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Single-parameter variational wave functions for quantum Hall bilayers
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Bilayer quantum Hall states have been shown to be described by a BCS-paired state of composite fermions.
However, finding a qualitatively accurate model state valid across all values of the bilayer separation is
challenging. Here, we introduce two variational wave functions, each with a single variational parameter, which
can be thought of as a proxy for the BCS order parameter. Studying systems of up to 9 + 9 electrons in a
spherical geometry using Monte Carlo methods, we show that the ground state can be accurately described
by these single-parameter variational states. In addition, we provide a numerically exact wave function for the
Halperin-111 state in terms of composite fermions.
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I. INTRODUCTION

Non-Fermi liquids have been attracting an increasing
amount of interest as a gapless phase of matter that challenges
the paradigm of Fermi-liquid theory [1]. One example of a
non-Fermi liquid is the compressible liquid arising at half
filling of a Landau level (LL) in the quantum Hall effect.
Quantum Hall bilayers offer a platform for studying pairing
instabilities of this non-Fermi liquid.

The quantum Hall effect arises when electrons confined
to two dimensions are subjected to a strong magnetic field.
For particular values of the filling factor ν = Ne/Nφ , where
Ne is the number of electrons and Nφ is the number of
magnetic flux quanta, a gapped state with a quantized Hall
response is observed. The first experiments [2] observed
quantized Hall plateaus at integer ν, i.e., the integer quan-
tum Hall effect (IQHE). However, soon thereafter further
plateaus at fractional ν were observed [3], marking the discov-
ery of the fractional quantum Hall effect (FQHE). Whereas
the IQHE can be described effectively as a band insula-
tor of noninteracting electrons, the FQHE fundamentally
requires electron-electron interactions in order to open up
a gap.

One of the most successful approaches to the quantum Hall
effect consists of thinking in terms of composite fermions
(CFs)—composite objects of electrons bound to an even num-
ber of flux quanta [4,5]—since this allows one to bridge the
gap between the IQHE and FQHE. At the mean-field level,
the CFs experience a different effective magnetic field than
the electrons such that integer values of their effective filling
factor νCF correspond to fractional values of ν. This unifying
framework allows one to describe the fractional quantum Hall
effect of strongly interacting electrons as an integer quan-
tum Hall effect of weakly interacting CFs. Furthermore, the
compressible state observed at ν = 1/2 [6] can be viewed
as a CF Fermi liquid (CFL). However, the CFs experience
a fluctuating gauge field which can lead to non-Fermi-liquid
behavior [7] and the residual interactions between the CFs are
still able to generate instabilities such as pairing instabilities
and open up a gap. Paired states of composite fermions such

as the Moore-Read state are indeed candidates for the elusive
gapped ν = 5/2 state [8,9].

Another platform to study pairing of composite fermions
is a quantum Hall bilayer with total filling factor ν = 1. The
electrons are confined to two layers with layer separation d ,
with each layer at half filling ν = 1/2. The typical distance
between electrons in the same layer is given by the mag-
netic length �B = √

h̄/eB and therefore the ratio of interlayer
to intralayer interaction strength is roughly 1

d/�B
. By tuning

the ratio d/�B, the two competing interactions can be tuned.
At large d/�B the composite fermions form two decoupled
composite Fermi liquids in the two layers [7], for which
numerically exact wave functions can be written. At small
d/�B, electron-hole pairs form an exciton condensate, the so-
called 111 state [10,11]. The limits d → 0 and d → ∞ of the
quantum Hall bilayer are thus well understood. However, one
difficulty is that the two limits are described in terms of dif-
ferent quasiparticles (electrons at d → 0 vs CFs at d → ∞).
Much theoretical work has been devoted to understanding the
nature of the state at intermediate distances and the connection
between these two well-understood limits [12–44].

Recently, it has been proposed that at intermediate dis-
tances the composite fermions in a quantum Hall bilayer pair
up in a BCS-like fashion and undergo a BEC-BCS crossover,
from a BCS-like state at large d/�B to a BEC-like state
at small d/�B [35,45,46]. Experiments on double layers of
graphene have shown that as d/�B decreases, one goes from a
regime where the pairing temperature and the condensation
temperature coincide (BCS regime) to a regime where the
pairing temperature lies significantly above the condensation
temperature (BEC regime), as expected for the BEC-BCS
crossover [45]. Besides this experimental evidence, exact di-
agonalization results show that an s-wave BCS trial state
with CFs in one layer paired with anti-CFs in the other layer
has high overlaps with the exact ground state [47] for any
interlayer separation. An Eliashberg calculation of the pair-
ing of CFs and anti-CFs mediated by the fluctuating gauge
field they experience indeed finds a dominant s-wave pairing
channel [48].
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In the present paper, we study trial wave functions for the
BEC-BCS crossover in quantum Hall bilayers. In contrast
to previous work, we use trial wave functions with a single
variational parameter. Given that the Hilbert space size is
exponentially increasing with the number of electrons, the
fact we can capture the ground state with a single variational
parameter shows that the wave function describes the correct
physics. Moreover, our trial state captures the Halperin-111
state, which is known to be the exact ground state of the quan-
tum Hall bilayer at d = 0. The 111 state is usually understood
as a condensate of interlayer electron/hole excitons. However,
we show that it can also be represented as a condensate of
CF/anti-CF excitons up to numerical precision. Therefore, we
find that the quantum Hall bilayer at ν = 1/2 + 1/2 can be
entirely described in terms of CFs irrespective of d .

II. METHODS

The starting point for our analysis is a trial wave function
for the quantum Hall bilayer introduced in Ref. [47]. This
wave function describes s-wave BCS pairing of CFs in one
layer with anti-CFs in the other layer. The CFs are organized
in CF LLs (“� levels”). For each of these � levels a separate
pairing parameter gn is introduced, where n = 0, 1, . . . , N� is
the �-level index. N� is the maximum � level that is included
and in the following we will always set N� = N1 − 1 which
is required to capture the 111 state as explained below. N1 is
the number of electrons in each layer. The trial wave function
written as appropriate for the spherical geometry that we use
here is [47]

�BCS =
∏
i< j

(�i − � j )
2(�i − � j )

∗2 det(G),

G(�i,� j ) =
∑
n,m

gn Ỹq,n,m(�i )Ỹ
∗

q,n,m(� j ), (1)

where � j = (θ j, ϕ j ) is the spinor coordinate of the jth elec-
tron in the top layer, �i is the spinor coordinate of the ith
hole in the bottom layer, and the notation (�i − � j ) is short-
hand notation for a Jastrow factor. Ỹq,n,m are the Jain-Kamilla
projected monopole harmonics [49], 2q is the net flux ex-
perienced by the CFs, and m is the Lz angular momentum
quantum number. We consider the case of a balanced bi-
layer with N1 electrons per layer and a total number of flux
quanta Nφ = 2N1 − 1, which corresponds to a filling factor
ν = 1/2 + 1/2 in the thermodynamic limit, with a shift ap-
propriate for observing the CFL in each individual layer when
they are decoupled.

In Ref. [47], the number of � levels that are included—and
hence the number of variational parameters—is proportional
to the system size N1: N� = N1 − 1. In the present work,
we use the same trial wave function (1), however, we use
an ansatz for the parameters gn such that there is only one
variational parameter. We use two different types of ansatz:
(i) We use the BCS order parameter � as the variational
parameter. The BCS prediction for the occupation probability
of the composite fermion orbitals with index n and energy εn

is [31]

pn = 1

2

(
1 − εn√

ε2
n + �2

)
, (2)

and by solving the inverse problem we may deduce the param-
eters gn corresponding to a given �. We measure εn in units of
the Fermi energy such that � is dimensionless. Note that the
�-level index n of the CFs can be thought of as a momentum
k, which allows one to compute εn (see Supplemental Material
[50] ). (ii) We use a parameter α as the variational parameter
such that

gn = eαn. (3)

In order to study larger systems than are accessible with
exact diagonalization, we use Monte Carlo methods to mini-
mize variational energies. In Ref. [47] it was shown that for
systems of up to 7 + 7 electrons, the BCS trial state with
N� = N1 − 1 always has at least a 0.95 overlap squared with
the exact diagonalization ground state. In the present work,
therefore, the same number of variational parameters are used
for energy minimization and the resulting BCS state is chosen
as the reference ground state. Using the fact that having large
overlaps is a transitive feature, we may deduce that the single-
parameter optimized variational state has high overlaps with
the exact ground state (provided it has high overlap with the
reference state).

Since the optimization at large interlayer separation is triv-
ial (the BCS trial state exactly reduces to the CFL state in
a certain limit), whereas at small interlayer separation the
optimization can have difficulties converging, we pick the 111
state for the importance sampling of the Monte Carlo samples.

III. RESULTS FOR � OPTIMIZATION

We first attempt to use the BCS order parameter � as
a variational parameter. From a given set of BCS coupling
constants gn we can extract the CF orbital occupation numbers
via the prescription outlined in Ref. [31]. These are related via
Eq. (2) to �. Since the wave function is written in terms of gn,
to evaluate the wave function for a given � we need to first
solve an optimization problem to find the corresponding gn.
We can then optimize � to find the lowest-energy configu-
ration. Since we have two nested variational problems, this
is a computationally intensive method, which motivates us to
later investigate a different ansatz which directly gives the gn

coefficients.
As shown in Fig. 1, for � → 0 we recover the CFL

wave function which has extremely high overlaps (>0.999
for N1 = 6) with the exact diagonalization ground state at
d → ∞. For � → ∞ we recover a state that has a very
high overlap (>0.947 for N1 = 6) with the 111 state, which
is consistent with the picture from the Chern-Simons theory
of this trial state [45]: For tightly bound CF/anti-CF pairs,
the fluxes attached to the CF and anti-CF cancel, making this
CF/anti-CF exciton equivalent to an electron/hole exciton,
whose condensation leads to the 111 state. A very similar
calculation is performed for the torus geometry and the over-
lap is also fairly high (>0.991 for N1 = 6). We note however
that our implementation of the lowest Landau level projection
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FIG. 1. Variational results for � optimization. (a) Overlaps with
three representative states [the two model states and the (energy-
optimized) ground state at d/�B = 1] for −2 � log10(�) � 2 in a
6 + 6 system. The CFL is described by the limit � → 0 (BCS
regime), while the 111 state is well described by the limit � → ∞
(BEC regime). At intermediate distances d ∼ �B we have the best
overlap with a state having � ∼ 1. (b) Orbital occupation probability
for variational states. Occupation probabilities are analytical results
evaluated according to Eq. (2). In the limit � → 0 only the lowest
two CF shells are filled, while at � → ∞ all CF shells have equal
occupation.

on the torus does not preserve periodic boundary condition,
and a more precise implementation is left to future work. The
results are summarized in the Supplemental Material [50]. For
intermediate distances d ∼ �B we find � ∼ 1.

By minimizing the energy as a function of �, we find � ∝
d−3.4 scaling for d � �B. This is consistent with the BEC-
BCS crossover picture where � increases as we approach the
small-d BEC limit. A renormalization group (RG) calculation
for quantum Hall bilayers predicts � ∝ d−2 [35], however,
this was derived for pairing of CFs with CFs whereas we are
considering pairing of CFs with anti-CFs.

IV. RESULTS FOR α OPTIMIZATION

We now turn to a computationally more manageable ap-
proach, namely the ansatz gn = eαn. This ansatz is motivated
by the fact that when variationally optimizing the gn param-
eters at small d , they show an exponential dependence on n.
(see Fig. S2 in Supplemental Material [50]).

As shown in Fig. 2, the limit α → −∞ leads to only the
lowest CF orbitals being occupied, which again reduces to
the CFL wave function. The regime α ∼ 1 has high overlaps
with the 111 state (>0.989 for N1 = 4). This regime leads to
occupation numbers that are almost constant as a function of

FIG. 2. Variational results for α optimization. (a) Overlaps with
three representative states [the two model states and the (energy-
optimized) ground state at d/�B = 1] for −5 � α � 10 in a 6 + 6
system. The CFL state has maximum overlap with the α → −∞
state, and the 111 state has maximum overlap with the α → ∞
state. At intermediate d ∼ �B, the optimum value is α ∼ 1. (b) Or-
bital occupation probability for variational states. For α ∼ 1 we
have roughly equal occupation of all CF orbitals (corresponding to
� → ∞). The overlap with the 111 state has a local maximum at this
value, however, for larger system sizes this local maximum decreases
showing that the 111 state is truly captured by the α → ∞ limit [see
Fig. 3(a)]. In the limit α → ∞ which corresponds to the 111 state,
only the highest CF orbital is occupied.

n. This can be understood as a consequence of the lowest LL
(LLL) projection of the CF orbitals: Those with large n have
small weight in the LLL and therefore need exponentially
large coefficients gn [49]. Furthermore, this corresponds to
the regime � → ∞ that was previously identified as having
a large overlap with the 111 state. However, we find that
increasing α even further leads to a state with only the highest
CF shell being occupied which has an even better overlap with
the 111 state (>0.999 for N1 = 4). States in this regime are far
outside the Hilbert space captured by the variational ansatz
with � where the lowest CF shells are always occupied. We
note that there is a discontinuous change in the optimum value
of α as a function of d as seen in Fig. 3(b). This discontinuous
jump is a consequence of the variational principles, so even
though the wave function evolved continuously, the optimized
variational parameter may change discontinuously.

In the limit α → ∞, we find a wave function that almost
exactly reproduces the 111 state within the numerical accu-
racy for all system sizes up to 9 + 9 particles. As shown in
Fig. 3(a), the overlaps with the 111 state are better than 0.993
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FIG. 3. Overlaps of the α trial state for different system sizes and
interlayer separations. The maximum overlap of α-ansatz trial state
Eq. (3) (a) with �111 for different system sizes N1 and (b) for different
interlayer distances d for 6 + 6 electrons. The one-parameter ansatz
captures the 111 state accurately for all system sizes shown and
captures the state at intermediate distances d well too. We also show
the optimum value of α as a function of interlayer separation. The
optimum α value increases as d decreases and jumps discontinuously
to its maximum value in the optimization range (α = 10) around
d ∼ 0.5�B.

for all system sizes up to and including 9 + 9. The 111 state is
thus described by the wave function Eq. (1) with gn = δn,N1−1.
The CFs in each layer half fill the � level with n = N1 − 1
and there is s-wave pairing between the CFs in one layer and
the anti-CFs in the other layer. In the 111-state description
in terms of electrons and holes, electrons half fill the LLL in
each layer and there is s-wave pairing between the electrons in
one layer and the holes in the other layer. The correspondence
between the two descriptions makes sense intuitively: Eq. (1)
describes s-wave pairing of CFs and anti-CFs. If we have
tightly bound CF/anti-CF pairs, then the set of coordinates
{�i} of the CFs coincides with the set of coordinates {�i}
of the anti-CFs and therefore the Jastrow factors in Eq. (1)
cancel. The Jastrow factors describe the flux attachment pro-
cedure and removing the Jastrow factors reduces the pairing
of CFs and anti-CFs to that of electrons and holes—which is
precisely the 111 state. For system sizes of 10 + 10 electrons
and above, the overlap of the α → ∞ state with the 111 state
becomes small [see Fig. S1(f) in Supplemental Material [50]].
However, in that case we are dealing with orbitals with a high
LL index and we caution that in that case the approximate
LLL projection we use may not be accurate. Furthermore, the
evaluation of CF orbitals with a high LL index may suffer
from numerical precision issues [51].

In Fig. 3(a) we also show the overlap of the 111 state with
the state with α ∼ 1 as a function of system size N1. As can
be seen from Fig. 2, this is a local maximum of the overlap.
However, we can see that this state performs significantly
worse, when the system size is increased.

As shown in Fig. 3(b), the trial state with a single vari-
ational parameter captures the entire crossover from large to
small d very well. The limits of large and small d are captured
exactly to within numerical precision, while at intermediate
distances, the overlap squared with the exact diagonalization
ground state is always better than 0.90 for a system of 6 + 6
electrons.

V. CONCLUSION

We have investigated a BCS trial wave function for quan-
tum Hall bilayers which consists of pairing CFs in one layer
with anti-CFs in the opposite layer. Previous work [47] used
trial wave functions with the number of variational parameters
growing proportional to the system size. Here, in contrast, we
achieve high overlaps squared of better than 0.94 for up to
6 + 6 electrons with a single variational parameter. Overall
these are extremely high overlaps considering we are only
using a single variational parameter. A single-parameter wave
function has also been developed for bosonic quantum Hall
bilayers [52], where a transition to a non-Abelian state is
possible.

In particular, we show that for a particular choice of varia-
tional parameters, the BCS trial state which is entirely written
in terms of CF orbitals has unity overlap with the 111 state
(within numerical precision). The 111 state is known to be
the exact ground state of the quantum Hall bilayer system
at d = 0, however, it is usually written in terms of electrons.
Here, we provide the expression for the 111 state in terms of
composite fermions.

One of the interesting features of the quantum Hall bilayer
system is that the large d physics is most simply understood
in terms of CFs, while the small d physics is most simply
understood in terms of electron-hole excitons. We have now
shown that CFs offer an accurate description of the system
for all d . It would be very interesting to confirm experi-
mentally that this is the case. Experimental evidence for a
composite fermion description can come from geometric res-
onance experiments, as have been performed on the ν = 1/2
system [53] and more recently on the ν = 5/2 system [54].
Geometric resonance experiments on quantum Hall bilayers
have indeed revealed the presence of CFs [55]. It would be
fascinating to perform such experiments on a quantum Hall
bilayer as a function of the interlayer separation d/�B to con-
firm at which interlayer separation (if any) signatures of CFs
disappear.

Recent work has shown that imbalanced bilayers at filling
ν = 1/3 + 2/3 also undergo a continuous transition [56,57]
and it would be interesting to investigate the trial wave func-
tions for that scenario. We leave that to future work.
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