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Theory for Cd3As2 thin films in the presence of magnetic fields
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We present a theory for thin films of the Dirac semimetal Cd3As2 in the presence of magnetic fields. We show
that, above a critical thickness, specific subbands n of thin film Cd3As2 are in a quantum spin Hall insulator
regime and study their response to in- and out-of-plane magnetic fields. We find that sufficiently large in-plane
Zeeman fields drive the system toward a 2D Dirac semimetal regime, provided the field is directed perpendicular
to a high-symmetry mirror plane. For other directions, we find the Dirac points to be weakly gapped. We further
investigate how the system responds to finite out-of-plane field components, both starting from the quantum spin
Hall regime at small in-plane fields and from the 2D Dirac semimetal regimes at larger in-plane fields, addressing
recent experimental observations in A. C. Lygo et al. [Phys. Rev. Lett. 130, 046201 (2023)] and B. Guo et al.
[Phys. Rev. Lett. 131, 046601 (2023)].
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I. INTRODUCTION

The materials search for quantum spin Hall (QSH) insu-
lators has been a major topic in condensed matter physics
ever since their theoretical proposal [1–8]. Due to their in-
triguing and robust transport properties, which arise from
topologically protected helical edge states and can be con-
trolled by electric and magnetic fields, these materials are
interesting both from a fundamental perspective as well as for
technological applications, e.g., for a topological field-effect
transistor [9]. The QSH effect has thus far been realized in var-
ious systems such as semiconductor quantum wells [10–12],
heavy-element analogs of graphene such as bismuthene [13]
and germanene [14], and transition metal dichalcogenide
monolayers [9,15,16].

Another promising route to realizing QSH states is to start
from three-dimensional (3D) bulk topological insulators (TIs)
or semimetals (TSMs) and attempt to reach the QSH regime
by tuning quantum confinement in thin films or heterostruc-
tures [17–20]. In TIs, the very thin film limit is characterized
by a hybridization between the top and the bottom 2D surface
states, creating a gapped low-energy spectrum [2,21–24]. In
contrast, in a TSM with surface normal directed along the axis
that separates the bulk nodes, there exists no top and bottom
surface states to hybridize, and instead, the bulk spectrum is
gapped due to quantum confinement [18,19].

This situation has recently been experimentally realized in
thin films of Cd3As2 [25,26], which is a prototypical 3D Dirac
TSM in the bulk [27]. It was driven to the thin film limit in
epitaxial ≈ 20 nm thick films that were grown along the [001]
crystallographic direction, which is parallel to the separation
direction between the bulk Dirac nodes. Various transport
properties were measured in the presence of magnetic fields
[25,26]; explaining these is a primary motivation for our work.

Thus here we theoretically consider Cd3As2 thin films that
terminate along the [001] crystallographic direction and in-
vestigate their band structure and edge states in the presence
of a magnetic field. We characterize their dependence on film
thickness, chemical potential, and magnetic field strength and
direction, a crucial step to understanding Cd3As2 thin film
properties.

In thin films of Cd3As2, the transverse momentum quan-
tization leads to a reorganization of the 3D Dirac dispersion
into 2D subbands. The subbands are generally gapped, al-
though the gaps can be small, making the effects of external
magnetic fields potentially large. Recent magnetotransport
measurements in a perpendicular magnetic field along the
[001] direction [25] revealed a magnetic field dependence
of the Landau level spectrum that is in agreement with that
of a 2D TI [10]. Subsequent experiments in tilted magnetic
fields with both in- and out-of-plane components showed an
odd-integer quantum Hall effect [26]. This was attributed to a
transition to a 2D Dirac semimetal phase, with the two Dirac
cones appearing along momentum space directions perpendic-
ular to the in-plane magnetic field.

Motivated by these recent experimental findings, we de-
velop and analyze a model for the low-energy electronic
states in [001] thin films in the presence of magnetic fields
pointing along general directions. Specifically, we construct
a low-energy k · p band structure model that considers the
contributions of the different types of electrons close to the
Fermi level. We demonstrate that the s and relevant p orbitals
experience in-plane magnetic fields in a very distinct way:
due to the strong spin-orbit coupling, the relevant p orbitals
show a cubic Zeeman effect, while the s orbitals experience
the standard linear Zeeman coupling. This distinct coupling
manifestly conserves the C4z symmetry of the system and
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differentiates our model from recent work in Ref. [28], which
considers a linear coupling of magnetic field to the relevant
p orbitals. We show below that the two models have distinct
behaviors as a function of in-plane field orientation. Neverthe-
less, both models similarly yield a Dirac semimetal phase for
fields pointed in the [100] direction, which Ref. [28] refers to
as a 2D Weyl semimetal. Ref. [28] does not consider the effect
of rotations of the in-plane field and focuses on nontrivially
gapping out the 2D Dirac nodes via the application of lattice
strain. Here, we show that the cubic p-orbital Zeeman effect
for in-plane magnetic fields leads to a 2D Dirac semimetal
phase only when the field is applied in a direction perpendicu-
lar to a mirror plane and naturally leads to a gapped spectrum
for fields rotated away from these high-symmetry directions.

Specifically, we derive the proper coupling of the rele-
vant p orbitals to the magnetic field, showing it is consistent
with all symmetry operations, which are explicitly given in
Appendix B. We then investigate the band structure as a func-
tion of in-plane magnetic field. For specific field directions
(perpendicular to a mirror plane), we find that there exists a
critical field strength such that the system transitions from a
gapped to a gapless band structure with two Dirac points ap-
pearing along the line perpendicular to the applied field (i.e.,
along the mirror line). As the field is rotated away from these
high-symmetry directions, the Dirac points become gapped.
Interestingly, applying an out-of-plane Zeeman field can close
and reopen these Dirac gaps, leading to a change of the Chern
number in the system. We further use this model to explore the
orbital effect of the perpendicular component of the magnetic
field when the system is driven into the 2D Dirac semimetal
regime by an in-plane field. We find there is an emergent quan-
tum number for the low-lying Landau levels, the Dirac states,
which causes an additional two-fold Landau level degeneracy.
These findings provide a plausible explanation for the recent
quantum Hall measurements reported in Ref. [26]. Lastly, we
discuss the evolution of the surface states in the presence of
an in-plane Zeeman field, showing that the conventional edge
states are coupled by the in-plane magnetic field and thus
gapped and eventually disappear for large enough in-plane
field strength.

The remainder of this paper is structured as follows.
Section II establishes the effective low-energy theory for
Cd3As2 thin films with surface normal along the [001] di-
rection. The resulting model is generally applicable to Dirac
TSMs with a surface normal that is parallel to the direc-
tion separating the Dirac points. Section III discusses the
electronic response to in-plane Zeeman fields, first only con-
sidering the Zeeman coupling of the s orbitals and then
deriving the smaller (nonlinear) Zeeman effect in the relevant
p orbitals. Section IV discusses the surface states of the thin
film with and without in-plane Zeeman coupling. Section V
considers the effect of an out-of-plane orbital magnetic field.
We first discuss a purely out-of-plane field and then include
a possibly large in-plane field component. Finally, in Sec. VI,
we summarize our findings and predictions.

II. MODEL FOR (001) THIN FILMS

Here, we derive a low-energy model of Cd3As2 thin films,
grown such that the surface normal points along the [001]
direction. We start from a low-energy four-band model for

bulk Cd3As2. The low-energy bands are located around the �

point in the Brillouin zone and include the |S1/2, mJ = ±1/2〉
and |P3/2, mJ = ± 3/2〉 states [27]. The relevant point group
constraining the model is D4h (or 4/mmm), and up to cubic
order in momentum, it reads

H0(k) = ε0(k)τ0s0 + M(k)τzs0

+ A(kxτxsz − kyτys0) + C3akxky(kxτys0 − kyτxsz )

+ C3b
(
k3

x τxsz − k3
y τys0

) + C3ck2
z (kyτys0 − kxτxsz )

+ C3d
(
k2

x − k2
y

)
kzτxsx − C3ekxkykzτxsy. (1)

Here, si and τi are Pauli matrices in angular momentum
(mJ = ±) and orbital (S, P) space, respectively, and we have
defined

ε0(k) = C0 + C1k2
z + C2k2

‖ , (2a)

M(k) = M0 − Mzk
2
z − Mxyk2

‖ (2b)

with k2
‖ = k2

x + k2
y and Mxy, Mz > 0, consistent with Ref. [29].

The kz direction points along the fourfold rotation axis,
corresponding to the [001] direction. A detailed derivation
of this effective model is provided in Appendix A. Up to
quadratic order, it agrees with the Hamiltonian derived in
Refs. [25,27,29]. The four-dimensional basis is obtained by
projecting the two s and six p bands onto the total angu-
lar momentum basis J and keeping the low-energy states
|S1/2, mJ = ±1/2〉 and |P3/2, mJ = ± 3/2〉. The four other
p-orbital states lie approximately 250 meV higher in energy
[27]. The low-energy model for a film of thickness L is
constructed by imposing open boundary conditions along the
[001] direction. The Hamiltonian at zero in-plane momentum,
k‖ = 0, reads

H0|k‖=0 = (
C0 − C1∂

2
z

) + (
M0 + Mz∂

2
z

)
s0τz (3)

Let us focus on the mJ = + subspace spanned only by the
|S1/2, 1/2〉 and |P3/2, 3/2〉 states as the energy levels of the
opposite angular momentum, mJ = −, are degenerate. Since
Hk‖=0 is diagonal, the orbital structure of the eigenstates read
ψ+ = (1, 0)T and ψ− = (0, 1)T , i.e., they localized on the
S and P states, respectively. Using the trial wave functions
�βn(z) = Aψβeλβnz, and imposing boundary conditions such
that the wave functions vanish at z = ±L/2, we find the wave
function for l = 0, 1, 2, . . . and β = ± is given by

�βn(z) =
√

2

L
ψβ

{
sin

(
2lπ z

L

)
, n = 2l,

cos
(
(2l + 1)π z

L

)
, n = 2l + 1.

(4)

The associated energies at k‖ = 0 read

Eβn = C0 + βM0 +
(

πn

L

)2

(C1 − βMz ). (5)

Here n = 1, 2, 3, . . . is the subband index, and β = ± denotes
the orbital index. Thus the subbands for [001] thin films are
found by setting kz = πn/L. The Hamiltonian for a specific
subband takes the form of Eq. (1) with

ε0(k) → εn(k‖) = C0 + C1

(
πn

L

)2

+ C2k2
‖ , (6a)

M(k) → Mn(k‖) = M0 − Mz

(
πn

L

)2

− Mxyk2
‖ . (6b)
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The total Hamiltonian thus involves 4 different bands for each
subband n. In the following, we use the notation k ≡ k‖ unless
specified otherwise. Importantly, the topological character of
the bands is determined by

Mn(0) ≡ Mn = M0 − Mz

(
nπ

L

)2

. (7)

As Mxy > 0, for positive Mn > 0 the bands are inverted and
topologically nontrivial, while for negative Mn < 0, the bands
uninvert and become topologically trivial. Considering the
film thicknesses reported in Refs. [25,26], we find that for a
thickness L ∼ 19 nm it is the n = 2 subband which is most rel-
evant. It exhibits a topological gap Mn=2 ∼ 5.5 meV and the
n = 1, 3 subbands are ∼20 meV away. The relatively small
topological gap of the n = 2 subband and the large effective g
factor of the Zeeman coupling make thin film Cd3As2 easily
tunable by in-plane Zeeman fields. As will be shown below,
the addition of an in-plane Zeeman field causes the topological
gap for the mJ = ± states to be different, leading to a gapless
regime for specific Zeeman field directions.

III. IN-PLANE MAGNETIC FIELD EFFECTS

In this section, we show the effects of adding in-plane mag-
netic fields B = B(cos φ, sin φ, 0). We start with a derivation
of the Zeeman coupling to a magnetic field in the xy plane.

A. Microscopic derivation of the Hamiltonian

The magnetic field B couples to the s and p states according
to the microscopic Zeeman Hamiltonian

HZ = gsμBB · (L + 2S) + gpμBB · (L + 2S). (8)

Here, L and S are the orbital and spin angular momentum
operators, μB is the Bohr magneton, and gs, gp are the g
factors associated with s and p states. Given the large spin-
orbit coupling in the system, it is convenient to work with
the total angular momentum J . The states close to the Fermi
surface are the doublets of J = 3/2, |P3/2,±3/2〉, and of J =
1/2, |S1/2,±1/2〉 [27]. The s electrons of the Kramers pair
|S1/2,±1/2〉 couple to the in-plane magnetic field as H (S)

Z =
gsμBB · s, where s = (sx, sy, sz ) is the vector of the Pauli ma-
trices. The low-energy p states |P3/2,±3/2〉, however, do not
couple linearly to the in-plane component of the field. Instead,
the in-plane magnetic field couples the |P3/2,±3/2〉 only in
the cubic order. This can be understood as follows: terms
in the Hamiltonian linear in the applied in-plane field can only
change the azimuthal quantum number mJ by 1, and therefore,
the components mJ = ±3/2 are not coupled to linear order
in the field; cubic coupling is, however, possible, involving
transition via |P1/2,±1/2〉 and |P3/2,±1/2〉 virtual states. The
explicit calculations deriving this coupling are performed in
Appendix B.

To lowest order in an in-plane magnetic field B ≡ B‖ =
(Bx, By, 0), the effective coupling of the |P3/2,±3/2〉 states
reads

H (P)
Z (B‖) = g3

pμ
3
B

�2

[
Bx

(
B2

x − 3B2
y

)
sx − By

(
B2

y − 3B2
x

)
sy

]
. (9)

Here, � is the energy scale of the higher bands at the � point
(see the derivation in Appendix B). Thus the in-plane Zeeman

field terms for the effective low-energy model are given by

H (B‖) = gsμB

(
τ0 + τz

2

)
B‖ · s + g3

pμ
3
B

�2

(
τ0 − τz

2

)

× [
Bx

(
B2

x − 3B2
y

)
sx − By

(
B2

y − 3B2
x

)
sy

]
. (10)

It is convenient to parametrize the field in the xy plane
as Bx = B‖ cos φ and By = B‖ sin φ. Returning to Eq. (1),
we simplify our calculation by choosing coefficients C3a =
3C3b = 3A1,C3c = 0, and C3e = −C3d/2 = −2η, which sim-
plifies Eq. (1) to its atomic limit form (see Appendix D for
further details). Finally, the full Hamiltonian, including the
in-plane field, is found from Eq. (1) combined with Eq. (10).
Under the assumption that the finite-k terms do not lead to
significant changes in the wave functions along the z direction,
we project the Hamiltonian into states of Eq. (4), leading to
the effective Hamiltonian

H = εn(k)τ0s0 + Mn(k)τzs0 + A(kxτxsz − kyτys0)

+ 3A1kxky(kxτys0 − kyτxsz ) + A1
(
k3

x τxsz − k3
y τys0

)
+ η

nπ

L

[(
k2

x − k2
y

)
τxsx + 2kxkyτxsy

]

+ τ0 + τz

2
hs · s + τ0 − τz

2

h3
p

�2
[cos(3φ)sx + sin(3φ)sy].

(11)

Here, we labeled gsμBB‖ ≡ hs and and gpμBB‖ ≡ hp.

B. Effect of s-orbital Zeeman field

It is one of the main goals of this work to show the
importance of including the magnetic field effect on the p
orbitals to properly capture features of the low-energy bands.
As h3

p/�
2 � hs, however, we can first ignore it to find the

eigenvalues (up to quadratic order in k)

Eαβn = εn(k) + α
hs

2
+ β

√
A2k2 +

(
Mn(k) + α

hs

2

)2

. (12)

Here β = ± denotes the S and P orbital character of each
band at �, respectively, while α = ± denotes the two states in
the Kramers doublet of a given orbital. There are two distinct
regimes that display different behavior at the � point, where
the energies simplify to

Eαβn(k = 0) = εn + α
hs

2
+ β

∣∣∣∣Mn + α
hs

2

∣∣∣∣ (13)

In the weak-field regime, when |Mn| > hs/2, the system is
gapped at �. Focusing on the interesting case of a topological
gap, Mn > 0, we find

Eαβn(k = 0) = εn + α(1 + β )
hs

2
+ βMn. (14)

The s bands (β = +) are spin-split, whereas the p bands
(β = −) are degenerate at �.

In the strong-field regime, when hs > 2Mn, the α = −
bands have been uninverted as the gap for the α = − s-orbital
band at � is given by Mn − hs/2 < −Mn. The uninversion of
the α = − bands leads to a quadratic band touching between
the p-orbital bands. As we will see below, the inclusion of
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FIG. 1. Band structure Eαβn(kx, ky = 0) for n = 2 subbands in
thin film Cd3As2 in the low and high field regimes when setting
hp = 0. The dispersion is given by Eq. (12) with model coefficients
taken from Ref. [29] (also listed at the end of Appendix E). (a) Low-
field dispersion for hs = Mn=2/2 with nondegenerate subbands. The
bands which arise from the s orbitals at the � point are colored
red, and the ones arising from the p orbitals are colored black.
(b) High-field dispersion for hs = 5Mn=2/2, where the α = − bands
have uninverted, resulting in a quadratic band touching of the p bands
at � for hp = 0.

the p-orbital Zeeman field resolves the quadratic band touch-
ing into two Dirac points perpendicular to the applied field,
provided the field points perpendicular to a mirror plane.
We estimate that for sample sizes L = 19 nm the relevant
subband n = 2 has a topological gap of size Mn=2 ≈ 5.5 meV
such that the strong field regime is reached by Zeeman fields
hs ∼ 11 meV. For a g factor of gs = 12 [30], this corresponds
to fields B‖ ∼ 16 T. The band structure in the weak and strong
field regimes is plotted in Fig. 1.

C. Inclusion of the p-orbital Zeeman field

The inclusion of the p-orbital field is only relevant in the
large field limit where the α = − bands have been uninverted,
and the low-energy theory is controlled by the bands with
p-orbital character near the � point. Importantly, as |k| is
increased, there is a significant contribution to these bands
from the s orbitals. It is the main goal of this section to show
that, by including the p-orbital field and considering the terms
of cubic order in k, the low-energy Dirac fermions are gapped
out for specific field orientations.

By integrating out the bands at higher energies (see
Appendix D for further details), we arrive at an effective

FIG. 2. 3D Plot of the p-orbital (at �) n = 2 subbands from
Eq. (15) when φ = 0 (i.e., along the x axis), showing the two band
touchings which give rise to the emergent Dirac states. This corre-
sponds to Fig. 1 near ε = −Mn in the presence of a finite hp. We use
hs = 2.5Mn=2, h3

p/�
2 = hs/20, A1 = η = 100 meV nm3, and other

model parameters are taken from Ref. [29]. Note that for other angles
φ away from the high-symmetry directions a gap opens at the Dirac
points.

Hamiltonian for the lowest energy bands,

Hp = −Mn +
(
B2 B1

B∗
1 −B2

)
, (15)

where up to quintic order,

B1 =
(

A2k2
−

hs
+ 2AA1k2k2

+
hs

)
e−iφ

− η2k4
−

hs

(
nπ

L

)2

eiφ + h3
p

�2
e−3iφ, (16a)

B2 = −2ηk3

hs

(
nπ

L

)
[A cos(θ − φ) + A1k2 cos(5θ − φ)].

(16b)

Here, θ and φ are defined via k = k(cos θ, sin θ, 0) and
B = B(cos φ, sin φ, 0), respectively, and we have defined
k− = kx − iky. We first consider the eigenvalues up to O(k2),
which are given by

Ep± = −Mn ±
∣∣∣∣∣A2k2

hs
e−2i(θ−φ) + h3

p

�2

∣∣∣∣∣. (17)

We can see that, to O(k2), two Dirac points are created per-
pendicular to the applied field direction at θcσ = φ + σπ/2

and kc0 =
√

hsh3
p/(�A), where σ = ± denotes the two Dirac

points. The Dirac points for a field pointing in the x̂ direction
are plotted in Fig. 2.

The inclusion of terms O(k3) lowers the artificial sym-
metry C∞,z down to C4z, and the Dirac fermions become
gapped for field directions which are not perpendicular to a
high-symmetry plane [22]. Further, kc0 is shifted slightly to
kc, which is the solution of |B1| = 0 for θ = θcσ . This shift,
however, is small due to the smallness of h3

p/�
2 in comparison

to hs and therefore kc is well approximated by kc0 (see Ap-
pendix D for more details). We may model the Dirac fermions
by expanding B1,2 about kc = kc(cos θcσ , sin θcσ ), keeping the
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lowest order nonzero contributions in kc, to get

Hσ = −Mn +
(

σm(φ) −2iA2kc
hs

δk−e−2iφ

2iA2kc
hs

δk+e2iφ −σm(φ)

)
, (18)

where m(φ) = m0 sin(4φ), and m0 = 2(nπ/L)ηA1k5
c /hs is the

mass of the Dirac fermion. We also define δk± = δkx ± iδky

with δkx,y being the deviation of the momentum away from kc.
Importantly, the mass m(φ) is zero when the field is applied
perpendicular to a mirror plane of the relevant point group
D4h, as derived in Ref. [22]. Since the system obeys D4h point
symmetry, this corresponds to the field being applied along
the x or the y axis as well as along the lines x = ±y. As
the field is rotated through a plane where m(φ) vanishes, the
mass changes sign, switching the chirality of the two flavors
of Dirac fermions (σ = ±), while the total Chern number
remains zero.

The closing of the gap with increasing field and the emer-
gence of Dirac points leads to a reduction of resistivity, which
could explain the experimental findings of Ref. [26]. We
further note that the near quantization of the longitudinal resis-
tance observed in the high-field regime of Ref. [26], R ∼ h/e2,
could be due to the broadening of the Dirac nodes in the
presence of a sufficiently strong impurity potential such that
the density of states at the Dirac nodes becomes finite. In
this case the density of states g at the Dirac nodes depends
on the elastic scattering time τ as g ∝ 1/(v2

F τ ), where vF is
the Fermi velocity, and as such the longitudinal conductivity
σ ∝ gv2

F τ ∼ e2/h is independent of τ and vF [31–33].

D. Anomalous Hall effect for tilted field

We now discuss the effect of tilting the Zeeman field out
of the xy-plane such that it acquires a finite Bz component. As
the basis states are α = ± states an out-of-plane Zeeman field
enters in the form hz = 2gpμBBzsz (see also Appendix B). The
Dirac Hamiltonian becomes

Hσ = −Mn +
(

σm(φ) + hz
−2iA2kc

hs
δk−e−2iφ

2iA2kc
hs

δk+e2iφ −σm(φ) − hz

)
. (19)

For sufficiently large hz such that |hz| > |m(φ)|, the gap of
one Dirac fermion can change sign, leading to a change of the
Chern number of the system by ±1 and causing an anomalous
Hall effect. The Chern number of the system as a function of
hz is shown in Fig. 3.

IV. DESTRUCTION OF HELICAL SURFACE
STATES BY IN-PLANE FIELD

We now return to the case of purely in-plane fields, neglect-
ing the orbital magnetic field, and investigate the evolution of
the nontrivial helical edge states in the presence of an in-plane
Zeeman field. Without any applied magnetic field, the effec-
tive model for thin film Cd3As2 is that of a QSH insulator, and
we, therefore, expect nontrivial helical edge states to arise due
to the inverted subbands. After the in-plane field is turned on,
we show that the helical edge states become coupled, resulting
in a gapping of the surface states originating for each inverted
subband. Because for reasonable field strengths h3

p/�
2 � hs,

we will neglect the p-orbital Zeeman field in the following.

FIG. 3. The Chern number of the system as a function of out-of-
plane Zeeman field hz. When the applied field becomes larger than
the mass of each Dirac point, |hz| > |m|, the gap of one of the Dirac
points changes sign, leading to a change in the Chern number of the
system.

A. Derivation of surface state solutions

We impose open boundary conditions in the y direction
and consider a sample that is a semi-infinite plane for y � 0.
We thus replace ky → −i∂y in Eq. (11). For simplicity, we
only keep terms up to O(k2) and neglect the uninverted band
structure εn(k), as including these terms would not alter our
conclusions. We then use the ansatz

�αβn(kx, λn, y) = ψαβ (kx, λn)eλny , (20)

where ψαβ (kx, λ) is a four-spinor, and α, β, n denote spin,
orbital, and subband indices. Since the sample is located at
y � 0, we look for solutions with λn < 0. The eigenenergies
and eigenvectors as a function of kx and λ are found as

Eαβn(kx,−iλ) = α
hs

2
+ β

√
A2k2 +

(
Mn(k) + α

hs

2

)2

,

(21a)

ψαβ (kx,−iλ) = Nαβ (k)

⎛
⎜⎜⎜⎜⎜⎜⎝

−αe−iφ Eαβn(k)+Mn (k)
Ak+

−αe−iφ k−
k+

−Eαβn (k)+Mn(k)
Ak+

1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (21b)

Here, k2 = k2
x − λ2, k± = kx ± λ, and Nαβ (k) is a normal-

ization factor. We can express λ as a function of energy by
solving Eαβn(kx,−iλ) = ε and obtain four solutions

λαζ (ε) = −
√

k2
x + B̃α

2
+ ζ

√
B̃2

α/4 − C̃α (ε), (22)

where α, ζ = ± and

B̃α = A2 − 2Mxy
(
Mn + α hs

2

)
M2

xy

, (23a)

C̃α (ε) =
(
Mn + α hs

2

)2 − (
ε − α hs

2

)2

M2
xy

. (23b)

The wave function is then

�(kx, y) =
∑
αζβ

Ñαζβψαβ [kx,−iλαζ (ε)]eλαζ (ε)y, (24)

155136-5



SMITH, QUITO, BURKOV, ORTH, AND MARTIN PHYSICAL REVIEW B 109, 155136 (2024)

FIG. 4. Gapless helical surface states on a single Cd3As2 thin
film surface in the absence of an in-plane Zeeman field. The α = +
surface state is colored red, and the α = − surface state is colored
blue, with the bulk bands colored black. Model parameters are taken
from Ref. [29]. We use a film thickness of L = 19 nm and show the
n = 2 bulk subbands with energies ±Mn=2 = ±5.5 meV at k = 0.

where Ñαζβ are constants and the spinor ψαβ (kx,−iλαζ ) is
the eigenvector associated with Eαβn and given by Eq. (21b).
The boundary condition is �(kx, λn, y = 0) = 0, i.e., the wave
function vanishes on the surface. Without loss of generality
we set Ñαζβ = Ñαζ δβ+, as for a given α the two β = ±
eigenstates give the same solution. As shown in detail in
Appendix E, the boundary conditions can be expressed as
a determinant of some matrix A via det A = 0, where the
columns of A contain the spinors ψα+. The condition that
det A = 0 can only fulfilled when Mn > 0; otherwise, there
will be no edge states. We solve the boundary conditions for ε

as a function of kx, which are plotted at various in-plane field
values to yield the dispersion shown in Figs. 4 and 5.

B. Zero-field results

In the absence of an in-plane Zeeman field, hs = 0, we
observe linearly dispersing helical edge states, as expected
for a QSH insulator [34]. Because the α = ± subspaces are
degenerate, we may simplify our boundary conditions for
α = + to

E+βn(kx,−iλ++) + Mn(kx,−iλ++)

E+βn(kx,−iλ+−) + Mn(kx,−iλ+−)
= kx + λ++

kx + λ+−
, (25)

which we solve numerically for the energy ε as a function of
kx. Note that the energy ε enters into Eq. (25) quadratically,
and the correct root is chosen such that the β surface state
connects to the β bulk band. The α = − surface state can then
be obtained via the application of time reversal. As seen in
Fig. 4, the α = + surface state exhibits vx > 0 and the α = −
surface state exhibits vx < 0. It should be noted that for the
surface states to exist one must have

A2

M2
xy

> 4
Mn

Mxy
> 0 (26)

in order for λαζ to have a real component. The coefficients
used for the numerical evaluation of the surface state disper-
sion are the same as used in Ref. [29] (see Appendix E for
details).

FIG. 5. Gapped surface states on a single surface of thin
film Cd3As2 in the presence of a small in-plane magnetic field,
hs < 2Mn=2. The surface states are shown in red, and the bulk
bands are shown in black. (a) The surface states and bulk bands for
hs = Mn=2/2. (b) The surface state at hs = Mn=2. where the upper
surface state has already merged with the bulk leaving only the lower
surface state solution present. Both panels use the model parameters
from Ref. [29].

C. Gapping of surface states for nonzero in-plane fields

When the Zeeman field is small, hs < 2Mn, the corre-
sponding bulk subbands are still inverted, but the helical edge
states are now coupled by hs. This opens up a gap in the
edge state spectrum on the order of hs, which is consistent
with the explicit breaking of time-reversal symmetry. For
hs < 2Mn/3, there remain two (gapped) surface state solutions
[see Fig. 5(a)]. As the field becomes larger, hs � 2Mn/3, the S
orbital α = − band is pushed through the upper surface state,
which merges with the bulk. This leaves only a single gapped
surface state solution in a small region of momentum space,
as shown in Fig. 5(b) for the n = 2 subbands.

When the field is increased to h = 2Mn, the remaining
surface state merges with the bulk bands, and the α = −
bulk bands uninvert, and for fields hs > 2Mn, no surface state
solutions arise.

V. ORBITAL EFFECT OF OUT-OF-PLANE
MAGNETIC FIELD

We now include the orbital effects of an out-of-plane mag-
netic field field, which reorganizes bands into Landau levels.
Experimentally, a crossing of the zeroth particle and hole
Landau levels as a function of thickness at an out-of-plane
field value Bc has been reported [25]. In Sec. V A, we use
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our model to calculate Bc in terms of k · p parameters, and
in Sec. V B, we consider the case of a large in-plane Zeeman
field and an out-of-plane orbital field and calculate the Landau
level spectrum.

A. Strictly out-of-plane field results

We first consider a purely out-of-plane field B = Bẑ. Using
the Hamiltonian in Eq. (1) to order O(k2), we introduce a
magnetic field via the Peierls substitution, k → −i∇ + eA.
We work in the Landau gauge A = Byx̂. We then define rais-
ing and lowering operators in the conventional way

a† = lB√
2

(
kx − ∇y + y

l2
B

)
, (27a)

a = lB√
2

(
kx + ∇y + y

l2
B

)
, (27b)

where l2
B = 1/(|e|B), with electron charge e. The Hamiltonian

in Eq. (1), up to quadratic order in k, takes the form

H =
[

Mn − ω

(
a†a + 1

2

)]
τzs0

+ A√
2lB

[τxsz(a + a†) + iτys0(a − a†)], (28)

where ω = 2Mxy/l2
B and Mn is defined in Eq. (7). Here, we

have neglected the band-diagonal contribution εn(k), which,
as shown in Appendix F introduces particle-hole asymmetry
but does not change the magnetic field value when the particle
and hole Landau levels cross.

Using the trial wave functions ψ0 = (0, 0, |0〉 , 0)T and
ψ0 = (0, |0〉 , 0, 0)T , for the zeroth Landau levels, we find the
particle and hole zeroth Landau level energies,

E0± = ±
∣∣∣Mn − ω

2

∣∣∣. (29)

For each subband n, there is a crossing of the particle and hole
zeroth Landau level energies at a critical magnetic field Bc(n),
which is a function of the thickness of the sample,

Bc(n) = h̄

|e|Mxy

[
M0 − Mz

(
nπ

L

)2
]
. (30)

We have restored h̄ and use SI units to compare with the exper-
imentally relevant values. For the n = 2 subbands, which are
most relevant for experimental sample thicknesses of 18–20
nm reported in Refs. [25,26] and using realistic k · p model
parameters from Ref. [29] (see also Appendix E), we find the
critical field Bc(n = 2) ≈ 14 T for L = 18 nm thick samples.
For a slightly larger thickness L = 20 nm, we find Bc(n =
2) ≈ 38 T. Experiment [25] reports a critical magnetic field
of ≈10 T for 20 nm thick films, in reasonable agreement with
the model estimate.

B. Tilted field results

In the presence of a strong in-plane Zeeman coupling
(hs > 2Mn), we have shown previously that the low-energy
physics is controlled by the bands arising from the p-orbitals
at �. The s-orbital bands at the � point are split off in energy
by the large Zeeman field hs > 2Mn. We thus include an

FIG. 6. Schematic plot of the Landau levels arising from Hp

in Eq. (31) overlaid on the band structure shown in Fig. 2. The
schematic shows the transition of the Landau levels from being
twofold degenerate near the two Dirac points (green) to exhibiting
no additional degeneracy (red). The Dirac points occur at ε = −Mn

and the transition from double to single degenerate Landau levels
occurs at ε ∼ −Mn + h3

p/�
2 for the particle Landau levels. As dis-

cussed in more detail in Sec. V B 3, this picture is consistent with
the experimental observation of degenerate Landau levels at strong
in-plane fields [26].

out-of-plane orbital field to the effective Hamiltonian Hp in
Eq. (15), in which we keep only O(k2), to find

Hp =
⎛
⎝−Mn + ω

(
a†a + 1

2

)
α(a†)2 + h3

p

�2 e−3iφ

α∗a2 + h3
p

�2 e3iφ −Mn + ω
(
a†a + 1

2

)
⎞
⎠, (31)

where α = 2A2e−iφ/(l2
Bhs). In the following, we assume that

the in-plane field is oriented along the x-axis and set φ = 0
unless otherwise stated. Since this direction is perpendicular
to a mirror plane, there exist emergent gapless Dirac states at
kc = σkcŷ as described in Sec. III C.

As schematically shown in Fig. 6, there are two distinct
regimes: for low-lying Landau levels (shown in green), there
is an emergent new quantum number σ , which denotes the
Dirac node and gives rise to a twofold degeneracy of the
Landau levels. Above some Landau level index νc, the Dirac
states are no longer relevant, and this twofold Landau level
degeneracy is no longer present. We consider here only the
positive ν—the negative ν can be obtained using particle-
hole symmetry of our model [neglecting εn(k)]. The effect of
including the particle-hole symmetry breaking term εn(k) is
discussed in detail in Appendix F.

We proceed by first finding analytical solutions for the
two cases, ν > νc and ν < νc, and then show numerical re-
sults demonstrating the crossover and estimate the crossover
index νc.

1. High-energy Landau levels, ν > νc

We first consider high energy states and solve Eq. (31) for
large Landau level indices ν such that αν � h3

p/�
2 and we

can neglect the p-orbital Zeeman field hp. In this case, the
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trial wave function

ψν =
(

C̃1,ν |ν〉
C̃2,ν |ν − 2〉

)
(32)

is an eigenstate of Hp [Eq. (31)] with eigenvalues

E±(ν) = −Mn + ω
(
ν − 1

2

) ±
√

ω2 + |α|2ν(ν − 1). (33)

We see that the eigenvalues are characteristic of Landau levels
in a quadratic band touching [35]; schematically, in Fig. 6 they
are shown in red.

2. Low-energy Landau levels, ν < νc

At low energies, the physics is dominated by the Dirac

states, which occur at kc = ±
√

h3
phs/(A�)ŷ. Using the expan-

sion of Eq. (18) about these points, k = δkxx̂ + (σkc + δky)ŷ,
where σ = ± denotes the two band touching points, and in-
serting the Peierls substitution for δk, the Hamiltonian is

Hσ =
( −Mn −2i A2

hs
kc(δkx − iδky)

2i A2

hs
kc(δkx + iδky) −Mn

)
. (34)

Inserting the orbital field via the Peierls substitution for the
deviations δk, we get the Hamiltonian of each Dirac state

Hσ =
(−Mn �ca†

�∗
c a −Mn

)
, (35)

where

�c = −i
23/2A2kc

hslB
e−2iφ. (36)

The wave function is ψν = (−i |ν〉 , |ν − 1〉)T , while the
eigenenergies read

Eσ±(ν) = −Mn ± |�c|
√

|ν| (37)

and we see that the Landau level spectrum about each Dirac
point is identical, yielding a two-fold degeneracy for each
Landau level, as indicated by the green Landau levels in Fig. 6.

Notably, if the in-plane field is rotated away from the high-
symmetry directions, a finite mass term m(φ) arises. If we also
now include the out-of-plane Zeeman field hz, the Hamilto-
nian for the Landau levels due to a single Dirac fermion is
given by

Hσ = −Mn +
(

σm(φ) + hz �ca†

�∗
c a −σm(φ) − hz

)
. (38)

The wave function for the zeroth Landau level is ψ0 =
(|0〉 , 0)T , giving for the zeroth Landau level energies

Eσ (0) = −Mn + σm(φ) + hz. (39)

We see that an out-of-plane Zeeman field hz shifts the zeroth
Landau levels of both Dirac fermions in the same direction,
as shown in Fig. 7. However, the mass m(φ) term splits the
zeroth Landau levels of the two Dirac fermions if the in-plane
component of the field does not point in a high-symmetry di-
rection. We note that in experiment, Ref. [26], the presence of
the ν = 0 plateau for large in-plane fields indicates the split-
ting of the zeroth Landau levels. If the origin of that splitting
is the finite m(φ), then we expect that this plateau should dis-
appear or become harder to see when the in-plane component

FIG. 7. 1000 Landau levels are coupled via Eq. (31) and the
resulting Hamiltonian is diagonalized numerically. The Landau lev-
els plotted are near ε = −Mn=2 ≈ −5.5 meV, denoted by the red
horizontal line, and the crossover between doubly degenerate Landau
levels, νc = | jc − 500| ≈ 7.7, is denoted by the dashed vertical red
lines. The Landau level energies are calculated at lB = 200 nm, hs =
5Mn/2, h3

p/�
2 = hs/20, and the values of the other coefficients are

taken from Ref. [29]. We have also neglected ω as it only introduces
particle-hole asymmetry. (a) Landau level spectrum in the absence
of hz. The Landau levels are numbered such that j = 501 occurs
at energy −Mn + |�c| [corresponding to ν = 1 in Eq. (37)], and
j < 500 correspond to Landau levels with energies at or below −Mn.
(b) Landau level spectrum in the presence of hz = 2gpBz, where we
use gp = 1/20 to emphasize the shift of the zeroth Landau levels of
the Dirac fermions in the presence of hz.

of magnetic field is pointing in a high-symmetry direction.
However, the splitting may also be due to the appearance of
correlated, “emergent” spontaneously valley-polarized states.
Future experiment should help to resolve which of the possi-
bilities is realized in practice.

3. Crossover regime

We have established that the Hamiltonian in Eq. (31)
exhibits twofold degenerate Landau levels for small ν, one
coming from each band touching point at k = σkcŷ, with
eigenvalues given by Eq. (37). For large ν, we found singly
degenerate Landau levels as one can eventually neglect the
p-orbital Zeeman field, and the Landau levels lose this twofold
degeneracy, with energies given by Eq. (33). The crossover
between these two regimes can be approached numerically
by considering a finite number of Landau levels coupling
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via Eq. (31). Taking a total of 1000 levels into account, we
show the resulting Landau level spectrum in Fig. 7. The
spectrum is particle-hole symmetric around energy −Mn, as
we are neglecting the band diagonal εn(k) as well as ω,
and the index j = 501 corresponds to the first Landau level
above −Mn (lowest green line in Fig. 6). Clearly, the Landau
levels exhibit a crossover between being doubly degenerate
at low | j − 500| < νc to being singly degenerate at larger
| j − 500| > νc. In the figure, the crossover occurs at
| j − 500| ≈ 8.

The crossover between these two regimes occurs when the
Landau level energy is on the order of E ≈ −Mn + h3

p/�
2

as this is the energy of the α = − p-orbital band at the �

point, and illustrated in Fig. 6. We can, therefore, estimate the
number of Landau levels with a twofold degeneracy, νc, using
Eq. (37) to obtain

νc ≈ 2
h6

p

�4|�c|2 = 2
h3

phsl2
B

23�2A2
. (40)

The factor of two in front accounts for the double degeneracy.
For the parameters used in Fig. 7, we find νc ≈ 7.7, which is
in good agreement with the numerical results.

Reference [26] observes quantum Hall plateaus in a

magnetic field with a fixed magnitude |B| =
√

B2
⊥ + B2

‖
tilted out of the plane at varying angles θtilt, B =
(B‖ cos θtilt, 0, B⊥ sin θtilt ). For smaller tilt angles, which cor-
respond to larger in-plane magnetic fields, the quantum Hall
plateaus are observed at odd integer filling factors ν =
1, 3, 5, . . . while for fields with a larger tilt angle quantum
Hall plateaus are observed at every integer filling factor. As
the magnetic field magnitude is kept fixed while the field is
rotated out of the plane, both hs, hp, and lB decrease, decreas-
ing νc in agreement with our model. For in plane magnetic
field value B‖ = 16 T, which corresponds to the high field
regime, gs = 12, h3

p/�
2 = hs/20, and A = 111.6 meV nm

from Ref. [29], we calculate that νc < 2 for B⊥ < 6.8 T, in
good agreement with experiment which sees the transition
between these two regimes occur between B⊥ = 3.62 and
4.79 T.

VI. CONCLUSIONS

In this article, we have derived a low-energy k · p model
for [001] thin film Cd3As2 in the presence of a magnetic field
applied in an arbitrary direction. At zero field and above a
critical thickness, specific subbands n of thin film Cd3As2 are
in a quantum spin Hall insulator regime. Importantly, we find
that the p-orbital Zeeman field enters the Hamiltonian only
to cubic order in the applied field, while it is linear for the s
orbitals. This distinction is important to understand why the
model enters a 2D Dirac semimetal phase in the presence of a
sufficiently large in-plane Zeeman field (hs > 2Mn) that points
perpendicular to a high-symmetry mirror plane. The nodal
points appear on a mirror plane and become gapped when the
applied in-plane field is rotated away from the high-symmetry
directions in plane.

The fact that the system is initially gapped for small in-
plane fields but enters a gapless regime at larger fields (if
applied perpendicular to a mirror plane) can explain the ex-
perimental observation of a decrease in longitudinal resistance

for sufficiently large in-plane fields [26]. From the realistic
model parameters, for sample sizes L = 19 nm with an ef-
fective g factor of gs = 12 we estimate the large field regime
to begin for the n = 2 subbands at B‖ ∼ 16 T. The energy
gap follows a sin(4φ) behavior as the field is rotated through
the plane, which we predict to be observable when fitting the
resistance at finite temperatures to an Arrhenius law.

Furthermore, we have investigated the fate of the 1D heli-
cal edge states of the zero field QSH insulator in the presence
of an in-plane magnetic field. Neglecting the small p-orbital
Zeeman field, we showed how they gap out and evolve in the
presence of an in-plane field that couples the s orbitals. While
they gap out at infinitesimal fields, consistent with the explicit
breaking of time-reversal symmetry, we further showed their
complete removal as the in-plane field hs is increased.

We further study the inclusion of a perpendicular orbital
magnetic field and show that, in the absence of an in-plane
Zeeman field, a crossing of the zeroth Landau levels as a
function of film thickness occurs. This behavior is consistent
with the experimental observations reported in Ref. [25].

Lastly, we investigated how the system responds to a per-
pendicular orbital magnetic field in the 2D Dirac semimetal
regime and find that the resulting Landau level spectrum
exhibits a twofold degeneracy up to a Landau level index
νc ∝ h3

phsl2
B/�2A2, where A sets the Fermi velocity in the bulk

model and � is the energy separation of the low-energy man-
ifold from higher bands. The double degeneracy arises from
the emergence of a new quantum number associated with the
two 2D Dirac nodes that appear at large in-plane fields. The
Landau level spectrum crosses over to be singly degenerate at
larger energies for ν > νc. We present analytical results for the
Landau level spectrum of the two regimes and show numerical
results for the crossover. These results can explain recent
quantum Hall measurements presented in Ref. [26], which
reported an initial jump of the quantum Hall plateaus by two
conductance quanta (e2/h) at small out-of-plane fields before
returning to plateaus changing by one for larger out-of-plane
fields.
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APPENDIX A: DERIVATION OF THE k · p MODEL

In this Appendix, we derive the effective k · p model
up to cubic order, complementing the derivations presented
before, up to second order [29]. Up to quadratic order, it
matches the model of Refs. [25,27,29]. We consider the space
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spanned by the states {|S1/2, 1/2〉, |P3/2, 3/2〉, |S1/2,−1/2〉,
|P3/2,−3/2〉}. This basis order corresponds to si ⊗ τ j or-
dering. In this basis, the matrix structure of the symmetry
transformations generating all operations in the point group
D4h read

C2x = −isxτz, (A1)

C2y = −isyτ0, (A2)

P = s0τz, (A3)

T = isyτ0K, (A4)

C4z = 1√
2

(s0τz − iszτ0). (A5)

Here, P denotes spatial inversion, T denotes time-reversal,
and K complex conjugation. These symmetry operations can
be checked as follows.

(1) C2x and C2y. There are two ways of finding the oper-
ator. The first is to rewrite the states in terms of spherical
harmonics. For instance, |P3/2, 3/2〉 comes from Y1,1 com-
bined with a spin half pointing up. Another way is purely
in terms of the total angular momentum. For that, we write
down the operator for J = 1/2 and for J = 3/2. For instance,
for J = 3/2, we need C2x = exp(−i 2π

2 Jx ), where Jx is the x
component of the spin 3/2. We project onto the states of
MJ = ±3/2. We repeat the procedure for the J = 1/2 case.
The final operator is the direct sum of the two.

(2) P. The p orbitals are odd under inversion, while the s
orbitals are even.

(3) T . Time reversal acts the usual way as these four states
consist of two Kramers doublets.

(4) C4z. We can use the total angular momentum operators,
J = 1/2 and 3/2, and compute how they rotate.

Finally, the mirror symmetry operations are

Mxz = P ◦ C2y = −isyτz, (A6)

M(x+y)z = C4z ◦ Mxz = i√
2

(−sxτz + syτ0), (A7)

Myz = C2
4z ◦ Mxz = −isxτ0, (A8)

M(x−y)z = C3
4z ◦ Mxz = − i√

2
(sxτz + syτ0). (A9)

In general, the Hamiltonian can be expressed as

H =
∑
i, j

∑
k

Hi j (k)c†
ikc jk. (A10)

We call Ug the unitary part of the symmetry, acting on the
orbital and spin indices, and Rg the representation of the sym-
metry in momentum space. The symmetry constraints impose
that

UgH
(
R−1

g k
)
U −1

g = H (k). (A11)

The k · p Hamiltonian satisfying the symmetries can be com-
puted using algebraic subroutines that incorporate all the
symmetry operations. We use the package MAGNETICKP for
MATHEMATICA [36]. Up to order k3, we arrive at Eq. (1) of the
main text.

APPENDIX B: MICROSCOPIC DERIVATION
OF THE ZEEMAN AND SPIN-ORBIT TERMS

In this Appendix, we derive the effects of adding a mag-
netic field along a general direction to thin films of Cd3 As2.
This Appendix is organized in the following way. First, in
Sec. B 1 we list the different bases: the spherical basis, the
Cartesian one, and the one that diagonalizes the total angular
momentum. In Sec. B 2, we write down the spin-orbit cou-
pling term on the different bases. In Sec. B 3, we derive the
terms in the Hamiltonian corresponding to a magnetic field.

1. The different basis and how to relate them

Throughout this Appendix, we are going to change basis
several times. First, we write down all the operators on the
spherical basis, ordered according to

{|↑〉, |↓〉} ⊗ {|s〉, |1, 1〉, |1, 0〉, |1,−1〉}
= {|s,↑〉, |1, 1,↑〉, . . .}. (B1)

Here, |l, m〉 are the indices of the spherical harmonics Ylm

denoting the orbital angular momentum numbers. Another
useful basis is the one with the s and px,y,z orbitals,

{|↑〉, |↓〉} ⊗ {|s〉, |px〉,
∣∣py

〉
, |pz〉} = {|s,↑〉, |px,↑〉, . . .}.

(B2)
The basic transformations come from writing down the

spherical harmonics in terms of the p orbitals,

Y1,−1 = 1√
2

(px − ipy), (B3)

Y1,1 = 1√
2

(−px − ipy), (B4)

Y0,0 = pz. (B5)

Here, we do not explicitly write the spin index; the trans-
formations are the same for the up and down components.
Conversely,

px = 1√
2

(Y1,−1 − Y1,1), (B6)

py = i√
2

(Y1,−1 + Y1,1), (B7)

pz = Y1,0. (B8)

The rotation matrix from the spherical to the px,y,z basis can
be read off from Eqs. (B3), (B4), and (B5),

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 − 1√

2
i√
2

0 0 0 0 0
0 0 0 1 0 0 0 0
0 1√

2
i√
2

0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 − 1√

2
i√
2

0
0 0 0 0 0 0 0 1
0 0 0 0 0 1√

2
i√
2

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B9)

The first 4×4 block corresponds to spin up, while the second
one corresponds to spin down. Finally, since spin-orbit cou-
pling is large, we will work with the total angular momentum
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basis

H = {|S1/2, 1/2〉, |S1/2,−1/2〉, |P3/2, 3/2〉, |P3/2, 1/2〉,
× |P3/2,−1/2〉, |P3/2,−3/2〉, |P1/2, 1/2〉, |P1/2,−1/2〉}.

(B10)

Later, we will consider the low-energy modes, in which we
truncate the Hilbert space, Htrunc, spanned by the four states
(note the τ j ⊗ si ordering here):

{|S1/2, 1/2〉, |S1/2,−1/2〉, |P3/2, 3/2〉, |P3/2,−3/2〉}. (B11)

To change basis to the total angular momentum basis, we
have to write down the J multiplets in terms of the original
states. The S1/2 are trivially found from the s orbitals,

|S1/2, 1/2〉 = |s,↑〉, (B12)

|S1/2,−1/2〉 = |s,↓〉. (B13)

The four P3/2 are constructed from the L = 1, S = 1/2 states
as |P3/2, 3/2〉 = |m� = 1,↑〉

= 1√
2

(−|px,↑〉 − i|py,↑〉), (B14)

∣∣P3/2, 1/2
〉 = 1√

3
(
√

2|m� = 0,↑〉 + |m� = 1,↓〉)

= 1√
3

(√
2|pz,↑〉 − 1√

2
|px,↓〉 − i√

2

∣∣py,↓
〉)

,

(B15)

|P3/2,−1/2〉 = 1√
3

(|m� = −1,↑〉 +
√

2|m� = 0,↓〉)

= 1√
3

(
1√
2
|px,↑〉 − i√

2

∣∣py,↑
〉 + √

2|pz,↓〉
)

,

(B16)

|P3/2,−3/2〉 = |m� = −1,↓〉 = 1√
2

(|px,↓〉 − i
∣∣py,↓

〉
).

(B17)

Finally, the two P1/2 states are also found from the L = 1,
S = 1/2 as

|P1/2, 1/2〉 = 1√
3

(
√

2|m� = 1,↓〉 − |m� = 0,↑〉)

= 1√
3

(−|px,↓〉 − i|py,↓〉 − |pz,↑〉), (B18)

|P1/2,−1/2〉 = 1√
3

(|m� = 0,↓〉 −
√

2|m� = −1,↑〉)

= 1√
3

(|pz,↓〉 − |px,↑〉 + i|py,↑〉). (B19)

The matrix that changes the basis from s, px,y,z to the total
angular momentum is immediately found by collecting the
results from Eqs. (B12) to (B19),

UJ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0

0 0 − 1√
2

0 1√
6

0 0 − 1√
3

0 0 − i√
2

0 − i√
6

0 0 i√
3

0 0 0
√

2
3 0 0 − 1√

3
0

0 1 0 0 0 0 0 0

0 0 0 − 1√
6

0 1√
2

− 1√
3

0

0 0 0 − i√
6

0 − i√
2

− i√
3

0

0 0 0 0
√

2
3 0 0 1√

3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B20)

Having all the transformation matrices, we are ready to address how the Zeeman and the spin-orbit terms are written in each
basis.

2. The spin-orbit coupling

Before writing down the magnetic field terms, we present the different ways of writing down the spin-orbit coupling matrix.
The spin-orbit coupling can be easily written on the spherical basis by writing the operators S for the spin 1/2 and L for the
spin 1. The SOC written in matrix form, with the basis ordered according to Eq. (B1), reads

HSO = �L · S = �

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2 0 0 0 0 0

0 0 0 1√
2

0 0

0 0 − 1
2 0 1√

2
0

0 1√
2

0 − 1
2 0 0

0 0 1√
2

0 0 0

0 0 0 0 0 1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B21)
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Rotating to the px,y,z basis, of Eq. (B2), we find, using the rotation matrix of Eq. (B2),

H̃SO = U †HSOU = �

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
0 0 −i 0 0 0 0 1
0 i 0 0 0 0 0 −i
0 0 0 0 0 −1 i 0
0 0 0 0 0 0 0 0
0 0 0 −1 0 0 i 0
0 0 0 −i 0 −i 0 0
0 1 i 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B22)

It matches the form found in Ref. [29]. Finally, we rotate from the px,y,z to the total angular momentum basis,

H (J )
SOC = U †

J H̃SOCUJ = �

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 1
2 0 0 0 0 0

0 0 0 1
2 0 0 0 0

0 0 0 0 1
2 0 0 0

0 0 0 0 0 1
2 0 0

0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B23)

This matrix is diagonal in the total angular momentum basis. It can also be found simply from L · S = 1
2 (J2 − L2 − S2). For

the J = 3/2 multiplet (entries 3 to 6), coming from the p electrons (l = 1) and s = 1/2, we get L · S = 1/2. For the cases of
(J, L, S) = (1/2, 1, 1/2), we find L · S = −1, while for the states coming from s orbitals, (J, L, S) = (1/2, 0, 1/2), yielding
L · S = 0.

3. The effects of SOC and magnetic fields

The Zeeman term can be easily written in the spherical basis by simply writing giμBB · (L + 2S) for all degrees of freedom,
following the basis defined in Eq. (B1). Here, gi denotes the g factor for a given orbital. In this subsection, for compactness, we
will set μB = 1, keeping in mind that all terms that follow are proportional to μB. The Zeeman term reads

HZ = gsB · (L + 2S) + gpB · (L + 2S)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Bzgs 0 0 0 gs(Bx − iBy ) 0 0 0
0 2Bzgp

gp(Bx−iBy )√
2

0 0 gp(Bx − iBy ) 0 0

0 gp(Bx+iBy )√
2

Bzgp
gp(Bx−iBy )√

2
0 0 gp(Bx − iBy ) 0

0 0 gp(Bx+iBy )√
2

0 0 0 0 gp(Bx − iBy )

gs(Bx + iBy ) 0 0 0 −Bzgs 0 0 0
0 gp(Bx + iBy ) 0 0 0 0 gp(Bx−iBy )√

2
0

0 0 gp(Bx + iBy ) 0 0 gp(Bx+iBy )√
2

−Bzgp
gp(Bx−iBy )√

2

0 0 0 gp(Bx + iBy ) 0 0 gp(Bx+iBy )√
2

−2Bzgp

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(B24)

By rotating to the px,y,z basis, we find

H̃Z = U †HZU,

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

gsBz 0 0 0 gs(Bx − iBy ) 0 0 0
0 gpBz −igpBz igpBy 0 gp(Bx − iBy ) 0 0
0 igpBz gpBz −igpBx 0 0 gp(Bx − iBy ) 0
0 −igpBygp igpBx gpBz 0 0 0 gp(Bx − iBy )

gs(Bx + iBy ) 0 0 0 −gsBz 0 0 0
0 gp(Bx + iBy ) 0 0 0 −gpBz −igpBz igpBy

0 0 gp(Bx + iBy ) 0 0 igpBz −gpBz −igpBx

0 0 0 gp(Bx + iBy ) 0 −igpBy igpBx −gpBz

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(B25)
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Finally, in the total angular momentum basis, the Zeeman term reads

H (J )
B = U †

J HZUJ

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

gs

(
Bz Bx − iBy

Bx + iBy −Bz

)
0

0 gp

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2Bz
2(Bx−iBy )√

3
0 0 (Bx−iBy )√

6
0

2(Bx+iBy )√
3

2
3 Bz

4
3 (Bx − iBy) 0 − 1

3 (
√

2Bz ) (Bx−iBy )

3
√

2

0 4
3 (Bx + iBy) − 2

3 Bz
2(Bx−iBy )√

3
− (Bx+iBy )

3
√

2
− 1

3 (
√

2Bz )

0 0 2(Bx+iBy )√
3

−2Bz 0 − (Bx+iBy )√
6

(Bx+iBy )√
6

− 1
3 (

√
2Bz ) − (Bx−iBy )

3
√

2
0 Bz

3
1
3 (Bx − iBy)

0 (Bx+iBy )

3
√

2
− 1

3 (
√

2Bz ) − (Bx−iBy )√
6

1
3 (Bx + iBy) −Bz

3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(B26)

From the form of the matrix, we can already find many
important properties. Within each subspace of total angular
momentum, the field couples as gJB · J, with J the to-
tal angular momentum and gJ the corresponding Landé g
factor [37]

gJ = 3

2
+ S(S + 1) − L(L + 1)

2J (J + 1)
. (B27)

Within a given angular momentum multiplet, the Zeeman term
is proportional to the total angular momentum J [37]. Jx and Jy

do not couple MJ = 3/2 with MJ = −3/2. For this multiplet,
therefore, only Jz will matter (and, therefore, only Bz). In
fact, for the J = 3/2 states, the Landé g-factor is gJ=3/2(J =
3/2, L = 1, S = 1/2) = 4/3 while for the J = 1/2 multiplet
of p electrons, gJ=1/2(J = 1/2, L = 1, S = 1/2) = 2/3. The
diagonal entries of the matrix are thus g3/2MJ = 4

3 × (± 3
2 ) =

±2, g3/2MJ = 4
3 × (± 1

2 ) = ± 2
3 , and g1/2MJ = 2

3 × (± 1
2 ) =

± 1
3 . The s electrons behave purely as spin 1/2 objects, with

a Landé factor gJ=1/2(J = 1/2, L = 0, S = 1/2) = 2. The di-
agonal Zeeman coupling is proportional to gJMJ and thus
g1/2 = 2 × (± 1

2 ) = ±1. As for the s electrons, only the spin
is coupled, and gss = 2 × 1/2 = 1.

If we confine ourselves to the low-energy states [Eq. (B11)]
by simply projecting H (J )

B to those states, we find HP =
PH (J )

B P, with a matrix representation

HP =

⎛
⎜⎜⎜⎜⎝

gsBz gs(Bx − iBy) 0 0

gs(Bx + iBy) −gsBz 0 0

0 0 2gpBz 0

0 0 0 −2gpBz

⎞
⎟⎟⎟⎟⎠.

(B28)

Here, P is the projector onto the low-energy subspace. We find
that only the z component of the magnetic field couples to the
J = 3/2, MJ = ±3/2 states. This is expected as, within the
J = 3/2 subspace, the Zeeman term is gJB · J and the x and y
components cannot couple two states with Mz differing by 3.

APPENDIX C: LOW-ENERGY EFFECTIVE COUPLING
OF P-ELECTRONS TO IN-PLANE FIELDS:

PERTURBATION THEORY

In this Appendix, we consider how the components of the
magnetic field parallel to the xy plane couple to the p electrons
by performing a perturbative calculation. We can already infer
that we need a process that couples the states of MJ = ±3/2.
Such processes need to change Mz by 3 units, which requires
a cubic coupling with the magnetic field. We now demonstrate
this by an explicit calculation.

We will be focusing on states at the � point. In what
follows, we neglect the effects of crystal fields that preserve
the azimuthal quantum numbers and, therefore, do not alter
our conclusions. We call Es the energy of the s orbitals and
�1, �2, and �3 the three different energies of the different p
doublets. Using the basis as defined in Eq. (B10), the Hamil-
tonian H0 is diagonal, with energy Es for the s-orbitals and
energies �1,�2 for the p orbitals of J = 3/2 and azimuthal
numbers ±3/2 and ±1/2, respectively. The energy of the p
orbitals of J = 1/2 is �3.

These masses are entering to produce differences in the
energy of the bands, to zeroth order, and will lead to the s
states |S1/2,±1/2〉 and the states |P3/2,±3/2〉 close to the
Fermi level. We decompose the Hamiltonian as

H = H0 + H (J )
B , (C1)

where the perturbation H (J )
B is the term with magnetic field,

Eq. (B26). We are going to follow the approach of Ref. [38].
We define the resolvent operator

R = Q

E0 − H0
, (C2)

with Q = 1 − P, where P projects onto the four-dimensional
set of states {|S1/2,±1/2〉 , |P3/2,±3/2〉}, and E0 the eigenen-
ergies of H0. With the projector P and the resolvent R, the
different corrections of the Hamiltonian can be found in a
straightforward way as [38]

�H (1) = PH (J )
B P, (C3)

�H (2) = PH (J )
B RH (J )

B P, (C4)

�H (3) = PH (J )
B RH (J )

B RH (J )
B P − PH (J )

B R2H (J )
B PH (J )

B P. (C5)
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All the terms �H (i) are effective 4 × 4 models, written in the
subspace spanned by the states listed in Eq. (B11).

The first correction �H (1) is equivalent to neglecting the
effects of the high-energy bands and leads to the projected
Hamiltonian of Eq. (B28). In what follows, we will consider
only the effects on the P3/2 states as the higher-order contribu-
tions for the s states vanish.

The term �H (2) is an isotropic contribution that adds to the
diagonal components and reads

�H (2) = u(2)|B‖|2
(

1 0
0 1

)
. (C6)

Here, B‖ = (Bx, By, 0) and

u(2) = 9�1 − �2 − 8�3

6(�1 − �2)(�1 − �3)
. (C7)

Finally, the third-order correction reads �H (3) = �H (3)
⊥ +

�H (3)
‖ , with

�H (3)
‖ = u(3)

‖

(
0

(
Bx − iBy

)3(
Bx + iBy

)3
0

)
. (C8)

and �H (3)
⊥ = u(3)

⊥ sz Explicitly,

u(3)
‖ = (9�1 − �2 − 8�3)(3�1 + �2 − 4�3)

18(�1 − �2)2(�1 − �3)2 , (C9)

u(3)
⊥ = (3�1 + �2 − 4�3)2

18(�1 − �2)2(�1 − �3)2 . (C10)

Decomposing in terms of the s and τ matrices, we find

�H (3) = μ3
Bgp

(
τ0 − τz

2

){
Bx

(
B2

x − 3B2
y

)
sx

− By
(
B2

y − 3B2
x

)
sy + r|B⊥|2Bzsz

}
, (C11)

r = u(3)
⊥ /u(3)

‖ a dimensionless number of order one.
Adding all contributions, we find an effective coupling

with the B field shown in Eq. (10) of the main text.

APPENDIX D: DERIVATION OF Hp

In this Appendix, we explicitly show that the specific re-
lations between the third-order coefficients in the k · p model
that we use in the main text to simplify the resulting expres-
sions do not change any of our conclusions. In other words,
it is not necessary to make assumptions about the coefficients
C3a,b,c,d,e as is done in the main text, and it will be shown that
for arbitrary coefficients, the form of the effective Hamilto-
nian Hp in the high field limit takes the same form as in the
main text. To begin, our full Hamiltonian is given by

H =

⎛
⎜⎜⎜⎜⎝

Mn A+ hse−iφ F

A− −Mn F h̃pe−3iφ

hseiφ F ∗ Mn −A−
F ∗ h̃pe3iφ −A+ −Mn

⎞
⎟⎟⎟⎟⎠ (D1)

in the basis (|S, 1/2〉 , |P3/2, 3/2〉 , |S,−1/2〉 , |P3/2,−3/2〉),
and we use the shorthand h̃p = h3

p/�
2 and

A± = Ãk± ∓ iC3akxkyk∓ + C3b
(
k3

x ± ik3
y

)
, (D2a)

F = iC3ekxkykz + C3d kz
(
k2

x − k2
y

)
, (D2b)

where we have conveniently written Ã = A − C3ck2
z and use

the shorthand kz = nπ/L. As the bands with p-orbital charac-
ter at � have energies ε ≈ −Mn, we may take the s-orbital
subspace of the Schrödinger equation and solve for the s-
orbital wave functions in terms of the p-orbital wave functions
in the limit hs � Mn:

s1/2 ≈ −F ∗ p3/2 + A− p−3/2

hseiφ
(D3a)

s−1/2 ≈ −A+ p3/2 − F p−3/2

hse−iφ
(D3b)

Substituting these solutions back into the equations for the p
orbitals we obtain a low-energy theory for the relevant bands
near ε = −Mn, Hp, with

B1 = A2
−

hs
e−iφ − F 2

hs
eiφ + h̃pe−3iφ, (D4a)

B2 = −
[

F ∗A−
hs

e−iφ + FA+
hs

eiφ

]
. (D4b)

B1 to O(k2) is given by

B(0)
1 = Ã2k2

−
hs

e−iφ + h̃pe−3iφ. (D5)

B(0)
1 = 0 occurs at kc0 =

√
h̃phs/Ã2 and θcσ = φ ± π/2. In-

clusion of higher order in k terms slightly shifts kc away from
kc0 and gives rise to a mass term which arises from B2, as we
will show below. For coefficients in the atomic limit, B1 is

B1e3iφ = 1

hs

[
A2k2e−2i(θ−φ) + 2AA1k4e2i(θ+φ)

+ A2
1k6e2i(3θ+φ) − η2k2

z k4e−4i(θ−φ)] + h̃p,

(D6)

the magnitude of which determines kc when θ = θcσ = φ +
σπ/2. Thus B1 evaluated at θ = θcσ is

B1e3iφ =−1

hs

[
A2k2+ 2AA1k4 cos 4φ + A2

1k6 cos 8φ − η2k2
z k4

]

+ h̃p − i
2A1k4

hs
(A + A1k2 cos 4φ) sin 4φ (D7)

In general, the equation for kc using Eq. (D7) is a sixth-order
polynomial for k2

c . However, as we limit our Hamiltonian
Eq. (D1) to O(k3), we should only keep up to O(k4) terms
in B1, and the resulting equation for kc is determined by[

A2k2
c + 2AA1k4

c cos 4φ − η2k2
z k4

c − hsh̃p
]2

+ 4A2
1A2k8

c sin2 4φ = 0, (D8)

which is a quartic equation for k2
c and thus has a general

solution. Due to the smallness of h̃p compared to hs, however,
kc is well approximated by kc0. We can expand B1 up to lowest
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order in kc, giving us

B1 ≈ −2iA2kc

hs
δk−e−2iφ. (D9)

The general form of B2 after expressing k in polar coordinates
is

B2 = − Ãk3kz

hs
(C− cos(θ − φ) + C+ cos(3θ + φ))

− k5kz

4hs
[((C3a + C3b)C3e + 4C3bC3d ) cos(θ − φ)

− (C3a − 3C3b)C+ cos(3θ + φ) + (C3a + C3b)

× C− cos(5θ − φ)] (D10)

with C± = C3d ± C3e/4. Substituting in the relation between
coefficients Ci used in the main text, Eq. (D10) reduces to
Eq. (16b). At θ = φ ± π/2, we have

B2 = = ±m(φ) = ±
[

− Ãk3
c kz

hs
C+ ± k5

c kz

4hs

(
(C3a − 3C3b)C+

+ (C3a + C3b)C−

)]
sin(4φ) (D11)

The mass thus vanishes if the field points perpendicular to a
mirror plane, since this mirror then remains a symmetry of the
system. Combining time reversal with the mirror that contains
the field direction is also a symmetry.

APPENDIX E: SURFACE STATES
DISPERSION CALCULATION

In this Appendix, we provide details on the calculation of
the helical edge modes with and without an in-plane magnetic
field. The boundary condition for the surface state is expressed
in terms of the eigenvectors in Eq. (21b):

ψ1α (kx, ky) = −αNα+(kx, ky)
Eα+(kx, ky) + M(kx, ky)

Ak+
,

(E1a)

ψ2α (kx, ky) = −αNα+e−iφ k−
k+

, (E1b)

ψ3α (kx, ky) = −Nα+(kx, ky )
Eα+(kx, ky) + M(kx, ky)

Ak+
,

(E1c)

ψ4α (kx, ky) = Nα+(kx, ky), (E1d)

the matrix A whose determinant being zero gives the surface
state dispersion ε(kx ) is then given by

A =

⎛
⎜⎜⎜⎜⎝

ψ1+(kx,−iλ++) ψ1+(kx,−iλ+−) ψ1−(kx,−iλ−+) ψ1−(kx,−iλ−−)

ψ2+(kx,−iλ++) ψ2+(kx,−iλ+−) ψ2−(kx,−iλ−+) ψ2−(kx,−iλ−−)

ψ3+(kx,−iλ++) ψ3+(kx,−iλ+−) ψ3−(kx,−iλ−+) ψ3−(kx,−iλ−−)

ψ4+(kx,−iλ++) ψ4+(kx,−iλ+−) ψ4−(kx,−iλ−+) ψ4−(kx,−iλ−−)

⎞
⎟⎟⎟⎟⎠. (E2)

We then solve det A = 0 numerically to obtain the surface
state dispersion ε(kx ). We use the parameters from Ref. [29],

A = 111.6 meV nm, (E3a)

M0 = 28.2 meV, (E3b)

Mz = 207.2 meV nm2, (E3c)

Mxy = 133.2 meV nm2, (E3d)

and we use n = 2, L = 19 nm to model the Cd3As2 thin film
setup reported in Refs. [25,26].

APPENDIX F: PARTICLE-HOLE ASYMMETRY
IN LANDAU LEVEL SPECTRUM

The inclusion of the band-diagonal term εn(k) [see
Eq. (6a)] causes an additional contribution to Eq. (28), and
the full Hamiltonian is given by

H = Cn + ω2

(
a†a + 1

2

)
+

[
Mn − ω

(
a†a + 1

2

)]
τzs0

+ A√
2lB

[τxsz(a + a†) + iτys0(a − a†)], (F1)

where Cn = C0 + C1( nπ
L )2 and ω2 = 2C2

l2
B

. The ν �= 0 Landau
levels are found with the trial wave functions

ψν+ = (0, 0, B1+ |ν〉 , B2+ |ν − 1〉)T , (F2)

ψν− = (B1− |ν − 1〉 , B2− |ν〉 , 0, 0)T (F3)

FIG. 8. The ν = 0–4 Landau levels plotted as a function of the
inverse magnetic length squared eB. The ν = 0 levels are shown
with thicker strokes, with ν �= 0 particle and hole levels colored
orange and blue, respectively. The inclusion of the band-diagonal
εn(k) breaks particle-hole symmetry by introducing ω2, which pro-
vides a positive dispersion in magnetic field for every Landau level.
The values of model coefficients used are from Ref. [29] [see also
Eq. (E3)].
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giving the ν �= 0 Landau level energies

εαβ (ν) = Cn − α
ω

2
+ νω2

+ β

√
2A2

l2
B

ν +
(

α(Mn − νω) + ω2

2

)2

. (F4)

The inclusion of the band-diagonal term causes two contribu-
tions to the Landau level spectrum: first, a trivial shift of the
overall energies by Cn, but more importantly, ω2 contributes
a positive dispersion to every Landau level as a function
of magnetic field, introducing a particle-hole asymmetry as
shown in Fig. 8.
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