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Signatures of dynamical quantum phase transitions and chaos can be found in the time evolution of generalized
partition functions such as spectral form factors (SFF) and Loschmidt echoes. While a lot of work has focused
on the nature of such systems in a variety of strongly interacting quantum theories, in this work, we study their
behavior in short-range entangled topological phases, particularly focusing on the role of symmetry-protected
topological zero modes. We show, using both analytical and numerical methods, how the existence of such zero
modes in any representative system can mask the SFF with large period (akin to generalized Rabi) oscillations,
hiding any behavior arising from the bulk of the spectrum. Moreover, in a quenched disordered system, these zero
modes fundamentally change the late-time universal behavior reflecting the chaotic signatures of the zero-energy
manifold. Our study uncovers the rich physics underlying the interplay of chaotic signatures and topological
characteristics in a quantum system.
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I. INTRODUCTION

Ideas of thermalization and chaos have become pervasive
in multiple subdisciplines of physics, including classical and
quantum many-body systems, quantum field theory, gravity,
and fluids [1–10]. These questions become crucial for un-
derstanding the phases of interacting quantum systems when
they are either driven or coupled to baths; however, methods
of characterizing chaos are few and limited. The behavior of
the spectral form factor (SFF) in such systems has been par-
ticularly illuminating. Most interestingly, one finds that SFFs
and their generalizations, such as the Loschmidt echo [11] and
Fisher zeros [12,13], follow universal features independent of
underlying microscopic details. It is known that interacting
many-body chaotic systems show a dip-linear ramp struc-
ture in the SFF, which saturates at late times [14,15]. This
behavior, however, has intriguing microstructures which de-
pend on the underlying symmetries, nature of interactions,
dimensionality, and localization properties [11]. The SFF was
also recently investigated even in noninteracting systems to
decipher signatures of single-particle chaos [16,17] and in
field theories to determine the signatures of a critical point
[10,18]. This led to interesting connections between a host of
phenomena from diverse physics areas. However, the behavior
of the SFF vis-à-vis the topological properties of a quantum
Hamiltonian is little explored.

In this paper, we investigate the behavior of the SFF in
symmetry-protected topological systems. Here, phases are
characterized by topological invariants, which are protected
by discrete symmetries [19–23]. A paradigmatic topologi-
cal model is the Su-Schrieffer-Heeger (SSH) model [24],
in which the system hosts chiral symmetry-protected edge
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modes in the topological phase. We show that the existence
of such zero-dimensional topologically protected eigenstates
can fundamentally transform the SFF, exhibiting large time
oscillations. We find, both numerically and analytically, that
they are generalizations of Rabi oscillations, in which the
SFF locks between a few states of the complete many-body
spectrum. We further show that this holds even in higher-
order topological insulator (HOTI) phases [25], where a
d-dimensional topological phase hosts (d − 2)-dimensional
boundary modes.

Given the quadratic nature of the Hamiltonians, our
study also adds to the emerging area of understanding one-
body chaos, recently explored in Sachdev-Ye-Kitaev (SYK-2)
[16,17] and in strongly coupled free gauge theories [26]. In
order to explore signatures of one-body chaos and its interplay
with topological order, we study a variant of the SSH model
in which a subregion of the bulk is randomized with all-to-all
hoppings while keeping the edge protected. The SFF, in this
case, shows a dip followed by an early-time oscillating expo-
nential ramp reminiscent of one-body chaos in SYK-2 [16].
This develops into an intermediate linear ramp that plateaus
at late times in both the trivial and topological phases. In the
topological phase, while, for any representative configuration,
at late times there are Rabi oscillations, under ensemble aver-
aging, these oscillations get destroyed given the random phase
lags between various Rabi modes. This reflects the non-self-
averaging characteristic of the SFF [27] in topological, yet
disordered, systems. Interestingly, this averaged asymptotic
value in the topological phase is different from that in the
trivial phase and depends only on the random matrix prop-
erties of the zero-energy manifold. We end the paper with a
perspective on how the interplay between topological features
and chaotic signatures may be a rich playground to uncover
a host of new phenomena in both lattice and field-theoretic
quantum many-body systems.

This paper is organized in the following way: in Sec. II,
we discuss the general definition of the SFF for a many-body
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FIG. 1. The ensemble-averaged SFF for a Gaussian unitary en-
semble with 1000 × 1000 matrices, denoting the dip, linear ramp,
and plateau.

chaotic system and for a free-fermionic eigenspectrum. In
Sec. III, we study the feature of the SFF in topological Hamil-
tonians, in particular with the presence of zero-dimensional
boundary modes in the system. Then, we discuss how the
SFF behaves in a topological phase with a “chaotic” bulk-
disordered background in Sec. IV. We provide an intuitive
understanding of our results by introducing an effective toy
model and, in parallel, by using random matrix theory results.
We provide a summary of the results and conclude in Sec. V.
The stability of the disordered system and some detailed cal-
culations are provided in Appendixes A and B.

II. SPECTRAL FORM FACTOR

In general, the SFF of a system is defined as

SFF(β, t ) ≡ Z2(β, t ) = Z (β + it )Z (β − it )

Z (β )2
, (1)

where β and t are the inverse temperature and real time,
respectively. Z (β + it ) denotes the generalized partition func-
tion. In terms of the many-body energy eigenstates En, we can
then write

Z2(β, t ) = 1

Z2

∑
m,n

e−β(Em+En )eit (Em−En ), (2)

where Z (β + it ) = ∑
n e−(β+it )En . For a many-body chaotic

system, Z2(β, t ) has distinct regions as a function of t . Start-
ing from t = 0, it has a power law decay until a particular time
t = tdip (dip time), at which the SFF attains its minima. For the
chaotic system with N many-body energy states, tdip ∼ √

N
[28]. After this point the connected part of the SFF starts to
become important, and the SFF starts to take the universal
random matrix ensemble form manifested as a linear growth
of the SFF with time. This region is denoted as the “ramp.”
The ramp ends at t = tplateau ∼ N , denoted as the plateau time
or the Heisenberg time. This timescale scales as the inverse of
the average level spacing of the system; thus, after this point
the discreteness of the energy spectrum becomes important.
The SFF saturates after tplateau and is denoted as the “plateau”
[29,30]. This linear ramp is denoted as a characteristic feature
of a many-body chaotic interacting system [14,15] (see Fig. 1,
where the SFF is plotted for a random matrix drawn out
of a Gaussian unitary ensemble (GUE) [14,31,32]). On the
contrary, the SFF in an integrable system does not show such

a ramp; the SFF in this case decays and then immediately
plateaus.

In a noninteracting fermionic system, given a set of single-
particle eigenvalues εn, the generalized partition function is
given by

Z (β + it ) =
∏

n

{1 + exp[−(β + it )εn]}, (3)

where n ∈ 0, . . . , L − 1 and L is the system size. Thus,
for a symmetric eigenspectrum (εn ←→ −εn), the SFF [see
Eq. (1)] can be written as

Z2(β, t ) =
∏
εn>0

Zεn
2 (β, t ) =

∏
εn>0

[cosh(βεn) + cos(εnt )]2

[1 + cosh(βεn)]2
,

(4)

which implies that the real-time behavior takes a highly
convoluted form dependent on the frequencies of the single-
particle energies.

From (2), it may then appear that the time-averaged value is
∼Z (2β )/Z (β )2 on general grounds. Our results point out that
even in an otherwise dense spectrum, the existence of topo-
logically protected zero modes may render this asymptotic
value insignificant and mask it with generalized oscillations.
To elaborate this further, we now look into the features of the
SFF in some specific symmetry-protected topological models.

III. MODEL

To study the behavior of the SFF in the symmetry-protected
topological phase, we first consider the paradigmatic SSH
model [24], in which spinless fermions hop in a one-
dimensional chain via the following Hamiltonian:

HSSH = −
∑

i

(vc†
iAciB + wc†

iBci+1,A + H.c.), (5)

where c†
iα (ciα) is the fermionic creation (annihilation) opera-

tor at site i for the orbitals α ≡ A, B and v and w are the intra-
and interunit cell hopping strengths, respectively. The system
has time-reversal and sublattice symmetries, restricting it to
the BDI symmetry class, which realizes general off-diagonal
real matrices of the free-fermion tenfold classification [33,34],
such that the system spectra are always symmetric about
energy E = 0. The bulk spectrum of the model is given by
E (k) = ±√

v2 + w2 + 2vw cos k, where k is the discrete mo-
mentum of the periodic chain. At half filling (i.e., pinning
the Fermi energy at EF = 0), by tuning v/w, the system goes
from one insulator to another insulator via the quantum crit-
ical point |v/w| = 1. The insulating phase in the |v/w| < 1
regime is topological and characterized by a nontrivial wind-
ing number of the bulk band; the corresponding open chain
hosts two close to zero energy modes at the boundary with an
edge localization length ξ = [ln(|w/v|)]−1. To see the feature
in the SFF with an underlying symmetry-protected topology,
throughout this article we consider an open SSH chain so that
the spectrum contains boundary-localized zero-energy modes.

In the trivial region (|v| > |w|), for all values of β, the SFF
Z2(β, t ) is a superposition of all the single-particle energies
[see Eq. (4)], thus resulting in a convoluted noisy oscillation.
This is rather uninteresting, as can be seen by the behavior
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(a) (b) (c)

FIG. 2. (a) A topological phase achieved in a Hamiltonian system [see Eq. (5) for the SSH model] is tuned by a parameter v/w. This
sets the energy scale T ∗ = 1

β∗ (shown by the dashed line) below which the system shows prominent oscillations in its SFF, as in (b) (with
L = 60, v/w = 0.5, β = 15). (c) The same system in the trivial region (v/w = 2) shows no signs of such oscillations.

of the SFF in the trivial region with v/w = 2 [Fig. 2(c)].
However, in the topological regime, an interesting behavior
emerges when boundary modes, whose energy ε1 → 0 expo-
nentially in system size, dominate. This results in a timescale
∼π/ε1, where the SFF first goes to zero and then oscillates
with the same frequency, drowning all noisy behavior due to
higher-energy modes which are exponentially killed due to
a finite β [see Fig. 2(b), the v/w = 0.5 topological region].
These long-time oscillations can be understood as generalized
Rabi oscillations, which we now explore further.

A. Rabi oscillations

In general, given any initial state of a two-level system,
the way the probability density of the state oscillates under
time evolution is known as Rabi oscillation. While generally
discussed in the context of a time-dependent perturbation,
even for a constant perturbation switched on at t = 0, the
overlap of the unperturbed eigenstates with the time-evolved
state oscillates with a characteristic frequency decided by the
energy gap of the two-level system [35,36]. We next show that
the oscillations in the SFF can be understood as exactly these
oscillations for a generalized initial state.

We now discuss that the long-time oscillations of the SFF
are, in fact, generalized Rabi oscillations, where the system
locks between the boundary modes. Consider a wave function
which is an equal superposition of all the many-body basis
states,

|�〉 = 1

2L

∑
{Nn}

|{Nn}〉, (6)

where |{Nn}〉 specifies the Fock state representation labeled by
occupancies (Nn = 0, 1) of the single-particle state |ψn〉 with
eigenenergy εn. When “quenched” with the Hamiltonian, its
fidelity at a later time is

F (t ) = 〈�|�(t )〉 ∝ Z (it ). (7)

Thus, instances where Z (t ) → 0 are Rabi oscillations of
a pure state under time evolution. At β = 0, the fidelity
behavior will be uncharacteristic because all εn will show
convoluted oscillations.

However, at a finite temperature, the initial state [see
Eq. (6)] can be generalized to

|�(β )〉 ∝
∑
{Nn}

exp(−βE{Nn}/2)|{Nn}〉. (8)

When evolved in time, the corresponding fidelity is Z (β +
it )/Z (β ), and thus, the SFF is just |F |2. Hence, SFF → 0
are essentially the zeros of the Rabi oscillations of |�(β )〉.
Note that there is no external driving in the system; rather, the
Hamiltonian evolution itself acts like a “drive” engineering the
oscillations from the parent state |�(β )〉. Given the states are
normalized by the thermal occupancy factors, the states with
the largest weights are where Nn = 1 ∀ εn < 0. In a periodic
system, this isolates a single state; however, in an open one-
dimensional SSH chain, when in the topological phase, this
results in four states which are exponentially close in their
many-body energies. They correspond to different ways of
occupying the (right and left) boundary modes (≡ |R〉, |L〉).
Thus,

|�(β, t )〉 ∼ 1
2 (| ◦ ◦〉 + e−( β

2 +it )εa | ∗ ◦〉
+e−( β

2 +it )εb | ◦ ∗〉 + | ∗ ∗〉) ⊗ |Nn = 1 ∀ εn < 0〉,
(9)

where εa and εb (εb = −εa) represent the antibonding and
bonding orbitals combined out of the left and right edge states
({|b〉, |a〉} = 1√

2
(|R〉 ± |L〉) and ∗ (◦) represents their occu-

pancies (vacancies) in the |na, nb〉 basis. Because of the bulk
gap 	g ∼ |w − v| between the valence and conduction bands,
other states get exponentially damped by ∼ exp(−β	g). This
introduces a temperature scale T ∗ ∼ 1

β∗ = 	g, below which
the Rabi oscillations are strong. For T > 	g, these Rabi os-
cillations dissolve with the bulk signatures. As is clear, the
Rabi oscillation period is determined by edge mode energies
∼ π

εa
. Unlike a single qubit, in this case, the SFF behaves as

SFF(t ) ∼ [1 + cos(εat )]2. (10)

Thus, the rise from the minimum is ∝ t4 [see Fig. 4(d) below].
In Fig. 3, we show the behavior of the SFF at the trivial,

topological, and critical points on the {β, t} plane. We see that
the zeros of the SFF disappear for small values of β in the
trivial phase, while in the topological phase, the zeros persist
even for high β. This denotes that the topological phase [see
Fig. 3(b)] has dominant oscillations.

From Eq. (10), the oscillations have a time period
∼π/εa. As for an SSH chain of length L, the zero ener-
gies scale as εa ∼ exp(−L ln |w

v
|), and the time period scales

as ∼π exp(−L ln | v
w
|). The SFF starts from its maximum at

t = 0 and attains its first zero minimum at the half time pe-
riod ∼π exp(−L ln | v

w
|) [see Fig. 2(b)]. Thus, the subsequent
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(a) (b)

(c) (d)

FIG. 3. Contour plot of SFF in the β-t plane for an open bound-
ary SSH model (L = 60) (a) in the trivial regime with v = 1 and
w = 0.5, (b) in the topological regime with v = 0.5 and w = 1, and
(c) at the critical point with v = 0.5 and w = 0.5. (d) Behavior of the
SFF in the v/w-t plane for β = 30. The dashed lines are analytical
curves denoting the zeros of the SFF (see text).

minima appear at the odd multiples of this half period; we
denote these points as tRabi ∼ (2k − 1)π exp(−L ln | v

w
|), with

k ∈ Z+. Numerically, the exact expression can be obtained as

tRabi = 2.653(2k − 1)π exp
[
−0.483 L ln

(∣∣∣ v

w

∣∣∣)]
. (11)

This expression is consistent with the behavior of the SFF in
the topological phase, as can be seen in Fig. 3(d) when plotted
on the v/w, t plane.

B. HOTI phase

In order to further investigate the behavior of the SFF in the
presence of topologically protected zero-dimensional bound-
ary modes, we now focus on a HOTI model in which spinless
electrons on a square lattice host four corner states [25]. The
Bloch Hamiltonian of the model is a four-band insulator given
by

H (k) = [γ + λ cos(kx )]�4 + λ sin(kx )�3

+[γ + λ cos(ky)]�2 + λ sin(ky)�1, (12)

where �i = −τ2σi for i = 1, 2, 3 and �4 = τ1σ0; σ and τ are
Pauli matrices which act on the four orbitals of a unit cell. The
model preserves both time-reversal and charge-conjugation
symmetry, so it belongs to the BDI symmetry class, like the
SSH model. The bulk energies of the Hamiltonian are given
by E (k) = ±√

2λ2 + 2γ 2 + 2γ λ[cos(kx ) + cos(ky)], each of
which is doubly degenerate. The gap in the energy bands
closes at |γ /λ| = 1. At half filling, when |γ /λ| < 1, the over-
all charge density is essentially localized at the corners of
the open square lattice [see Figs. 4(a) and 4(b)], resulting in
a nontrivial bulk quadrupole moment of the insulator [37].
On the other hand, when |γ /λ| > 1, both corner states and

(a) (b)

(c) (d)

FIG. 4. (a) One-particle energy spectrum of the 2D HOTI model
(see text; γ = 0.5, λ = 1) with the open boundary condition on a
12 × 12 lattice. The inset shows the four topological zero-energy
modes. (b) Local probability density of the zero modes, showing
that they are corner localized. (c) Plot of the SFF in the trivial
regime (γ = 1, λ = 0.5). (d) Generalized Rabi oscillations in the
topological regime of the HOTI (blue) (γ = 0.5, λ = 1) and the SSH
system (red; v = 0.5154, w = 1, L = 24). The rise in the SFF in the
former is ∼t8 compared to ∝ t4 in the latter. In both (c) and (d) the
SFF is calculated for β = 15.

the quadrupole moment vanishes, and the insulator becomes
trivial.

Evaluating the SFF, we again find noisy oscillations in
the trivial regime and long-time oscillations in the topolog-
ical regime [see Figs. 4(c) and 4(d)]. Here, the effective
many-body state spans 24 states, which can be counted as
occupancies of the four boundary modes. The oscillations
follow

SFF(t ) ∼ [3 + 4 cos(εat ) + cos(2εat )]2, (13)

where εa is the exponentially small energy scale close to zero.
Interestingly, the rise from zero is now ∼t8, reflecting the
higher number of zero modes in the system (see Fig. 4). In
fact, for a multipole topological insulator [25] with a general
number of 2p zero modes, the SFF would scale ∝ t4p in the
topological phase for T < 	g. This is one of the key results
of our work.

It is now natural to ask what the fate of such Rabi oscil-
lations is in the presence of disorder, a question we answer
next.

IV. BULK-RANDOMIZED SSH SYSTEM

Motivated by random matrix theory (RMT), in which the
symmetry properties of random dense Hamiltonian matrices
determine their chaotic signatures [38–42], we introduce dis-
order to study the chaotic signatures in the SSH model, as
discussed in the previous section. While generic short-range
disorder in topological phases gives rise to a host of inter-
esting phases and phase transitions [43–48], here, in order to
simulate RMT chaos we introduce all-to-all hopping disorder
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(a)

(b)

FIG. 5. (a) Schematic diagram of a bulk-random SSH chain [see
Eq. (14)], where symmetry-preserved all-to-all hopping disorder is
introduced in the central bulk region R with NR sites of a clean
open SSH chain [see Eq. (5)] of size L. The disordered hopping
strengths wi j ({i, j} ∈ R) are chosen from the Gaussian distribution
with the scale parameter σ/

√
NR. (b) The SFF in the bulk-random

SSH model (L = 60, β = 50, σ = 0.1, NR = 30) for different disor-
der configurations in the topological regime (v = 0.5, w = 1) shows
long-time oscillations with different time periods.

simulating a “zero”-dimensional chaotic system in conjunc-
tion with an underlying topological phase.

To this effect, we mark a finite central region (excluding
boundaries) in the bulk of the SSH chain [see Eq. (5)] as ≡ R,
where such hopping disorder is introduced (see Fig. 5). The
microscopic Hamiltonian of such a system is

HR = HSSH −
∑

{i, j}∈R
(wi j c†

iAc jB + H.c.). (14)

Here, wi j are chosen from a Gaussian orthogonal ensemble
with a scale parameter σ√

NR
, where NR is the number of sites

in region R and {i, j} ∈ R [see Fig. 5(a)]. Since the disor-
der respects the sublattice character, given that R excludes
the edges and σ � |w − v|, every disorder configuration will
retain topologically protected zero modes. The numerical sup-
port for the stability of the topological phase with disorder
strength and the length of the randomized region is given in
Appendix A, where we show that, for small enough disorder

strengths, the system described in Eq. (14) has quantized po-
larization. As every random realization of the disordered SSH
chain is individually topological, the individual SFFs show
long-time oscillations similar to a clean topological SSH chain
[see Fig. 5(b)]. Since in this work we focus on disordered, but
quadratic, systems in which the zero-energy manifold plays
a crucial role, we do not investigate the effects of unfolding
and filtering, which are designed to decipher many-body bulk
chaotic signatures [49].

A. SFF behavior

We find that the disorder-averaged SFF, irrespective of the
topological character of the phase, has the following behavior
as a function of time: (1) a dip, (2) an exponential oscilla-
tion and then a linear ramp, and (3) late-time saturation. The
three regions are shown in Fig. 6(a). As one decreases the
temperature (i.e., increases β), the exponential ramp starts to
disappear [Fig. 6(b)]. For ε−1

0 � β > 	−1
g , the exponential

ramp is almost entirely suppressed, and the late-time plateau
value saturates around a new plateau value of ∼3/8 = 0.375
instead of the usual plateau that scales as inverse of the system
size (see Fig. 6).

At short times, the exponentially oscillating behav-
ior is characteristic of signatures of single-particle chaos
[16,17,26], which is in contrast to many-body chaos, which
has a distinct linear ramp right after the dip [14,15]. To
delve into an understanding of the different features of the
SFF of the bulk-disordered SSH model, which is analytically
intractable, one needs a simpler setting. To this end, we con-
struct a minimal toy model, which we discuss next.

B. Understanding using a toy system

In order to capture the physics of the disordered SSH
model, we first explain the construction of an effective toy
model. In Fig. 7, we plot the single-particle nearest-neighbor
level spacings in the disordered SSH models, which show that
they have a distribution similar to that of a Wigner-Dyson
(WD) distribution. This motivates us to construct a toy model
using the eigenvalues from GUE of random matrices, which
has WD-distributed nearest-neighbor level spacings. This is
also pertinent given that the nature of the ramp arises due

(a) (b) (c)

FIG. 6. (a) The SFF (disordered averaged over 2000 configurations) in the random SSH model (L = 60, β = 0.50, σ = 0.01, NR = 30)
shows an early-time ramp in both the topological (v = 0.5, w = 1) and trivial (v = 1, w = 0.5) regimes. The green and magenta dashed
vertical lines denote the dip time and plateau time calculated from the toy model. (b) With increasing β (= 10), the initial dip starts to
disappear, and a new plateau forms at a late time. (c) At very high β (= 50), the early-time ramp disappears; the late-time plateau in the
topological SFF saturates around 3/8. Here, 	−1

g ∼ 2, and ε−1
0 ∼ 107. Note that the trivial phase has saturated to a plateau value of unity.
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(a) (b)

FIG. 7. Random SSH single-particle level spacing distributions
(a) with the same randomness but different system sizes and (b) with
the same system size but different randomness. Here, v = 1, and
w = 0.5.

to the correlation between the level spacings of the spectrum
[14].

The toy model consists of N one-particle energy states
taken from a GUE of random matrices which has semicircular
ρ(E ) of radius a, centered around amax = a + 	 (with 	 > 0)
and a corresponding negative E copy [see Fig. 8(a)]. The
positive energy branch of the density of states (DOS) ρ+(E )
is distributed between a1 = amax − a and a2 = amax + a with
a spectral gap of 	. The ensemble-averaged ρ+(E ) is given
by

〈ρ+(E )〉 = 2

a2π

√
(E − a1)(a2 − E ). (15)

The ensemble-averaged SFF is then

〈
ZR

2 (β, t )
〉 =

〈
exp

(
N

∫
dE ρ+(E ) ln ZE

2 (β, t )

)〉
. (16)

The angle brackets indicate the RMT averaging, in
which all moments of ρ+(E ) contribute. At early
times, the disconnected piece dominates, leading to
∼ exp{[N ∫

dE 〈ρ+(E )〉 ln ZE
2 (β, t )]}. Under a high-

temperature expansion, the system exhibits the exponential
ramp imbued with short-time oscillations. The β → 0 limit is

(a)

(b)

FIG. 8. (a) Toy model density of states. (b) Toy model ensemble-
averaged SFF for amax = 30, a = 20, and N = 20. The green, red,
and magenta lines denote tdip, tcrossover , and tplateau, respectively.

given by

〈
ZR

2 (0, t )
〉 ≈ exp

[
8N

∑∞
k=1

(−1)k+1

k2at J1(kat ) cos(kamaxt )
]

16N
.

(17)

In a microscopic model, amax is the energy scale where the
bulk DOS peaks. This points out that the location of the dip
is set by the high energy scale π/amax ∼ tdip, which is both
system size independent and is unaffected by its topological
properties (see Fig. 6). The initial exponential oscillations lead
to a linear ramp at tcrossover ∼ L2/3. This is a result of the lead-
ing connected piece, i.e., ρ (2)

c (E1, E2), becoming dominant,
just as in the case of many-body SFF [14] (see Sec. B 1). The
ramp further leads to a saturation, which can be remarkably
different if the underlying system is trivial vs topological.
More interestingly, the saturation physics is temperature de-
pendent, as we now discuss.

At high temperatures (T > |w − v|), irrespective of topo-
logical features, the SFF saturates to a value dominated by
the Kubo gap of the bulk spectra. This is essentially where
all connected spectral correlations are featureless. For the
minimal model, this predicts the emergence of a plateau at
tplateau ∼ 4Nπ (see Appendix B) and ∼L for a bulk-disordered
SSH system. However, now as T is reduced below the bulk
gap scale (T < |w − v|; see Fig. 2), depending on whether we
are in the trivial or the topological phase, another saturation
plateau appears.

This difference at low temperatures is due to the pres-
ence of zero-energy modes (∼ ± ε0), which in the clean limit
leads to large-time Rabi oscillations (see Fig. 2). The ef-
fective SFF can be captured in the form ∼Zε0

2 (β, t )ZR
2 (β, t )

[see Eq. (4)], where at low temperatures Zε0
2 dominates, and

thus, any single configuration, even with bulk disorder, will
lead to oscillations after a timescale t∗ ∼ 1

ε0
. However, the

configuration-averaged SFF shows an intriguing behavior, as
shown in Figs. 6(b) and 6(c). At low temperatures, the system
reaches a different saturation value at later times. This central
result, as we discuss next, is not governed by the large-N RMT
results but, rather, is governed by a small-N RMT chaos.

C. Insights from random matrix theory

For the toy model discussed above with N single-particle
positive energy states, the late-time saturation value goes as
∼2−N at β = 0, as can be seen directly from Eq. (4). As β

increases, for large enough β, the cosh βεn factor dominates
in Eq. (4); thus, the plateau value approaches 1. However,
for the bulk-random SSH chain, the SFF in the topological
phase saturates at ∼3/8 = 0.375, while the trivial phase SFF
plateaus around 1 (see Fig. 6(b) and 6(c)). This indicates
that in the trivial phase, i.e., in the absence of zero-energy
boundary modes, the late-time saturation value is usually dic-
tated by large-N RMT chaos. On the contrary, the late-time
saturation in the topological phase is an artifact of the chaos in
the zero-energy manifold, which we denote as small-N RMT
chaos.

Every peripheral disorder realization in the region R per-
turbs the edge modes, which are, in turn, protected by the
(w, v) scale of the underlying SSH Hamiltonian. Therefore, at
low energies, i.e., finite β (β > 	−1

g ), the SFF gets dominated
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FIG. 9. Late-time (t ∼ 1012) saturation values for different sys-
tem sizes L and σ plotted with respect to β (here, NR =
L/2, v = 0.5, w = 1). The SFFs are averaged over 2000 random
configurations.

by RMTs reflecting the couplings within the zero-energy man-
ifold itself. For instance, in the clean SSH model, the effective
Hamiltonian in the context of our example is a single-qubit
Hamiltonian Heff = ε0σx, written in the left and right edge
state basis (|L〉, |R〉). In the presence of disorder, each real-
ization effectively introduces a perturbation in this overlap
between the basis states; i.e., the single-qubit Hamiltonian
now has an effective form: Heff = (ε0 + λ)σx, where λ can be
considered to be drawn from a normalized Gaussian proba-
bility distribution P(λ) distributed about the zero mean with
a variance σ . This perturbation thus results in a Gaussian
distribution of energy eigenvalues ±ελ = ±(ε0 + λ) centered
around ε0 with variance σ . Thus, the averaged Zε0

2 (β, t ) be-
comes

〈〈
Zε0

2 (β, t )
〉〉 =

∫ ∞

−∞
dλ P(λ)

[cosh(βελ) + cos(ελt )]2

[1 + cosh(βελ)]2
. (18)

For the Gaussian distribution of ελ we obtain the long-time
saturation value:

lim
t→∞

〈〈
Zε0

2 (β, t )
〉〉 ∼ 3/8 (19)

when ε0 � T < |w − v| or, equivalently, 	−1
g � β � ε−1

0 .
Thus, this late-time behavior in the topological phase is fun-
damentally distinct from the trivial regime, where no such
zero-energy manifold exists, and the SFF just saturates to 1.
Note that the long-time saturation value is independent of the
system size and microscopic parameters, as indicated by the
numerical results in Fig. 9. Further lowering of temperature
(T < ε0), even in the topological phase, drives the plateau
towards unity as well. This is clear from Eq. (18), as for large
β we obtain

〈〈Zε0
2 (β, t )〉〉 �

∫ ∞

−∞
dλ P(λ) = 1. (20)

The analytical predictions exactly match our numerical re-
sults, as shown in Fig. 6(b). For further details of the SFF
calculations, see Sec. B 2.

This result can be further generalized for a topolog-
ical phase containing p pairs of symmetric zero modes:
{ε (1)

0 ,−ε
(1)
0 }, {ε (2)

0 ,−ε
(2)
0 }, . . . , {ε (p)

0 ,−ε
(p)
0 }. In this case, un-

der bulk disorder, each zero-energy pair can be thought
to arise from a single-qubit effective Hamiltonian H ( j)

eff =

ε
( j)
0 σz + λ jσx with energy eigenvalues ε

( j)
λ =

√
(ε ( j)

0 )2 + λ2
j .

Here, λ j is drawn from some normalized probability distri-
bution Pj (λ j ). Under the assumption that all zero-energy pair
fluctuations are mutually independent, the effective Hamilto-
nian of the zero-energy manifold is then

H0
eff =

p⊗
j=1

H ( j)
eff .

Then for a Gaussian distribution of ε
( j)
λ centered around ε

( j)
0 ,

the average zero-energy SFF is〈〈
p∏

j=1

Z
ε

( j)
0

2 (β, t )

〉〉
t→∞−−−→ (3/8)p. (21)

This is the long-time plateau value of the SFF for the topo-
logical phase in the regime 	−1

g � β � ε−1
0 . Note that the

bulk-disordered SSH model is the p = 1 case, as it contains
only one pair of zero-energy modes. We note, however, that
the effective nature of hybridization within the effective zero-
energy manifold may depend on the system and symmetries
of the microscopic model.

V. CONCLUSIONS

In this work, we showed that underlying topological order
has important implications for chaotic signatures in quantum
systems. Our analysis established that the emergence of zero-
energy boundary modes fundamentally changes the late-time
behavior of the SFF, a versatile tool that has been critical for
diagnosing chaos and thermalization in a host of systems. In
Sec. II, we explored the idea of the spectral form factor, its
general features, and how it is evaluated for a noninteracting
system. We then discussed that in a clean topological system,
the SFF shows oscillations akin to generalized Rabi oscilla-
tions with features characteristic of the underlying topological
properties. In particular, we studied the behavior of the SFF
in the SSH and HOTI models, in which the system hosts
zero-dimensional edge modes (Sec. III). In order to study the
interplay with signatures of single-particle chaos we intro-
duced disorder in such a way that the edge modes remain
intact. In particular, we introduced symmetry-preserved all-
to-all hopping disorder in the bulk of an SSH chain (Sec. IV).
Interestingly, we found that bulk disorder alters the late-time
SFF plateau in a topological phase. Gathering intuition from
both numerical results and analytical calculations for effective
toy models, our study uncovered the physics that the late-time
plateau is, in fact, determined by RMT behavior within the
zero-energy manifold.

While our work has investigated the role of noninteracting
topology on the SFF, we have restricted ourselves to systems
in which the topological manifold provides zero modes such
as in SSH or HOTI systems. Here, the separation of scales be-
tween the boundary manifold and bulk manifold is relatively
clear. Even within symmetry-protected topological phases and
higher-dimensional topological phases such as Chern insula-
tors and topological insulators [21,23], it may be interesting
to explore how this physics changes. Here, the eigenspec-
trum related to the boundary smoothly merges with the bulk
spectrum, thus making the physics more interesting. Another

155126-7



SARKAR, PACHHAL, AGARWALA, AND DAS PHYSICAL REVIEW B 109, 155126 (2024)

(a) (b)

FIG. 10. (a) The polarization P shows the stability of the topo-
logical phase up to a critical σ for the SSH Hamiltonian with the 90%
bulk region having all-to-all random hopping. The stability can also
be seen from the standard deviation (SD) of the polarization, which
is clearly related to the closing of the bulk gap 	E in the system.
(b) Contour plot of the bulk gap with the disorder strength σ and the
fraction of random sites NR/L. For both the plots, the system size
is L = 100, v = 0.5, w = 1, and all the data are averaged over 1000
random configurations.

natural question to pose what the role of both interactions
and long-range topological order is. Under both repulsive and
attractive perturbative interactions, the SSH model is known
to be stable and retains fourfold degenerate boundary modes
in its many-body spectrum [50–52]. Thus, we expect the SFF
to have long-time oscillations as long as the interaction does
not close the bulk gap in the system. However, an elaborate
study of the SFF in interacting SSH and higher-dimensional
topological phases is an exciting future prospect.
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APPENDIX A: STABILITY TO DISORDER

In any topological phase, the presence of a bulk gap and
underlying symmetries protects the boundary modes under
perturbative disorder. In our work, directed towards studying
the role of topological boundary modes in the SFF, we show
that even in the presence of all-to-all random hopping (drawn
from a Gaussian distribution with zero mean and variance
σ ) in a finite region R, the boundary modes remain stable
until a finite σ . We study polarization, which is the real-space
representation of the topological invariant (winding number)
in one-dimensional systems [53]. The polarization is defined
as

P = 1

2π
Im{Tr[ln(P̂DP̂)]} mod 1, (A1)

where P̂ = ∑
En�EF

|ψn〉〈ψn| is the ground state projection
operator, with |ψn〉 being the single-particle eigenstate cor-
responding to the energy eigenvalue En and EF being the
Fermi energy of the system. The positions xi of all the lat-
tice sites (for system size L there are N = L/2 unit cells)
are compactified and exponentiated to give the operator D =
diag[e2πxiα/N ], where xiα = (i − 1) for the ith unit cell and
both α = A, B sublattices. In the absence of disorder, in the
topological regime of the SSH Hamiltonian (|v/w| < 1), the
polarization P is quantized to 0.5, while it is zero for the trivial
insulating phase (|v/w| > 1). Furthermore, in Fig. 10(a) we
plot the polarization [see Eq. (A1)] of the system in the topo-
logical regime (v/w = 0.5) as a function of bulk disorder σ in
90% (NR/L = 0.9) of bulk sites. The system shows quantized
polarization as well as a finite bulk gap 	E up to a finite
σ , confirming that the system’s topological properties remain
stable even when bulk disorder randomizes the bulk spectra.
Furthermore, the stability increases as the number of bulk sites
disordered is reduced; see Fig. 10(b), where the bulk gap is
plotted as a function of NR/L and σ .

APPENDIX B: ADDITIONAL DETAILS OF SFF
CALCULATIONS

1. Toy model for bulk disorder

Here, we go through a detailed analysis of the bulk-
disordered toy model described earlier.

The many-body SFF, when ensemble averaged, is given by 〈ZR
2 (β, t )〉,

〈
ZR

2 (β, t )
〉 =

〈
exp

(
N

∫
dE ρ+(E ) ln ZE

2

)〉
=

∞∑
n=0

1

n!
Nn

∫ (
n∏

i=1

dEi

)
〈ρ+(E1) · · · ρ+(En)〉

n∏
j=1

ln ZEj (β, t ), (B1)

where a typical n-point density correlator has the form

〈ρ+(E1) · · · ρ+(En)〉 ≡ 〈ρ (n)〉 =
n∏

i=1

〈
ρ

(1)
i

〉 + ∑
{ni,m}

A{ni,m}
k∏

i=1

ρ (ni )
c

m∏
j

〈
ρ

(1)
j

〉
,

k∑
i=1
ni>1

ni + m = n,

k∑
i

ni �= 0. (B2)

Here, the first term denotes the disconnected piece, A{ni,m} stands for the coefficient arising from the permutations of the indices,
ρ (ni )

c denotes the completely connected piece of the ni-point correlation, and ρ
(1)
j ≡ ρ+(Ej ).

Using the explicit form for the joint distributions, as given by the determinant of the kernel [31], we find

n∏
i=1

〈
ρ

(1)
i

〉 = O(1),
k∏

i=1

ρ (ni )
c

m∏
j

〈
ρ

(1)
j

〉 = O(Nm−n) = O(N− ∑
i ni ). (B3)
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Since min(ni ) � 2, the second term is always at least O(1/N2) suppressed compared to the fully disconnected one. Of course,
after evaluating the integrals in (B1), there are nontrivial time growths associated with various pieces. At early times, t � N , we
can ignore these time dependences, and the dominant contribution, at large N , comes from the fully disconnected DOS correlator.
Therefore, the sum over n in Eq. (B1) reexponentiates, and we find the early-time, ensemble-averaged SFF is

〈
ZR

2 (β, t )
〉 � exp

(
N

∫
dE 〈ρ+(E )〉 ln ZE

2

)
= exp

(
N

∫ a2

a1

dE
2

a2π

√
(E − a1)(a2 − E ) ln ZE

2

)
. (B4)

At high temperatures, β = 0, the integral can be evaluated exactly in terms of the Bessel function:

〈
ZR

2 (0, t )
〉 � 1

16N
exp

(
8N

∞∑
k=1

(−1)k+1

k2at
J1(kat ) cos(kamaxt )

)
. (B5)

In the above expression, the higher-frequency oscillations cos(kamaxt ) are suppressed as k−2. Thus, the k = 1 component
dominates and produces the dip at the first oscillation minimum: tdip = π/amax.

To see the dynamics at an intermediate time, we look at the connected component of 〈ρ+(E1)ρ+(E2)〉, denoted as ρ (2)
c (E1, E2).

In terms of the sine kernel [14], from Eq. (B1) we obtain

1

2!
N2

∫
dE1dE2ρ

(2)
c (E1, E2)

2∏
j=1

ln Z
Ej

2

= −N2

2!

∫
dE1dE2

sin2[Nπ (E1 − E2)]

N2π2(E1 − E2)2

2∏
j=1

ln Z
Ej

2

= − 2

π

{
Nπ ln2(4) − ln(4)

∞∑
k=1

(−1)k+1

k
(4Nπ − kt ) cos(kamaxt )�

(
4Nπ

k
− t

)

+
∞∑

k,l=1

(−1)k+l

kl

[
[4Nπ − (k + l )t] cos(|k − l|amaxt )�

(
4Nπ

(k + l )
− t

)

+ (4Nπ − |k − l|t ) cos[(k + l )amaxt]�

(
4Nπ

|k − l| − t

)]}
. (B6)

We see the two-point connected piece generates linear terms
of (4Nπ − kt ) up to t = 4Nπ/k. Thus, the k = 1 component
gives the longest surviving linear piece with the plateau time
tplateau = 4Nπ [see Fig. 8(b)].

Comparing the disconnected and connected pieces for n =
2, we can estimate the time tcrossover at which the connected
piece starts to dominate over the disconnected piece. Using
the asymptotic form of Bessel functions, we find

N2 J1(tcrossover )

tcrossover
∼ N ⇒ tcrossover ∼ O(N2/3). (B7)

So we see a linear ramp starting from tcrossover up to tplateau, and
then the SFF plateaus.

As we see from the n = 2 case, the surviving piece in
long-time average is ∼O(N ) for the connected piece, while
the disconnected piece has a long-time average value of
∼O(N2). Thus, in all n-point correlations, the disconnected
piece gives the dominant long-time average contribution.
From Eq. ((B5)), we see in the long-time average the oscil-
lations die down; thus, the plateau value becomes

〈
ZR

2 (0, t → ∞)
〉 ∼ e−N . (B8)

2. Late-time SFF dynamics due to fluctuating zero modes

In the one-dimensional SSH model, there are two zero
modes with energy ±ε0 at the two ends of the lattice chain.
When disorder is introduced in the bulk, the zero modes also
fluctuate. To model the spectrum of these two fluctuating zero
modes, we consider a Gaussian energy distribution centered
around ε0 with the variance σ . Thus, the ensemble-averaged
zero-energy contribution to the SFF is

〈〈
Zε0

2 (β, t )
〉〉 =

∫
dε

1

σ
√

2π
e− (ε−ε0 )2

2σ2

(
cosh(βε) + cos(εt )

cosh(βε) + 1

)2

.

(B9)

For β = 0 (i.e., β � ε−1
0 ) we have

〈〈Zε0
2 (0, t )〉〉 = 1

σ
√

2π

∫
dεe− (ε−ε0 )2

2σ2

(
1 + cos(εt )

2

)2

= 3

8
+ 1

2
e−t2σ 2/2 cos(ε0t ) + 1

8
e−2t2σ 2

cos(2ε0t ).

(B10)

At large t , the oscillations will average to zero, thus leading
to a plateau value of 3/8 = 0.375.

To calculate the dip point, we can find the first minimum
of 〈〈Zε0

2 (0, t )〉〉 [ignoring the cos(2ε0t ) term] and arrive at the
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transcendental equation

∂t
〈〈

Zε0
2 (0, t )

〉〉 = 0 ⇒ tan(ε0t ) = − tσ 2

ε0
. (B11)

When σ � ε0, in the above expression tan(ε0tdip) → 0;
thus, tdip → π

ε0
. In this case, the exponential ∼e−t2σ 2/2 de-

cay does not sufficiently suppress the cos(ε0t ) oscillations;
thus, we see an oscillatory dip-ramp and plateau. For σ �

ε0, tan(ε0tdip) → −∞; hence, tdip → π
2ε0

. In this case, the
exponential decay dominates. Thus, we see only a dip
and plateau, without any ramp. In the actual random SSH
model, we have both the random excited states and fluctuat-
ing zero modes, i.e., 〈ZFull

2 (β, t )〉 = 〈ZR
2 (β, t )〉〈〈Zε0

2 (β, t )〉〉.
Thus, when ε−1

0 � β > 	−1, the early-time dip-ramp due to
〈ZR

2 (β, t )〉 starts to get suppressed, and we start to see the
late-time SFF dynamics of 〈〈Zε0

2 (β, t )〉〉 (see Fig. 6).
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