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Delicate semimetals: Protected gapless phases from unstable homotopies
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We construct and explore two-band topological semimetals in different spatial dimensions that are protected
by unstable homotopies. Dubbed “delicate semimetals,” they generically host nodal lines and are inspired by
the example of such phases realized in four dimensions arising from maps from the three-torus T 3 [Brillouin
zone of a three-dimensional (3D) crystal] to the two-sphere S2 related to the Hopf map. In the four-dimensional
example, a surface enclosing such a nodal line in the Brillouin zone carries a Hopf flux. These four-dimensional
semimetals show a unique class of surface states: while some 3D surfaces host gapless Fermi-arc states and
drumhead states, other surfaces have gapless Fermi surfaces. Gapless two-dimensional corner states are also
present at the intersection of three-dimensional surfaces. We also demonstrate such semimetals realized in three
dimensions in chiral class AIII, which arise from the unstable homotopies of maps from T 2 (Brillouin zone of
a two-dimensional crystal) to S1. These 3D semimetals also host nodal lines, accompanied by a rich collection
of surface states, including drumhead type. This work provides a new framework to realize protected nodal line
semimetals, particularly in synthetic quantum systems such as cold atoms, photonic, and topoelectric systems.
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I. INTRODUCTION

The understanding and classification of gapped topolog-
ical phases [1–8] of noninteracting fermions has not only
provided deeper insights, but also, stimulated wider general-
izations [9,10] and the search for topological materials [11].
The current understanding of these gapped phases is built on
the symmetry classification of the fermionic systems that arise
from the presence or absence of intrinsic symmetries such as
time reversal, charge conjugation and sublattice symmetries
[8,12–14]. In a crystalline system in d dimensions, the ground
state of a gapped fermionic system is obtained by the state of
occupied valence bands in the first Brillouin zone (BZ), the
d-torus T d . Interestingly, the occupied states at any point in
the BZ can be viewed as a point in one of the ten symmetric
spaces S , the specific one being determined by the intrinsic
symmetry. Topologically distinct gapped ground states are
identified with the homotopy classes of maps from T d to S ,
resulting in the periodic table of strong topological phases [5].

Apart from these symmetry-protected topological phases,
a class of gapless phases has elicited attention, beginning with
graphene [15], and, more recently, Weyl and Dirac semimetals
[16–22]. Weyl semimetals arise in three dimensions, exploit-
ing the topology in a lower-dimensional slice of the Brillouin
zone (say the k1-k2 plane) that undergoes a “phase transition”
as the k3 of the slice is varied. Thus, these semimetals are pro-
tected by the topology of the two adjacent two-dimensional
phases, the gapless points being those k3 at which the quan-
tum phase transition between the two-dimensional phases is
affected. They have received considerable attention owing to

*bhandarup@iisc.ac.in
†shenoy@iisc.ac.in

their exotic properties such as Fermi-arc surface states and in-
teresting nonlinear responses related to the chiral anomaly. A
key question to be explored is a general classification of such
semimetallic phases including the role of lattice symmetries.

In this context, it is useful to recall that the classification of
gapped phases hinges on the number of bands being large.
In more mathematical terms, these are determined by the
stable homotopies of maps from T d to S which are real-
ized when S is large dimensional. In the absence of a large
number of bands, one can still obtain topological phases that
arise from unstable homotopies [23] of maps from T d to
S i.e., when the space S is “small dimensional” [24]. An
example in a three-dimensional lattice that hosts a two-band
gapped system is dubbed as a “Hopf insulator”[25–28] whose
topology can be traced to the homotopies of maps from the
three-sphere S3 to the two-sphere S2; this has recently been
realized in a topoelectrical system [29]. In relation to more
recent work on topological systems beyond the stable classi-
fication, further classifying gapped phases as “fragile” [30],
or “delicate”[31,32], Hopf insulators fall in the delicate class.
These ideas lead to an interesting question in the context
of semimetals—are there semimetals that are protected by
unstable homotopies?

In this paper, we answer this question in the affirmative
by constructing examples of semimetals protected by unstable
homotopies in different dimensions. Our primary example
shows how a Hopf insulator in three dimensions can be used
to construct interesting gapless phases in four dimensions
with several new features. Unlike the Weyl semimetal in
three dimensions, these four-dimensional (4D) semimetals
host nodal lines of gapless points (a one-dimensional subman-
ifold) in the four-dimensional Brillouin zone. Remarkably,
any three-dimensional (3D) surface that encloses one of these
rings carries an integer Hopf number that characterizes the
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phases on either side of these rings. These features manifest
spectacularly in the nature of gapless surface states. There
are three-dimensional surfaces, which host Fermi-arc states
and, in addition, gapless drumhead states [33]. Furthermore,
we also find evidence of two-dimensional corner states that
arise at the intersection of two three-dimensional surfaces
of the four-dimensional insulator. As a second example, we
construct two-band gapless phases in three spatial dimen-
sions in symmetry class AIII (the chiral class) that host nodal
lines, and gapless surface states, including drumhead variety.
These three-dimensional semimetals are protected by the un-
stable homotopies of maps from T 2 (BZ of two-dimensional
crystal) to S1. This work thus presents a new class of gap-
less phases—dubbed “delicate semimetals”—inspired by the
four-dimensional example constructed from the Hopf insu-
lator with delicate topology [31,32,34] that are protected by
unstable homotopies. This work contributes to the problem
of classification of gapless phases and also provides routes
to realizing interesting topological gapless phases in higher
dimensions [35–37].

In the next section (Sec. II) we review Hopf and Hopf-
Chern insulators. This is followed by Sec. III which constructs
4D semimetallic phases arising from Hopf insulators. Sec-
tion IV constructs a 3D example with AIII symmetry.
The paper concludes in Sec. V with a brief discussion on
perspectives.

II. HOPF AND HOPF-CHERN INSULATORS

We begin with a two-band system that realizes an insulting
phase on a 3D cubic lattice with a unit lattice spacing. The
Brillouin zone (BZ) of this system is the three torus T 3 cor-
responding to [−π, π ]3. A generic point in the BZ is denoted
by k = (k1, k2, k3). A two-band Hamiltonian is defined by

H (k) = d(k) · σ, (1)

where d(k) is the vector (d1(k), d2(k), d3(k)), and σ =
(σ1, σ2, σ3) where σi are the 2 × 2 Pauli matrices. The chemi-
cal potential here and henceforth in this paper is set to zero so
that the fermionic many-body system is half filled (1 particle
per site). Existence of a gap necessitates that |d(k)| > 0 for
k ∈ T 3, and thus the unit vector d̂ (k) = d(k)/|d(k)| can be
identified with a point on the two-sphere S2. Consequently,
the Hamiltonian (1) can be viewed as a map from T 3 to S2.

Distinct insulating topological phases are obtained depend-
ing on the homotopy class of the map from T 3 to S2, with two
insulators being identical if they can be smoothly deformed
to each other (i.e., homotopic) without closing the gap. Such
maps have been extensively studied both from the mathemat-
ical and physical perspectives [38–42]. The homotopy classes
of the maps are characterized by four (integer) numbers
(χ, (C1,C2,C3)). The numbers Cα are the Chern numbers as-
sociated with two-dimensional T 2 submanifolds of T 3, where
α indicates the normal direction to the T 2-submanifold. The
number χ is in Z2Q where Q = GCD(C1,C2,C3). Thus, if all
Cα are zero, χ can take any integer value, and such insulators
are termed as Hopf insulators [25–27]. On the other hand,
if any of the Cα is nonzero, then χ takes on only a finite
set of values, and such insulators are dubbed as Hopf-Chern
insulators [27].

Hopf insulators can be constructed [25,26] using an inter-
mediate map from T 3 to S3 (the three-sphere). Since S3 is
described by two complex numbers z1, z2 such that |z1|2 +
|z2|2 > 0, the prescription

z1(k, h) = sin k1 + i sin k2,

z2(k, h) = sin k3 + i(cos k1 + cos k2 + cos k3 + h) (2)

(h is a parameter, i = √−1), is a map from T 3 to S3. The
topological index � (Sec. S1 of the Supplemental Material
[43]) of this map vanishes when |h| > 3, is 1 for 1 < |h| < 3,
and −2 for |h| < 1. The map is thus topologically nontrivial
for |h| < 3. Finally, to obtain a two-band model, the point on
S3 is mapped to S2 via the Hopf map [44]

d (p,q)(k, h) =(
2Re

[
zp

1 (k, h)z∗q
2 (k, h)

]
,

2Im
[
zp

1 (k, h)z∗q
2 (k, h)

]
,

|z1(k, h)|2p − |z2(k, h)|2q
)
, (3)

where p, q are coprime integers, and ∗ denotes complex con-
jugation. Such a map has a Hopf index [44] H = ±pq. The
Hopf insulator defined using Eq. (3) has vanishing Chern
number Cα , and is thus characterized by (χ, (0, 0, 0)) where
χ = �H [26]. The invariant χ can be written as [45]

χ = −
∫

BZ
d3k Aμ(k)Fμ(k), (4)

where μ runs over 1,2,3 (summation convention implied)

Fμ(k) = 1

8π
εμνσ εabcd̂a(k)∂kν

d̂b(k)∂kσ
d̂c(k), (5)

where latin letters a, b, c run over 1,2,3). Also, Fμ(k) =
εμνσ ∂kμ

Aσ (k).
Hopf-Chern insulators are those which have nonzero Chern

numbers Cα . These are obtained [27,32,34,46] (see also
Ref. [47] for Hopf-Chern systems apropos flat-band physics)
using (

d (m)
1 (k)

d (m)
2 (k)

)
=

(
cos mk1 − sin mk1

sin mk1 cos mk1

)(
sin k2

sin k3

)
,

d (m)
3 (k) = 1+
1(cos k2 + cos k3) + 
2 cos k2 cos k3,

(6)

where m is an integer and 
1, 
2 are real parameters. For
this model, C2 = C3 = 0 always, and C1 is determined by the
values of 
1 and 
2 (and is not affected by the value of m).
The quantity χ is determined by m as χ = m|C1|mod 2|C1|.

III. FOUR-DIMENSIONAL SEMIMETALS

Realization of such topological phases in d dimensions
allows us to construct interesting semimetallic phases in
d + 1 dimensions. In fact, the well-studied Weyl semimetallic
phases are examples of such physics. These phases in three
dimensions arise from the topological Chern insulators in two
dimensions and enjoy a degree of protection owing to the
stability of Weyl points where di(k) = 0. The Weyl points
are those at which all components of d vanish, each such
equation describing a surface embedded in three dimensions.
Three such surfaces generically intersect at isolated points,
leading to the stability of Weyl points to small perturbations
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FIG. 1. Phase diagram of system in Eq. (7). Semimetallic regions
with horizontal lines have band touchings at (0, 0, ±k(1)

t ), those
with vertical lines have touchings at (π, π,±k(−1)

t ), and those with
slanted lines have touchings at (π, 0, ±k(0)

t ), (0, π,±k(0)
t ), where

kl
t = arccos ([ λ

1−λ
− 1 − (h + 2l )2]/[2(h + 2l )]). Inset shows Chern

number of T 2 submanifold of T 3 BZ labeled by k3 for h = −3,
λ = 1/4.

of the Hamiltonian. Taking this idea to a four-dimensional
two-band system, semimetallicity will require that di(K ) = 0
for i = 1, 2, 3 where the gap closes; K is a point in the
BZ T 4 (four-torus, [−π, π ]4) of the 4D cubic lattice with
K = (k1, k2, k3, k4) ≡ (k, k4). This condition, if satisfied, will
be generically met on a one-dimensional submanifold of T 4.
The conclusion is that the semimetals arising in these four-
dimensional systems will generically possess nodal lines. The
exciting aspect here is that these line nodes enjoy a degree of
protection in that small perturbations cannot remove them but,
at best, can only change their shape.

To construct such a semimetal arising from the topol-
ogy of the Hopf insulator, we first study a quantum phase
transition that occurs in the 3D Hopf insulator. Consider a
three-dimensional system with a tuning parameter λ:

d(k, h, λ) = (1 − λ)d (1,1)(k, h) + λdf(k) (7)

where d (1,1)(k) is the d-vector in Eq. (3), and df(k) = (0, 0, 1)
is the d-vector of a gapped flat-band system which is topolog-
ically trivial. When λ = 0, the system hosts Hopf insulating
phases in a regime of the parameter h, and a topologically
trivial phase for λ = 1. The quantum critical point at λ = 0
that changes from χ = 0 to χ = 1 occurs at h = −3 where
the two bands touch quadratically at k = 0 (to be contrasted
with similar touchings in dipolar Weyl semimetals [48] that
does not change χ , or other systems with quadratic touchings
[49]). For intermediate values of λ we obtain a variety of
semimetallic phases (see Fig. 1). These semimetallic phases
are characterized by a change in Chern numbers of the T 2

submanifolds of T 3 (see Ref. [43], Sec. S2), as illustrated for
λ = 1/4 in Fig. 1 (inset).

We construct a semimetallic phase on a four-dimensional
cubic lattice by defining for each K ∈ T 4

d(K, λ) = (1 − λ)d (1,1)(k,−3 + cos k4) + λdf(k). (8)

The Hamiltonian Eq. (1) obtained using this produces a
semimetallic phase for a range 0 � λ < 1/2. Focusing first

FIG. 2. Nodal line semimetal for λ = 1/4 in Eq. (8). Blue: nodal
lines (nodal lines lie in the k1 = 0 submanifold of T 4). The figure also
depicts T 3 the surface BZ of the (1,0,0,0) surface. Green: Fermi
arc surface states that correspond to the (1,0,0) surface states of the
χ = 1 Hopf insulator. Red: Drumhead surface states that correspond
to the edge states of the C3 = 1 Chern insulator.

on λ = 0, we find that the bulk gap closes at two points
in T 4, namely, K±

H (0, 0, 0,±π/2), where the bands touch
quadratically (see Ref. [43], Sec. S3). Most interestingly, these
points are a source of “Hopf flux” in T 4; this is most eas-
ily seen by enclosing, for example, the point K+

H by a ball
B+ = |K − K+

H | � ε, where ε is a small number, the boundary
of this ball ∂B+ is homeomorphic to S3, and d(K, 0), K ∈ ∂B+
defines a map from S3 to S2. Interestingly, the map carries a
nonvanishing index χ = −1, where χ is evaluated over the
three-dimensional manifold ∂B+ using the formula Eq. (4)!
(see Ref. [43], Sec. S3), pointing to the topological nature of
this semimetal similar to what is found in a three-dimensional
Weyl semimetal.

However, as noted in the discussion above, point touch-
ing of two bands in four dimensions is not stable (in
contrast with the 3D Weyl semimetal), and this is in-
deed seen in our construction. For a small λ > 0, we find
that the two Hopf points evolve to nodal lines where the
bands touch linearly except at two points on the nodal
line (see Ref. [43], Sec. S3). With increasing λ, the size
of the nodal lines centered around K±

H increases. Figure 2
(thick blue lines) shows the nodal lines for λ = 1/4 in the
k1 = 0 T 3 submanifold of the T 4 BZ. The nodal lines ap-
pear in the k3-k4 plane (k1 = k2 = 0), and encircle the Hopf
points K±

H extending from kmin
4 � |k4| � kmax

4 , kmin
4 =

arccos
√

λ/(1 − λ), kmax
4 = π − arccos

√
λ/(1 − λ) and de-

scribed by the equation

2(1 − cos k3)(1 − cos k4) + cos2 k4 = λ

1 − λ
. (9)

The nodal lines L±, respectively, encircle K±
H . The intriguing

aspect is that the nodal lines also carry the same Hopf number,
i.e., if we place balls B± centered around K±

H , and enclosing
the nodal lines L±, then the Hamiltonian on the surface of
the ball ∂B± defines a Hopf map such that the Hopf invariant
associated with the L± nodal lines are opposite of each other.
This demonstrates the topological origin of the nodal lines and

155131-3



BHANDARU PHANI PARASAR AND VIJAY B. SHENOY PHYSICAL REVIEW B 109, 155131 (2024)

their stability. The nodal lines which appear between ±kmin
4

and ±kmax
4 separate three-dimensional T 3 submanifolds of T 4

that carry distinct invariants χ . Indeed, for all the T 3 subman-
ifolds with |k4| < kmin

4 , the invariant χ = 1. This change of
topology of the bands along k4 is encoded in the Hopf number
on the surface of ∂B±(see Ref. [43], Sec. S3).

It can also be shown (see Ref. [43], Sec. S3) that these
features found above do not arise from a linear point-group
symmetry (quadratic touching of bands requires additional
symmetries [50]) like crystal rotations, etc. As detailed in
Ref. [43] (Sec. S3), the nodal lines are stable to such
symmetry-breaking terms. Furthermore, it is shown that the
specific nature of d f (so long as it is gapped and trivial) is
also not important. In fact, the semimetal is stable to any
perturbation that has a C ′ symmetry, which is the composition
of charge conjugation and spatial inversion [28].

We next investigate the nature of the surface states of
the four-dimensional semimetal. The surface of this system
is characterized by a normal direction and is a “three-
dimensional crystal” with a T 3 surface Brillouin zone.
Depicted in Fig. 2 for the surface with the (1,0,0,0) normal
are a remarkably rich set of surface states. First, there is a
set of gapless “Fermi-arc” states that exist between ±kmin

4 ,
depicted by the solid green line in Fig. 2. These arise from the
(1,0,0) surface states of the χ = 1 Hopf insulator realized in
the T 3 submanifolds in this regime of k4. There are additional
surface states that arise in the regime kmin

4 < |k4| < kmax
4 .

In fact, all the points in the T 3 surface BZ that are inside the
nodal line projected onto the surface BZ host gapless states
that are higher-dimensional analogs of drumhead states (see
Ref. [33] and references therein). Details of all of these states
may be found in Ref. [43], Sec. S4.

The semimetal holds further interesting aspects when we
study the surface states on the (0,0,1,0) surface. This surface
hosts two types of gapless states (see Fig. 3). We find first a
“Fermi surface” of gapless states between |k4| < kmin

4 ; these
are the surface states of the χ = 1 Hopf insulator that is
realized in the T 3 submanifolds. In addition, there are other
gapless states shown by the blue lines of the same figure;
these are gapless states corresponding to the projection of the
gapless nodal line onto the surface BZ.

Finally, we also point out the possibility of interesting “cor-
ner states” in this semimetal that arise in the two-dimensional
intersection of two three-dimensional surfaces. As an exam-
ple, The corner formed by the intersection of two surfaces
(1,0,0,0) and (0,1,0,0) will have a two-dimensional T 2 Bril-
louin zone labeled by (k3, k4). The corner states arise because
the corner terminates 1-2 planes of the four-dimensional
crystal. In the instance of λ = 1/4, some of the 1-2 subman-
ifolds (which are T 2) host nonzero Chern numbers in the
regime kmin

4 < |k4| < kmax
4 and should result in the “corner

drumhead states” in the T 2 Brillouin zone. Other corners (in-
tersections of different three-dimensional surfaces) will host
Fermi arc states. While our calculations are consistent with
this possibility, a full demonstration of this requires very large
system sizes. Protected gapless phases can also be constructed
from Hopf-Chern insulators, as demonstrated in Ref. [43] (see
Sec. S5).

FIG. 3. Surface states of the nodal line semimetal in the (0,0,1,0)
surface BZ. Red: “Fermi surface” states that correspond to the (0,0,1)
surface states of the χ = 1 Hopf insulator. Blue: Fermi arc states that
arise from the projection of the nodal lines onto the surface BZ.

IV. THREE-DIMENSIONAL SEMIMETALS

We now turn to the construction of semimetallic phases
in three dimensions protected by unstable homotopies. The
class AIII in two spatial dimensions does not host any strong
topological phases [8]. However, when there are two bands,
the insulating phases are described by the homotopy classes
of maps from T 2 (BZ in two dimensions) to S1. Consider
the Hamiltonian in Eq. (1) defined for (k1, k2) in the two-
dimensional BZ as

d (n1,n2 )
1 (k1, k2) = −t1(cos k1 + cos k2) − t2 cos (n1k1 + n2k2),

d (n1,n2 )
2 (k1, k2) = t1(sin k1 + sin k2) + t2 sin (n1k1 + n2k2).

(10)

When |t2| > 2|t1|, we obtain a gapped phase with a filled
valence band (at a filling of one particle per site). The insu-
lating phase is topologically nontrivial and is characterized by
nonzero winding numbers (n1, n2) which describe the homo-
topy of maps from T 2 to S1.

We now construct semimetals in three dimensions, which
are protected by the homotopies of maps from T 2 to
S1. To this end consider a Hamiltonian defined on a
three-dimensional BZ:

dα (k1, k2, k3) = 1 + cos k3

2
d (1,1)

α (k1, k2)

+ 1 − cos k3

2
d (2,2)

α (k1, k2). (11)

This system hosts a set of nodal lines (see Fig. 4) that arise
from the change of topology of the two-dimensional T 2

155131-4



DELICATE SEMIMETALS: PROTECTED GAPLESS PHASES … PHYSICAL REVIEW B 109, 155131 (2024)

FIG. 4. Nodal lines of the three-dimensional semimetal in class
AIII constructed using Eqs. (10) and (11) with t1 = 1, t2 = −3.

submanifolds of T 3 with k3. This semimetal is to be contrasted
with nodal line semimetals derived from a generalized Hopf
map obtained in Ref. [51] without AIII symmetry. Our 3D
semimetal also hosts interesting gapless surface states. For
surfaces, with normal (1,0,0) and (0,1,0) there is a region in
the two-dimensional surface BZ that hosts gapless drumhead
states.

V. CONCLUDING REMARKS

The examples constructed above demonstrate the idea of
creating semimetals in different dimensions that are pro-
tected by unstable homotopies. We have chosen to call these
“delicate semimetals,” taking inspiration from the canonical
example of an unstable homotopy of maps from T 3 to S2 that
leads to Hopf insulators with delicate topology. Exploring the
possibilities of experimental realization of the semimetals pro-
vides an interesting research direction. The four-dimensional
delicate semimetals and their surface states may be explored
by exploiting the ideas of synthetic dimensions [52] in cold
atoms [53], photonic systems [54], and topoelectric circuits
[29], while the AIII semimetal in two dimensions may also
be realized in cold atomic systems using suitably designed
optical potentials, and also topoelectric circuits.

From a theoretical perspective, it will be interesting to
find generalizations of such semimetals using other recently
proposed topological phases [55] in three dimensions, includ-
ing generalizations to variants with a larger number of bands
[28,34]. Understanding the responses [46,56], including the
effects of disorder, of these delicate semimetals, also provides
an exciting direction.
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