identify the states that
emerge following the pairwise annihilation of Weyl nodes.
We know for sure that the pairwise annihilation in a WSM
with two WNs always leads to insulating states. The ques-
tion we are asking is what is the nature of these insulating
states. Specifically, we seek to determine whether the insulator
exhibits surface states and whether it possesses topological
nontriviality.

As outlined in the previous section, the applied magnetic
field which is not aligned along the direction of separation of
two WNs of opposite chirality can couple the nodes and hence
can potentially annihilate them. In our model (2), the Weyl
nodes are separated along the kx axis. To simplify the analysis,
we assume the magnetic field is aligned perpendicular to the x
axis, specifically aligned with the z axis. For a WSM with two
WNs separated along the kx direction, pairwise annihilation
induced by magnetic field applied along either the z or y
direction would result in identical sets of phases.

A. Hofstadter Hamiltonian and gapless solutions

An external magnetic field can be easily coupled to the
Hamiltonian in Eq. (2) by taking it to the real space,

H =
∑
n, j

c†(n)2Mσxc(n) − (c†(n + aê j ) Tj c(n) + H.c.)

(3)
where n = a(nx, ny, nz ), ni being integers, denote the lattice
sites, ê j is the unit vector along jth direction, and M = 2 +
cos k0. The hopping matrices Tj , j = (x, y, z), are given by
Tx = σx, Ty = σx + iσy and Tz = σx + iσz. The lattice constant
a is set to be unity for the rest of the paper.

In presence of an external magnetic fields, the hopping
terms in the Hamiltonian Eq. (3) pick up a nontrivial phase
factor under Peierls substitution [42]. For a uniform magnetic
field aligned in the z-direction B = Bẑ, we can choose to
work in the Landau gauge A = (−y, 0, 0)B, where only the
hopping in the x direction picks up a nontrivial phase so that
the Hamiltonian in a magnetic field is obtained from Eq. (3)
by the replacement Tx → exp(−i2πyφ/φ0)Tx. We restrict our-
selves to the case where the flux φ (in units of the magnetic
flux quantum φ0 = h/e) per unit cell is commensurate, i.e.,
φ/φ0 = Ba2/φ0 = p/q, where p and q are relatively prime, so
that translation symmetry along the y direction is restored with
a larger unit cell [43]. In order to diagonalize the Hamiltonian,
we introduce a magnetic unit cell that expands q times in
comparison to the original unit cell, elongating along the y
direction. Employing Fourier transformation in relation to the
Bravais lattice positions within the magnetic unit cell yields
following Hofstadter Hamiltonian:

Hφ =
q−1∑
α=0

c†
α (k)

[
f α
1 (k)σx + f α

3 (k)σz
]
cα (k)

− (c†
[α+1](k)eiqkyδ(α,q−1) Ty cα (k) + H.c.), (4)

where α = 0, 1, . . . , q − 1 are the sublattice indices in the
magnetic unit cell and k lies in the reduced (magnetic) Bril-
louin zone (MBZ), i.e., k: kx ∈ (0, 2π ), ky ∈ (0, 2π/q), kz ∈
(0, 2π ). The square bracket notation in c†

[α+1](k) implies that
the values of α are taken modulo q - i.e., [α] = α mod q. The
functions f α

1 and f α
3 are

f α
1 (k) = 2

(
M − cos

(
kx + 2π p

q
α

)
− cos kz

)
, (5a)

f α
3 (k) = f3(k) = 2 sin kz. (5b)

Note that there is only one free parameter k0 (enters
through M = 2 + cos k0) which determines the separation be-
tween the two WNs of opposite chirality in our zero field
model. Our goal is to determine the phase diagram for dif-
ferent values of p/q. The phase diagrams can be constructed
if we can find all the gapless points (band touching points) of
the Hofstadter Hamiltonian Hφ .

It is typically not possible to analytically determine the full
energy spectrum of a Hofstadter Hamiltonian for all combina-
tions of p and q values. However in some special cases, all the
zeros (gapless solutions) of a Hofstadter Hamiltonian can be
found for different values of p and q. Following Ref. [41], we
find the energy spectrum of Hφ

En(k) = ±
√

γn(k, p, q) + ( f3(k))2, (6)

which is symmetric about the zero energy, n = 1, 2, . . . ., q, is
the Landau level index and γn(k, p, q) � 0 for all k, p and
q. Clearly the zero energy solutions are given by f3(k) =
2 sin kz = 0 and γ1(k, p, q) = 0. The first condition tells that
band touching along the kz direction can occur only at kz = 0
and/or π . Though the quantity γ1(k, p, q) is not known explic-
itly (as a function of k, p and q), γ1(k, p, q) = 0 can be solved
exactly for all k, p and q values. Solving γ1(k, p, q) = 0, we
find band touching along the ky and kz directions can happen
only at ky = 0 and 0, respectively. We notice that the external
magnetic field (aligned along the z direction) did not alter the
band touching points along the ky and kz directions, i.e., the
touching point remains at ky = kz = 0. The corresponding kx

values are given by [41]

cos qkx = (−1)p[−Tq(g) + 2q−1], (7)

where g = 1 + cos k0 and Tq(g) is a Chebyshev polynomial
of degree q of first kind. The gapless solutions (exists only
when the right-hand side of Eq. (7) lies in the range [−1, 1])
describes isolated point touchings which are the Weyl nodes in
the theory. The WNs remain separated along the kx direction.
Note that though the integer p of flux p/q can change the sign
of the right-hand side of Eq. (7), it does not affect the region
of gapless solutions and hence the phase diagrams. In what
follows, we will assume p = 1, unless it is stated.

The region where Eq. (7) exhibits a continuous solution
(gapless solution) for various flux values is illustrated in
Fig. 2. As the flux 1/q varies, the system transitions between
gapped and gapless states for both small and large values of
k0. This process of gapping out the WNs can be elucidated
as follows. Initially, at zero field, the two WNs are situated
at kx = ±k0 along the kx axis. Upon introducing a magnetic
field, the new positions of these WNs within the magnetic BZ
are determined by the solutions of Eq. (7). With an increase
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FIG. 2. (a) Phase diagram of the time-reversal broken WSM [Eq. (2)] with two WNs in presence of commensurate flux φ/φ0 = 1/q
(magnetic flux quantum φ0 = h/e) per unit cell, for small q values (large fluxes) in the Hofstadter regime lB ∼ a. This phase diagram is
obtained from the gapless solution of the Bloch-Hofstadter Hamiltonian Eq. (4). Here k0 (in units of inverse lattice constant a) represents half
the distance separating the two Weyl nodes of opposite chirality. The regions with grey, blue and orange color represent a normal insulator
(NI), WSM and a LCI state respectively. (b) Energy gap 	 (in arbitrary unit) is plotted as a function of the separation parameter k0 for large q
values (small fluxes). (c) This phase diagram is derived with inputs from the Fig. 2(b). We notice a similarity between the two phase diagrams
for the small and large q values (details in the text).

in flux, the WNs gradually converge within the magnetic BZ
until, at a critical flux value, they meet and pairwise annihi-
late each other. This annihilation process leads to a smooth
evolution of the surface Fermi arc. The direction in which the
WNs approach each other depends on their initial separation
2k0: either towards the center or the boundary of the magnetic
BZ. When the WNs converge towards the center, the surface
Fermi arc fades away smoothly. Conversely, if they approach
the boundary of the magnetic BZ, the surface Fermi arc of the
WSM smoothly transitions into that of the LCI state.

B. Phase diagrams

The phase diagram, for a given flux 1/q, can be obtained
from the Eq. (7) by solving it for allowed k0 values such that
the right-hand side remains in the range [−1, 1]. The phase
diagram is shown in Fig. 2(a) for small q values. There are
two insulating regions in the phase diagram. We note that the
gapless condition (7) is not enough to determine the nature of
the two insulators in the phase diagram. We use numerics (to
compute Chern numbers and surface states) to find the nature
of the two insulators in the phase diagram. We will shortly see
that a simple intuitive representation of pairwise annihilation
of WNs by external fields can accurately predict the entire
phase diagram including the nature of the insulators.

The WSM state, which existed for k0 in the range 0 <

k0 < π , now in an applied magnetic field exists in a smaller
region [see Figs. 2(a) and 2(c)]. The WSM states with either
small or large separation of WNs get gapped out first by the
applied magnetic field and transform to insulators. The nature
of the resulting insulators depends on the separation and the
Fermi arc connectivity between the two WNs in the zero field
model. In our model, the Fermi arc is an intra-BZ straight arc
(along kx) joining the projections of WNs of opposite chirality
as shown in Fig. 1(a). We observe that a WSM state with
small separation between the WNs produces a normal insu-
lator, while a WSM state characterized by a large separation
between the WNs gives rise to a layered Chern insulator (LCI)

[41] after pairwise annihilation. The LCI state carries nonzero
Chern numbers C(kx ) = 1 for all kx values.

Let us take a closer look at the phase diagram Fig. 2(a)
for small q values (large fluxes). We notice that as q is de-
creased, the region of the gapless WSM state expands. From
physical point of view, this may seem counterintuitive because
the magnetic length lB = √

h̄/eB = √
qa (a lattice constant)

decreases with decreasing q and hence we expect the region
of the gapless WSM state in the phase diagram Fig. 2(a) to
contract with decreasing q (recall pairwise annihilation occurs
when lB � 1/k0). Actually, this behavior of the system for
small q values (very large fluxes) in the Hofstadter regime
lB ∼ a is not contradictory but is consistent with what we
expect in a lattice: The system should go towards the zero
field limit as we decrease q because in the limit q → 1, the
phase factor exp(−i2πy j p/q) (y j is an integer) in the hopping
term also approaches 1.

Now let us focus on higher q values (smaller fluxes) for
which the magnetic length is much larger than the lattice
constant. From the phase diagram Fig. 2(a), we see that the
gapless region shrinks as magnetic flux is increased (or as
q is decreased). From the gapless condition Eq. (7), we find
that the gapless region actually shrinks almost to a point for
q value as small as q ∼ 10. This implies that for q � 10 the
transition from the normal insulator to the LCI state goes
through a point instead of a region in the k0 space. So the
system remains gapless (WSM) only at the point k0c = r π

2
(r ≈ 0.84) for q � 10.

This apparently means that an applied magnetic field with
very large values of q i.e. an arbitrarily small field can destroy
a WSM state with two WNs of arbitrary separation. From a
physical point of view, an arbitrary small field cannot destroy
a WSM state. There must be some additional information
which is missing when we construct phase diagram from the
gapless condition Eq. (7) only. A crucial information which
is missing is that the energy gap (	), in the insulating states,
falls exponentially [41] with increasing q (decreasing flux).
Therefore to find the correct phase diagram for large values
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of q in the regime lB � a, we need to compute the energy
gap 	 as a function of k0 and q. We have computed the
energy gap 	 numerically as a function of k0 and plotted it
for a series of values of q in Fig. 2(b). Now we find that the
gapless WSM state exists in a finite region for a large value of
q = 200. We also see that the gapless region contracts as we
decrease the value of q from 200 to 100, 80, 60,...,10, which
is according to our expectation: with decreasing q (increasing
flux), the magnetic length lB = √

qa decreases and hence the
applied field annihilates a pair of WNs of higher and higher
separation.

In summary, we find that the analytically obtained gapless
condition produces correct phase diagram for small q val-
ues (very large fluxes) in the regime lB ∼ a. Since energy
gap (in the insulating states) decreases exponentially with
increasing q (decreasing flux), the gapless condition Eq. (7) is
not enough to obtain correct phase diagram for large values
of q in the regime lB � a. For large values of q (smaller
fluxes), we obtain phase diagram by computing the energy gap
numerically.

C. An intuitive representation of pairwise annihilation process

We have observed that pairwise annihilation of WNs in-
duced by external fields in a WSM with two WNs results in
a normal insulator when WNs are closed spaced. However,
a LCI state emerges when the separation between the two
WNs is large. The above result can be understood through
a simple picture based on the argument that a pair of WNs
get annihilated when the inverse magnetic length l−1

B becomes
close to or larger than the separation 2k0 between the two Weyl
nodes of opposite chirality. Note that in a periodic BZ, there
are two separations between two WNs of opposite chirality
located at (k0, 0, 0) and (−k0, 0, 0): (i) intra-BZ separation
2k0 and (ii) inter-BZ separation 2k′

0 = 2π − 2k0. Clearly it
is the shorter separation which determines how the pair will
be annihilated by the applied field. Now consider a WSM
with k0 < k′

0. In this case, the inverse magnetic length l−1
B

will first reach 2k0. As magnetic field is increased, two WNs
approach each other along the Fermi arc to meet at a point
inside the BZ and get annihilated without leaving the Fermi
arc (demonstrated in Fig. 1). This results in the formation of
a normal insulator which possesses no surface states. On the
other hand if k0 > k′

0, the inverse magnetic length l−1
B will

first hit 2k′
0 and consequently the pair of WNs is expected to

get annihilated at the boundary of BZ by leaving the surface
Fermi arc states. This results in a LCI state. The process is
demonstrated in the Fig. 1. Note that the maximum separation
occurs when k0 = π/2 or k′

0 = π/2. This implies that a very
strong field is needed to destroy a WSM in which WNs are
separated by a distance 2k0 = π . This is the reason why the
WSM state survives in the central region of the phase diagram
Fig. 2 in presence of an external magnetic field.

Here we want to point out that the region, in which the
WSM state survives, shrinks with the increase in the strength
of the field. At certain field values (around q ∼ 10), this region
contracts to a singular point. Based on the reasoning presented
in the preceding paragraph, it is anticipated that this point is
positioned at k0 = π/2. On the contrary, in the model we have
considered, the gapless region shrinks to the point k0c = r π

2 ,

r ≈ 0.84, as mentioned earlier. It is important to note that we
do not consider this value of k0c to be universally applicable
to all WSMs; rather, it may be contingent on specific yet
unknown details of the considered model.

D. Pairwise annihilation in a WSM with multiple Weyl nodes

Examining pairwise annihilation becomes more challeng-
ing as the count of WNs rises because of a corresponding
increase in the model’s free parameters. Despite this com-
plexity, the intuitive insights gained from studying pairwise
annihilation in a WSM with two nodes can be readily extended
to predict potential new states which can result in after pair-
wise annihilation in a WSM with multiple nodes. To illustrate
let us consider a WSM with four Weyl nodes placed in a
magnetic field which is aligned along the z direction. For sim-
plicity, let us assume all the four Weyl nodes are located in the
kx-ky plane at a constant kz = 0, and they are at a maximum
separation of π along the ky direction. Clearly, maximum
information about the location of the WNs are retained when
they are projected on the kx-ky surface BZ. Projections of
the WNs with an illustrative Fermi arc connectivity on the
kx-ky surface BZ are depicted in Figs. 3(a) and 3(d). Since
the WNs are located at the maximum separation along the ky

direction, the relevant separation parameters are k01 and k02

as shown in Fig. 3(a). Suppose k02 > π/2 and also k02 � k01.
Now if k′

02 < k01, then the magnetic length will first hit k′
02.

In this situation as magnetic field is increased, the two WNs
(separated by k02) will approach each other across the BZ
to meet at the boundary of the BZ. This results in pairwise
annihilation of the two WNs (separated by k02) by leaving
the Fermi arc states. Thus we get a state with two WNs but
with an additional surface Fermi arc [see Fig. 3(b)]. This state
is a coexistent phase called W2′ which Ref. [41] found in
a complicated model with many parameters. Now consider
k′

02 > k01. In this case, the pairwise annihilation of the two
WNs separated by k01 leads to a WSM state with only two
Weyl nodes as demonstrated in Fig. 3(c).

Now it is clear that if k01 = k02, then their pairwise annihi-
lation by external magnetic fields would result either a normal
insulator or an insulator (called I′) with counter propagating
surface states as shown in Fig. 3(f).

For a magnetic field along the y direction, the separation
parameters k01 and k02 are relevant only. In this case, the
separation of the WNs along the ky direction is completely
irrelevant for pairwise annihilation of WNs. Hence, pairwise
annihilation by magnetic fields aligned in the y direction
would result in an identical set of phases as the previous case.
We study this case in the Sec. III B in details.

The authors referenced in Ref. [41] explored an intricate
model of a WSM featuring eight Weyl nodes. They success-
fully addressed the complexities of the multiparameter model
and identified phases such as W2′ and I′ in the presence of a
magnetic field. In our work, we have demonstrated how these
phases could be derived from a simpler WSM model with only
four Weyl nodes. Crucially, our approach does not rely on a
particular model; instead, all that is necessary is knowledge
of the WNs’ positions and the Fermi arc connectivity in the
surface BZ. This enables us to precisely predict the potential
phases that may emerge in the presence of an external field.
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FIG. 3. An intuitive representation of pairwise annihilation process of WNs of opposite chirality by an external magnetic field. Fig-
ures (a) and (d) show the projections of the WNs (black dots) and the Fermi arcs on the kx-ky surface BZ. For a magnetic field aligned in
the y-direction, separations of WNs along the kx direction are relevant for pairwise annihilation. 2k01 and 2k02 are the intra-BZ separations and
2k′

01 = 2π − 2k01 and 2k′
02 = 2π − 2k02 are the corresponding inter-BZ separations. If k′

02 < k01, the pair of WNs separated by 2k02 will be
annihilated at the boundary of BZ by leaving the Fermi arc states. Thus a coexistence phase W2′ emerges (see figure (b)). If k′

02 > k01, then
the pair of WNs separated by 2k01 will be annihilated at some point inside the BZ without leaving the Fermi arcs. This results in a WSM
(labelled W2) with two Weyl nodes (see (c)). Suppose k01 = k02 = k0 as shown in (d). Now, it is clear that a normal insulator (NI) emerges
when k0 < k′

0, and an insulator (I′) with counter propagating surface states appears when k0 > k′
0. Note that we would get the same set of

phases if the magnetic field was aligned in the z direction, provided the separations of the WNs along the ky direction is kept maximum.

E. Effect of Zeeman energy on the phase diagram

So far, we have completely ignored effect of Zeeman en-
ergy on the phase diagram. For a magnetic field along the
z direction, the Zeeman term (HZ ) would be proportional
to the σz i.e. HZ = EZσz, where EZ ∝ 1/q. Addition of this
term to the Hofstadter Hamiltonian Eq. (4), will modify
only the quantity f α

3 (k) → f α
3 (k) + EZ . Therefore the band

touching along the kz direction will move from the point
kz0 = 0 to kz0 = sin−1(EZ/tz ) (hopping along the z direction
is parametrized by tz). This change in band touching along the
kz direction flows to the quantity f α

1 (k) to cause a shift in the
parameter k0. The final result is that the critical point k0 = k∗

0 ,
at which a transition from WSM to insulator occurs, moves
with the change in the Zeeman energy. Of course, this would
not give any new phase but can move the phase boundary.

III. TIME-REVERSAL PRESERVED WSM

In the previous section, we have explored pairwise an-
nihilation in a WSM with two Weyl nodes. A WSM with
two WNs necessarily breaks time-reversal symmetry. In this
section, we want to examine pairwise annihilation of WNs
induced by external magnetic fields in a time-reversal pre-
served Weyl semimetals. A minimal model of time-reversal
preserved WSM has four Weyl nodes. Now there will be two
independent separation parameters (see Fig. 4). In Sec. II D,
We have briefly looked at pairwise annihilation in a WSM
with four WNs through an intuitive picture of pairwise an-
nihilation. We restricted ourselves to a case where separation
of the WNs along the ky direction was fixed to simplify the
analysis. We predicted emergence of an insulator, labeled I′,
with counter propagating surface states [see Figs. 3(d)–3(f)].
Here we will verify this prediction. Below we explore pair-
wise annihilation in a WSM with four WNs in full details.
The separations along both the kx and ky directions will be
considered as free parameters in the theory.

To study pairwise annihilation of WNs in a time-reversal
preserved WSM by external magnetic field whose strength can
range all the way from small (lB � a) to a very large value

in the Hofstadter regime (lB ∼ a), we consider the following
lattice model of WSM

H (k) = (cos k2 − cos ky)σy + sin kzσz

+ (1 + cos k1 − cos kx − cos kz )σx, (8)

with a minimal of four WNs located at kw1 = (k1, k2, 0),
−kw1 , kw2 = (k1,−k2, 0), and −kw2 . They all lie in the same
kx-ky plane at kz = 0. The two Weyl nodes at kw1 and −kw1

are time-reversal partner of each other and they carry identical
chiral charge χ = 1. On the other hand the pair kw2 and −kw2

carries opposite chiral charge χ = −1. The projections of the
WNs with the Fermi arcs on the kx-ky surface BZ are depicted
in the Fig. 4.

Here σ ’s, which are the two by two Pauli matrices, repre-
sent pseudo-spin degree of freedom. Time-reversal symmetry
T H (k)T −1 = H (−k) is realised by T = iσxK, where K acts
by taking complex conjugation of any quantities appearing on
the right of it.

Now we are ready to couple magnetic field to the Hamilto-
nian in Eq. (8) to study pairwise annihilation of WNs induced
by the orbital field. Unlike the time-reversal broken model
with two WNs, here in the time-reversal preserved model with

FIG. 4. Projections of the WNs and the Fermi arcs on the kx-ky

surface BZ of the model in Eq. (8). The arrows indicate that the states
on the two Fermi arcs are counter propagating. Clearly, there are two
separations 2k1 and 2k2 between Weyl nodes of opposite chirality.

155142-6



PAIRWISE ANNIHILATION OF WEYL NODES INDUCED … PHYSICAL REVIEW B 109, 155142 (2024)

four WNs, the external magnetic field applied along any of the
three axis direction can couple the WNs and can potentially
annihilate them. The minimal model Eq. (8) has two free
parameters k1 and k2 which provide separations of WNs of
opposite chirality as shown in the Fig. 4. For magnetic field
applied along the y direction (x direction), the separation pa-
rameter k1 (k2) is relevant only. This case is similar to the two
WNs’ problem where we had only one separation parameter.
For magnetic field along the y direction, the intuitive picture
of pairwise annihilation immediately tells that the new state
which appears after pairwise annihilation is either a normal
insulator or the insulator I′ with counter propagating surface
states [see Fig. 3(f)]. We will verify our prediction by solv-
ing the model for phase diagrams in presence of an external
commensurate magnetic field.

For magnetic field along the z direction, both the separation
parameter plays significant role in pairwise annihilation of
Weyl nodes. First, we solve this model for phase diagrams
in presence of an external commensurate magnetic field along
the z direction. Then, we argue that the phase diagrams can be
derived, based on the intuitive picture of pairwise annihilation
of WNs induced by external magnetic field.

A. Field along z direction

For a constant magnetic field B = Bẑ, we can choose the
Landau gauge A = (−y, 0, 0)B to work with. After going
through same exercise as in Sec. II, we arrive at the following
Hofstadter Hamiltonian:

H (z)
φ =

∑
k

q−1∑
α=0

c†
α (k)

[
f α
1 (k)σx + f α

2 (k)σy + f α
3 (k)σz

]
cα (k)

− (c†
[α+1](k)eiqkyδ(α,q−1) Ty cα (k) + H.c.) (9)

for commensurate flux φ/φ0 = 1/q per unit cell. The func-
tions f α

i (k), i = 1, 2, 3 are given by

f α
1 (k) = 2

(
M − cos

(
kx + 2π p

q
α

)
− cos kz

)
, (10a)

f α
2 (k) ≡ f2(k) = 2 cos k2, (10b)

f α
3 (k) ≡ f3(k) = 2 sin kz, (10c)

where M = 1 + cos k1 and the hopping matrix Ty in the
second term of H (z)

φ is Ty = σy. The Hamiltonian H (z)
φ is

to be diagonalized in the magnetic BZ: kx ∈ (0, 2π ), ky ∈
(0, 2π/q), kz ∈ (0, 2π ). We want to find all the gapless points
in energy spectrum (band touching points) to construct the
phase diagrams for different values of q. In the the basis � =
(ψ↑, ψ↓)T , where ψs = (c0,s(k), c1,s(k), . . . , cq−1,s(k))T and
s ≡ (↑,↓), the Hofstadter Hamiltonian H (z)

φ can be expressed

as H (z)
φ = ∑

k �†(k)hφ (k)�(k), where hφ (k) (matrix of di-
mension 2q × 2q) has the following structure

hφ (k) =
(

A B
C D

)
, (11)

where the diagonal blocks A = −D = 2 sin kzIq are propor-
tional to identity Iq of dimension q × q, and

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

m0 u 0 0 . . . ueikyq

u m1 u 0 . . . 0
0 u m2 u . . . . . .

.. .. .. .. .. ..

0 0 . . . u mq−2 u
ue−ikyq 0 . . . . . . u mq−1

⎤
⎥⎥⎥⎥⎥⎥⎦

= C†.

(12)

Here mα = f α
1 (k) − i f α

2 (k), α ∈ [0, q − 1], and u = −i. We
will refer the matrix hφ (k) as the Bloch-Hofstadter Hamil-
tonian. The eigenvalues E (k) (energy spectrum of the
Hamiltonian H (z)

φ ) of the Bloch-Hofstadter Hamiltonian are
given by

det

[
A − E (k)Iq B

C D − E (k)Iq

]
= 0. (13)

Since the diagonal blocks commutes with the off-diagonal
blocks, the above condition reduces to

det(γ Iq − BB†) = 0, (14)

where we have used ÃD̃ = γ Iq, γ = E2(k) − ( f3(k))2. Note
that γ is the eigenvalue of the positive definite matrix BB†, so
γ � 0. The energy spectrum is

En(k) = ±
√

γn(q, k) + ( f3(k))2, (15)

where n = 1, 2, 3, . . . q, are the Landau level indices. Clearly
the spectrum is symmetric about the zero energy. Therefore
the gapless points between the highest occupied and lowest
unoccupied bands are given by E1(k) = 0, which leads to
two separate conditions f3(k) = 2 sin kz = 0 and γ1(q, k) =
0. The first condition tells that band touching along the kz

direction can occur only at kz0 = 0 and/or π . Band touchings
along the kx and ky directions can be found from Eq. (14) by
setting γ = 0. Then Eq. (14) reduces to

det(B) = 0, (16)

which is to be solved for a fixed q to find the kx and ky values
at which band touching can occur. Analyzing the condition
in Eq. (16), we find that kz0 = π is not an allowed solution.
Therefore band touching, if occurs in presence of magnetic
field, along the kz remains at kz0 = 0. For the case of the
Hofstadter Hamiltonian in Eq. (4), a special form of the matrix
Ty = σx + iσy brought B in (almost) triangular form which
made us possible to solve the above equation for arbitrary
values of flux 1/q. This is not the situation for the present
case. Nevertheless we can make a progress for small q val-
ues, where the Eq. (16) can be solved by brute force. We
have learned in Sec. II that the exact solution for the zeros
of the Bloch-Hofstadter Hamiltonian produces correct phase
diagram in the Hofstadter regime lB ∼ a (i.e., small q values)
only. For large q values (small fluxes) in the regime lB � a,
we construct the phase diagrams numerically by computing
the energy gap as a function of the two parameters k1 and
k2. Below we analytically compute the zeros of the Bloch-
Hofstadter Hamiltonian to construct phase diagrams for small
q values q = 2, 3, 4, and 5 only.
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FIG. 5. Phase diagrams in Figs. 5(a)–5(d) for small q = 2, 3, 4, and 5 are obtained from the gapless (analytical) solutions of the Bloch-
Hofstadter Hamiltonian Eq. (9). The dark-blue region(s) represent a gapless phase which is a WSM for q = 3, 5 (odd) and nodal line semimetal
for q = 2, 4 (even). The white region represent a normal insulator. For larger q values (smaller fluxes), the phase diagrams can be derived by
computing the energy gap as a function of the two separation parameters k1 and k2. The bulk energy gap (in arbitrary units) is computed
numerically and plotted in Figs. 5(i)–5(l) for different values of flux 1/q. The dark-blue regions represent a gapless phase. All the insulating
regions (in yellow) are adiabatically connected. For large q value, say q = 81, we notice that the insulating regions appear where |k1 − π/2| ∼
π/2, k2 ∼ π/2 or k1 ∼ π/2, |k2 − π/2| ∼ π/2.

1. q = 2

Since the magnetic field is aligned along the z direction,
band touching point along the kz direction remains at kz0 = 0
for all q values. The corresponding kx and ky values for q = 2
are given by the condition

det

[
m0 u(1 + e−iqky )

u(1 + eiqky ) m1

]
= 0 (17a)

m0m1 − 2u2(1 + cos qky) = 0, (17b)

which can be simplified to a set of two conditions

cos qkx − cos qky = 2(cos2 k1 − cos2 k2), (18a)

cos k1 cos k2 = 0, (18b)

We notice that the momenta kx and ky appear only in
the first of the two conditions above. Therefore the gapless
solution (if exists for some k1 and k2) describes a nodal line
semimetal. The nodal line is located in the plane kz = 0. The
full gapless solution is shown as a shaded region in Fig. 5(a).

The nodal line semimetal is not a stable phase. A small
change in the parameters k1 and k2 immediately gaps out the
state.

2. q = 3

Solving det(B) = 0 for q = 3, we get the following two
conditions:

cos qkx = F3(cos k1, cos k2), (19a)

cos qky = F3(cos k2, cos k1), (19b)

which kx and ky must satisfy in order to have gapless solu-
tion. The function F3(u, v) = 12uv2 − 4u3. Recall that bands
touching along the kz direction can occur only at kz0 = 0.
Therefore bands touching happens only at kz0 = 0 and the
corresponding kx, ky values are determined by Eqs. 19(a) and
19(b). Clearly the solution space describes point touchings
which are the Weyl points in the theory. A gapless solution
exists in a finite region in the k1-k2 space as shown in Fig. 5(b).
The full phase diagram consists of only two phases: a
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topologically trivial insulating state and a gapless phase which
is a WSM.

3. q = 4

Solving det(B) = 0 for q = 4, we get the following two
conditions for bands touching:

cos qkx + cos qky = 8(cos4 k1 − 6 cos k1
2 cos2 k2

+ cos4 k2) + 2, (20a)

cos k1 cos k2(cos2 k1 − cos2 k2) = 0. (20b)

We notice that the kx, ky values, at which bands touch-
ing can occur, are solely determined by the first condition
Eq. (21a) (provided the second condition is satisfied). The
second condition, which involves only the two parameters k1

and k2 but no momenta, forces the gap closing to occur only
on a contour (not a region) in the k1, k2 parameters space.
Since the kx, ky values for bands touching are determined by
only an one condition, the gapless solution describes nodal
line semimetal. This is similar to what we have seen for the
case of q = 2. The full phase diagram [depicted in Fig. 5(c)]
consists of only two phases: a topologically trivial insulator
and a gapless state which is a nodal line semimetal.

4. q = 5

Solving det(B) = 0 for q = 5, we get the following two
conditions for a gapless solution:

cos qkx = F5(cos k1, cos k2), (21a)

cos qky = F5(− cos k2, cos k1), (21b)

where F5(u, v) = 16u(u4 − 10u2v2 + 5v4) + 5u(1 + √
5)/2.

Similar to the case of q = 3, bands touching for q = 5 occurs
at isolated points in the BZ: kz = 0, and kx, ky values are
given by the simultaneous solution of Eqs. (21a) and (21b).
The band touching points are the Weyl points in the theory.
Gapless solution exists in a finite region in the k1-k2 space
as shown in Fig. 5(d). Like the phase diagram for q = 3, the
phase diagram for q = 5 [see Fig. 5(d)] also consists of a
WSM phase and a topologically trivial insulating phase only.

Finding gapless solution analytically becomes challenging
as q increases. For q > 5, the phase digram can be understood
by computing the energy gap as a function of k1 and k2.
The result is shown in the second and third row of Fig. 5.
We find that every insulating region is adiabatically con-
nected, and all gapless regions characterize the same phase.
For any odd values of q = 1, 3, 5, 7, 9, . . . , the gapless
regions describe a Weyl semimetal state. Though for small
and even values of q = 2, 4, 6, . . . , the gapless regions
describe a nodal line semimetal state, for large values of q,
the system, in the gapless regions, behaves like a WSM in
terms of the low energy dispersion. When q is significantly
large (lB � a), it becomes challenging to differentiate the
low energy spectra between even and odd values of q. As
q increases, the energy bands along the kx, ky directions be-
comes flatter [41]. For large q values in the regime lB � a
(semiclassical regime), the bands along the kx, ky directions
become almost flat to form dispersionless Landau levels as
expected from the continuum approximation in the semiclas-
sical regime [17,44–46]. For an illustration, energy dispersion,

FIG. 6. Bulk energy dispersion E (in arbitrary units) of the
Hofstadter Hamiltonian H (z)

φ , Eq. (9), for q = 40. The separation
parameters are k1 = 2.0 and k2 = 1.4. For each of the plots, one
of the momenta is allowed to vary, and the other ones are fixed
at kx = 0.3π/q, ky = 0.2π/q and kz = 0.1π appropriately. Energy
bands along the kx and ky directions form flat Landau levels.

for q = 40, along all the three kx, ky, kz directions are depicted
in Fig. 6.

From the phase diagrams for large q values, we observe
that the WSM state gets gapped out in some specific regions
in the k1-k2 parameter space and the area of the insulating
region increases with the strength of the applied magnetic field
|B| ∝ 1/q. Let us closely examine the phase diagram for q =
100 [Fig. 5(l)], and focus on how the phase diagrams evolve
as the value of q decreases.. We notice that regions, where
|k1 − π/2| ∼ π/2 and k2 ∼ π/2 are gapped. Similarly, the re-
gions where k1 ∼ π/2 and |k2 − π/2| ∼ π/2 are also gapped.
However, the region in which k1 ∼ π/2 and k2 ∼ π/2 re-
mains gapless (WSM). As q decreases [see Figs. 5(i) and
5(j)], the areas of the gapped insulating regions increase and
simultaneously the areas of the gapless regions decrease. All
these can be understood from the very fundamental concept
that a pair of WNs of opposite chirality, which are separated
by a momentum space distance 2k0, annihilates each other
when the magnetic length lB = √

qa hits the inverse separa-
tion 1/2k0. Clearly the regions with either small k1 or small k2

values will be gapped out first after pairwise annihilation of
Weyl nodes. Recall when k1 > π/2 or k2 > π/2, one should
compare the momentum space distances k′

1 = π − k1 and
k′

2 = π − k2 with the inverse magnetic length. Therefore the
regions with either |k1 − π/2| ∼ π/2 or |k2 − π/2| ∼ π/2
will be gapped out first. The separations between WNs of op-
posite chirality are maximum in the central region k1 ∼ π/2
and k2 ∼ π/2. This is the reason why it requires a very strong
fields to gap out the central region.

An interesting tension occurs when k2 ≈ k1 or
k2 ≈ π − k1. In this situation a single WN of chirality χ

gets simultaneously coupled with two WNs of chirality −χ .
This leads to an effective coupling between two WNs of same
chirality. Since a WN cannot annihilate another WN of same
chirality, we get a partial annihilation of WNs along the line
k2 ≈ k1 or k2 ≈ π − k1 in the phase diagrams.

What is common among all the phase diagrams is that
there are only two phases: an insulator and a gapless state.
Let us focus on a phase diagram for a particular value of
q = 40. The entire insulating region in the phase diagram
may be split into four subregions: left, right, top and bot-
tom insulating regions. From the intuitive picture of pairwise
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FIG. 7. (a) The Fermi arcs and the projections of the WNs on the
kx-ky surface BZ of the WSM defined in Eq. (8). For magnetic field
along y direction, the separation parameter k1 is relevant for pairwise
annihilation of Weyl nodes. If k1 < k′

1, pairwise annihilation of the
WMs, which occurs at a point inside the BZ, does not leave the Fermi
arc states. Hence a normal insulator results in. If k1 > k′

1, pairwise
annihilation occurs at the boundary of the BZ by leaving the Fermi
arc states. Hence, the insulator I′ emerges.

annihilation of WNs, we expect the insulators which are living
in the left, top, and bottom regions will not have any surface
states. The reason is the following. In the left region where
k1 � π/2 and k2 ∼ π/2, the separation parameter k1 is rel-
evant for pairwise annihilation. In this case, WNs which are
separated by 2k1 get pairwise annihilated at some point inside
the BZ. Hence no Fermi arc states are left. In the bottom
region (k2 � π/2) and top region (k2 ∼ π ), the separation
parameter k2 is relevant for pairwise annihilation. Since the
Fermi arcs are counter propagating, pairwise annihilation of
WNs either at a point inside the BZ or at the boundary of
the BZ cannot leave the Fermi arc states. We have verified
this numerically. However, the insulator, which is living in
the right insulating region where k′

1 � k1 and k2 ∼ π/2, can
have surface states in accordance with our intuitive picture
of pairwise annihilation of Weyl nodes (see Appendix for
details). The bulk of this insulating state is of course trivial and
the state is adiabatically connected to the adjacent insulating
states.

B. Field along y direction

An external magnetic field oriented in the y direction can-
not couple WNs which are separated along ky direction. In
this case, the crucial separation to consider for pairwise anni-
hilation of WNs is k1. The current problem can be thought
of as a two copies of a two WNs’ problem, similar to the
time-reversal broken case studied in the Sec. II. Here, the
separation parameter k1 plays the role of the parameter k0

of the time-reversal broken case [see Eq. (2)] with two Weyl
nodes. The intuitive picture of pairwise annihilation of WNs
[see Figs. 7 and also Figs. 3(d)–3(f)] immediately tells that
the phase which appear after annihilation is either a normal
insulator or an insulator (I′) with counter propagating surface
states on the kx-ky surface BZ. In the following, we verify this
prediction by solving the model for phase diagram in presence
of commensurate magnetic fields.

We choose to work with the Landau gauge A = (z, 0, 0)B.
In this choice of gauge, the Hofstadter Hamiltonian takes the
following form (after a unitary rotation in σ ’s space about the

x direction)

H (y)
φ =

∑
k

q−1∑
α=0

c†
α (k)

[
f α
1 (k)σx + f α

3 (k)σz
]
cα (k)

− (c†
[α+1](k)eiqkzδ(α,q−1) Tz cα (k) + H.c.), (22)

for commensurate flux φ/φ0 = 1/q per unit cell. The func-
tions f α

1 (k), f α
3 (k) are given by

f α
1 (k) = 2

(
M − cos

(
kx + 2π

q
α

))
, (23a)

f α
3 (k) ≡ f3(k) = 2(cos k2 − cos ky), (23b)

where M = 1 + cos k1 and the hopping matrix Tz = σx − iσy.
Note that the Hofstadter Hamiltonian H (y)

φ is defined in the
magnetic BZ: kx ∈ (0, 2π ), ky ∈ (0, 2π ), kz ∈ (0, 2π/q). We
can obtain the phase diagrams by solving the spectrum for
gapless points. Writing H (y)

φ in a matrix form [same as
Eq. (11)], we obtain A = −D = 2(cos k2 − cos ky)Iq and the
block matrix B of the Bloch-Hofstadter Hamiltonian hφ (k) is

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m0 −2 0 0 . . . 0

0 m1 −2 0 . . . 0

0 0 m2 −2 . . . . . .

.. .. .. .. .. ..

0 0 . . . 0 mq−2 −2

2e−iqkz 0 . . . . . . 0 mq−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (24)

is almost an upper triangular matrix except the element
2e−ikzq.

The quantity mα , α = 0, 1, 2, . . . (q − 1), is equal to f α
1 (k)

i.e. mα = f α
1 (k). The Landau level energy spectrum is

En(k) = ±
√

γn(q, k) + ( f3(k))2, (25)

where γn(q, k) � 0 are the eigenvalues of the positive definite
matrix BB†, and n = 1, 2, 3, . . . are the Landau level in-
dices. Since the spectrum is symmetric about the zero energy,
band touching points are given by the zero energy solutions.
Clearly, for zero energy, we must have (i) f3(k) = 2(cos k2 −
cos ky) = 0 and (ii) γ1(q, k) = 0. We see from the (i) condi-
tion that the band touching along the ky direction remains at
ky0 = ±k2 as we expected. The corresponding kx and kz values
at which band touching can occur are determined by the (ii)
condition. The condition (ii) tells that the determinant of the
matrix B must vanish. Since B is almost an upper triangular,
the determinant can be easily evaluated to be

det(B) =
∏
α

mα − 2qe−iqkz

= 2(Tq(g) − cos qkx ) − 2qe−iqkz , (26)

where Tq(g) is a Chebyshev polynomial of first kind of degree
q, and g = M = 1 + cos k1. Setting det(B) = 0 and compar-
ing its real and imaginary parts, we arrive at the following two
conditions

sin qkz = 0, (27a)

cos qkx = Tq(g) − 2q−1 cos qkz. (27b)
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FIG. 8. Phase diagrams of the time-reversal preserved WSM [Eq. (8)] with four WNs in presence of 1/q commensurate flux per unit
cell, along the y direction. k1 and k2 are the separation parameters (in units of the inverse lattice constant a) between Weyl nodes of opposite
chirality. The shaded areas in grey, blue, and orange signify a normal insulator, Weyl semimetal, and an insulator (I′), respectively. The latter
exhibits counterpropagating surface states along the open surface in the z direction.

The condition sin qkz = 0 gives two values of kz0 = 0 and π/q
at which gap closing can happen. However, the solution kz0 =
π/q does not satisfy the condition Eq. (27b) because the right
hand side of Eq. (27b) is always greater than the unity for all
q’s. Therefore band touching along the kz direction remains at
kz = 0 and the corresponding kx values are given by

cos qkx = Tq(g) − 2q−1. (28)

We notice that this condition is identical to the condition
in Eq. (7) for the time-reversal broken case with two WNs,
provided, we have made the replacement k0 → k1. The above
condition describe a region in the k1 parameter’s space for
gapless solutions. The gapless phase describes the Weyl
semimetal state. The full phase diagram is shown in Fig. 8
for multiple values of q. We notice that the phase diagrams
are very similar to the phase diagrams of time-reversal broken
case with two WNs. Now the WSM state has four WNs and
the LCI state is to be replaced by the insulator I′ which has
a pair of counter propagating Fermi arc surface states which
are separated by a distance k2 along the ky direction in the
kx-ky surface BZ. This confirms our prediction derived from
the intuitive picture of pairwise annihilation: The phase which
results in after pairwise annihilation by magnetic field aligned
along the y direction is either a normal insulator or an insu-
lator (I′) with counter propagating surface states on the kx-ky

surface BZ.

C. Field along x direction

For magnetic field aligned along the x direction, the separa-
tion parameter k2 is relevant for pairwise annihilation of Weyl
nodes. We do not need to go through the whole calculation
to find what would be the possible phases. We can easily
guess the phase diagram from the intuitive picture of pairwise
annihilation of Weyl nodes. In the zero field model, the Fermi
arcs join projections of WPs which are separated along the kx

direction. Since the two Fermi arcs are counter propagating,
the insulator which results in after pairwise annihilation of
WNs either at a point inside the BZ or at the boundary of
the BZ will be devoid of surface states. Therefore the phase
diagram should consist of of two insulating regions (repre-
senting normal insulators which have no surface states) which
are separated by a WSM phase in the central region.

IV. DISCUSSION

We have explored the minimal model of time-reversal bro-
ken and time-reversal preserved WSM with two and four WNs
respectively to demonstrate how phase diagrams in presence
of an external magnetic fields can be derived from an intuitive
picture of pairwise annihilation of Weyl nodes. As the num-
ber of WNs increases, the complexity of solving the model
to determine the phase diagram grows due to the escalating
number of free parameters. The true strength of the intuitive
representation of the pairwise annihilation process lies in its
independence from intricate model details. It only necessitates
information about the locations of WNs and Fermi arc connec-
tivities in the surface BZ to predict the potential phases that
may emerge after pairwise annihilation induced by magnetic
fields.

Let us consider a WSM with six WNs and see if there is
any new phase which was not there in the previous models
with two and four Weyl nodes. Imagine all the WNs are
located at the kx-ky plane at kz = 0. Suppose the Fermi arcs
connect the projection of WNs which are separated along
the kx direction as depicted in Fig. 9. Assume the magnetic
field is applied along the y direction so that the separation k1

and k2 (as in Fig. 9) are relevant for pairwise annihilation.
We have considered two scenarios. In the first scenario, we
have k1 � π/2 and k2 ∼ π → k′

2 � π/2. Now depending
on the relative values of k1 and k′

2, the pairwise annihilation
by magnetic field results in either an insulator (I′) or a new
coexistent phase W2′′. The second scenario, where we have
k1 ∼ π → k′

1 � π/2 and k2 � π/2, results in either a WSM
state with two WNs or a new coexistence phase W4′. So we
find that, in a WSM with six WNs, pairwise annihilation of
WNs by external fields can lead to at least two new phases
which were not possible in a WSM with two and four Weyl
nodes.

We have seen that the pairwise annihilation of WNs by
external field in a WSM results in a state which can be an
insulator (e.g., NI, LCI, I′), a coexistence phase (e.g., W2′,
W2′′, W4′) or a WSM with reduced number of Weyl nodes.
A pertinent question arises: are there any experimental signa-
tures of these transitions? One potential quantity to investigate
is the magnetoconductance. For example, the transition from
a WSM state to a normal insulator can be distinguished from
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FIG. 9. An intuitive representation of pairwise annihilation of WNs by external magnetic field in a WSM with six Weyl nodes. Fig-
ures (a) and (d) depict the projections of the WNs (black dots) and the Fermi arcs in the kx-ky surface BZ. For a magnetic field aligned in the
y-direction, only the two separation parameters k1 and k2 are relevant. In the first scenario (a), a coexistence phase W2′′ emerges when k1 < k′

2

[see (b)] and an insulator I′ with counter propagating surface states appear when k1 > k′
2 [see (c)] after pairwise annihilation by magnetic fields.

In the second scenario (d), pairwise annihilation results in either a coexistence phase W4′ or a WSM with two WNs, depending on the relative
values of k′

1 and k2.

the transition of a WSM to a LCI state by measuring the mag-
netoconductance. Though, both the normal insulator and the
LCI state are gapped in bulk, the LCI state has protected zero
energy surface states. Suppose the WNs are at zero energy
in the model (as we have in our case). There are no states
available near zero energy in the normal insulating state to
carry current. Therefore we expect the conductance, at the
transition from the WSM state to the normal insulating state,
to drop to zero. However, the conductance at the transition
from the WSM to the LCI state should be finite because there
are finite number of states near zero energy due to the zero
energy surface states in the LCI state.

We have computed the (ballistic) magnetoconductance for
the WSM model [Eq. (2)] with two Weyl nodes. The magnetic
field is aligned along the z direction. The quantity of interest
is Gzz which measures the longitudinal conductance along the
z direction, i.e., along the direction of the applied magnetic
field. We employ KWANT [47] simulation to compute the
longitudinal conductance Gzz. The conductance Gzz is plotted
in Fig. 10 for three different values of flux 1/q. Because of the
computational limitation arising due to the finite size of the
system along the transverse directions (Lx and Ly), we restrict

ourselves to only small q values. The chemical potential is
fixed at μ = 0.1. We clearly see that the conductance vanishes
for small WNs separation (normal insulator) and it drops
but remains finite for large WNs separation (LCI state). This
demonstrates that the transition from a WSM state to a normal
insulator may be distinguished from the transition of a WSM
to a LCI state by measuring the longitudinal conductance in
the experiment.

V. SUMMARY AND CONCLUSION

An external magnetic field, when aligned in the appropriate
direction, can couple a pair of WNs of opposite chirality and
can potentially annihilate the pair. Pairwise annihilation of
WNs occurs when the inverse magnetic length l−1

B becomes
close to or larger than the momentum space separation 2k0

between the two WNs of opposite chirality. In this work, we
have investigated pairwise annihilation of WNs by external
magnetic field which ranges all the way from small (lB � a)
to a very large value in the Hofstadter regime (lB ∼ a). We
have shown that pairwise annihilation of WNs by external
magnetic field in a WSM with two WNs results in either a

FIG. 10. (a) Longitudinal conductance Gzz as a function of separation parameter k0 (in units of the inverse lattice constant a) between two
WNs of opposite chirality for three different values of flux 1/q = 1/3, 1/5, 1/7. Conductance is computed for a WSM slab of length Lz = 100
and width Lx = Ly = 25 [the model is defined in Eq. (2)]. The chemical potential is fixed at μ = 0.1. The conductance Gzz is maximum for
intermediate separation but vanishes for small separation and drops to finite value for large separation. (b)–(d) show the energy spectrum E
(in arbitrary units) of the slab (taken periodic along the transport direction z) for three different values of k0 = 1.0 (normal insulator), k0 = 1.3
(WSM), and k0 = 2.0 (LCI) for a fixed q = 5.
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normal insulator or a layered Chern insulator. For a WSM
with more than two WNs which are not collinear, the magnetic
field which is applied along any of the three perpendicular di-
rections can induce pairwise annihilation of Weyl nodes. The
set of phases which appear for fields along, say, x direction
is not identical to the set of phases for fields aligned in the z
direction.

We conducted a comprehensive investigation into pairwise
annihilation phenomena within both the time-reversal broken
and time-reversal preserved models of WSMs. Our findings
reveal that the pairwise annihilation of WNs induced by ex-
ternal magnetic fields leads to an emergence of a new state
which can be an insulating state (e.g., NI, LCI, I′), a coexis-
tence phase (e.g., W2′, W2′′, W4′), or a WSM with a reduced
number of Weyl nodes.

We have developed a model independent intuitive repre-
sentation of pairwise annihilation process of WNs induced
by external magnetic fields. This conceptual framework relies
solely on information pertaining to the locations of the WNs
and the connectivities of Fermi arcs on the surface BZ. With
these essential inputs, our intuitive model accurately predicts
the resulting phases following the pairwise annihilation of
WNs induced by external magnetic fields.

This conceptual framework is versatile and can extend
its applicability to elucidate the pairwise annihilation pro-
cesses induced by external magnetic fields in other point node
semimetals, such as three-dimensional Dirac semimetals, as
well as two-dimensional point node semimetals such as Weyl
semimetals and Dirac semimetals [48–55]. We anticipate fur-
ther exploration of these systems in the future research.
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APPENDIX: THE INSULATING STATES DEPICTED
IN THE PHASE DIAGRAMS ILLUSTRATED IN FIG. 5

In Sec. III, we have studied pairwise annihilation of WNs
induced by external fields in a WSM with four Weyl nodes.
All four WNs are located at the kx-ky plane at kz = 0. Pairwise
annihilation of WNs by magnetic field aligned in the z direc-
tion, results in a simple phase diagram as shown in Fig. 5. The
phase diagram consists of only two phases: a gapless phase
(WSM) and an insulator. Let us focus on a phase diagram for
a particular value of q = 100 [Fig. 5(l)]. The entire insulating
region in the phase diagram may be split into four subregions:
left, right, top and bottom insulating regions. As we have
argued in main text, the insulators which are living in the
left, top and bottom regions will not have any surface states.
However the insulator, which is living in the right insulating
region where k′

1 � k1 and k2 ∼ π/2, can have surface states
(in the kx-ky surface BZ) in accordance with our intuitive
picture of pairwise annihilation process of Weyl nodes. The
bulk of this insulating state is of course trivial and the state
is adiabatically connected to the adjacent insulating states.

FIG. 11. Energy gap (in arbitrary units) of the system [Eq. (8)] in
a slab geometry (finite along the z direction) is plotted as a function of
the separation parameters k1 and k2. The slab has zero energy surface
states in the dark-blue regions. Comparing with the phase diagrams
Figs. 5(b) and 5(d), we see that the insulator which is living on
the “right insulating region” has zero energy surface states. We take
a representative point k1 = 2.6, k2 = 2.2 from the right insulating
region for q = 3 to show the surface states in the Fig. 12.

We can numerically confirm whether the insulator living on
the right insulating region has any zero energy surface states.
Because of computational limitation, we do this for small
values of q = 3, 5 (large q values require more computational
resource). Note that even for small values of q, we can split
the entire insulating regions into for subregions. The previous
argument about existence of surface states for q = 100 also
applies to the small values of q. Therefore we expect the
insulator living on the “right insulating region” in the phase
diagram for small values of q should have zero energy sur-
face states. We have numerically computed energy gap of the
system in a slab geometry (finite in the z direction) to look
for the zero energy surface states. Since the spectrum of the
Bloch-Hofstadter Hamiltonian is symmetric about the zero
energy, we know for sure that the surface states (if exist) will
be at the zero energy. The energy gap of the system in a slab
geometry is plotted in Fig. 11. We can clearly see the insulator
which is living on the right insulating region has zero energy
surface states. The plots in the Fig. 12 show the zero energy
surface states in the kx-ky surface BZ and the dispersion along
the ky direction.

FIG. 12. (a) The zero energy surface states in the kx-ky surface
BZ and (b) the dispersion along the ky direction for q = 3 of the
system [Eq. (8)] in a slab geometry (finite along the z direction).
Values of the separation parameters are k1 = 2.6, k2 = 2.2, which
represent a model for insulator [see Fig. 5(b)]. (b), the surface states,
which lie in the bulk gap of the insulator, are highlighted.
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