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Temperature effects in topological insulators of transition metal dichalcogenide monolayers
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We investigate the role of temperature on the topological insulating state of metal dichalcogenide monolayers,
1T′-MX 2 (M = W, Mo and X = S, Se). Using first principles calculations based on density functional theory,
we consider three temperature-related contributions to the topological band gap: electrons coupling with short-
wavelength phonons, with long-wavelength phonons via Fröhlich coupling, and thermal expansion. We find that
electron-phonon coupling promotes the topology of the electronic structures of all 1T′-MX 2 monolayers, while
thermal expansion acts as a counteracting effect. Additionally, we derive the band renormalization from Fröhlich
coupling in the two-dimensional context and observe its relatively modest contribution to 1T′-MX 2 monolayers.
Finally, we present a simplified physical picture to understand the “inverse Varshni” effect driven by band
inversion in topological insulators. Our work reveals that, among the four 1T′-MX 2 studied monolayers, MoSe2

is a promising candidate for room-temperature applications because its band gap displays remarkable resilience
against thermal expansion, while the topological order of WS2 can be tuned under the combined influence of
strain and temperature. Both materials represent novel examples of temperature-promoted topological insulators.
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I. INTRODUCTION

In condensed-matter physics, the unique electronic proper-
ties of topological insulators have sparked immense interest,
captivating the scientific community with their potential to
redefine the landscape of electronic and quantum computing
technologies. Over the past two decades, significant advance-
ments have been made in unravelling the fundamental features
of topological insulators and in the manipulation of their dis-
tinctive properties [1–8].

The manipulation of topologically nontrivial band gaps has
emerged as a highly active research direction. These manipu-
lations have been achieved through various means, including
alterations in chemical composition [9,10], the application of
external pressure [11,12], the imposition of mechanical strain
[13–15], and the influence of electromagnetic fields [16–18].
Recent attention within the scientific community has shifted
towards exploring the intriguing possibility of controlling the
topological characteristics of these materials through temper-
ature, both in theory [19–28] and experiments [29–37].

Despite this burgeoning interest, a comprehensive exami-
nation of the interplay between temperature and the unique
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electronic states of topological insulators remains a relatively
under-explored frontier. So far, most works indicate that in-
creasing temperature suppresses the topological phase, in the
sense that the topological band gap decreases with increas-
ing temperature [21,23,25,26,28,36,37]. In particular, thermal
expansion is often responsible for the ultimate suppression
of topological order because it drives the system towards the
atomic limit. This suggests that a generic topological phase
diagram as a function of temperature is one with a low-
temperature topological phase and a high-temperature normal
phase. Indeed, several reports describe the reduction of the
topological band gap with increasing temperature culminating
in a transition from a topological (crystalline) insulator into a
normal insulator [21,25,26,30] or from a strong topological
insulator into a weak topological insulator [23,36,37]. It has
been argued that electron-phonon interactions can promote
a topological insulating phase with increasing temperature
in BiTlS [22] and bismuthene [27], but these works neglect
thermal expansion so the overall temperature dependence in
these materials remains an open question. As far as we are
aware, the only compound in which temperature has been
shown to promote topological order, specifically a topological
semimetallic phase, is PbO2 [24], and there are no examples
in which increasing temperature promotes a topological insu-
lating phase.

Motivated by the paucity of reports on materials where
temperature promotes topological insulating states, in this
work we systematically study the interplay between temper-
ature and topology in four transition-metal dichalcogenide
(TMD) monolayers 1T′-MX 2 (where M = W, Mo and X =
Se and S). The motivation behind the choice of monolayer
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TMDs for our study is twofold. First, monolayer materi-
als often exhibit unconventional thermal effects, including
weak or negative thermal expansion, which may minimize the
detrimental effects of thermal expansion on topological order
observed in most compounds. Second, these specific TMD
monolayers have been shown to be a realization of topological
insulators at 0 K [38,39] with a strong band inversion feature,
but their behavior at finite temperature is still an open ques-
tion.

Our investigation illustrates the pivotal role played by
electron-phonon coupling and thermal expansion in influ-
encing the topology of the electronic structures of 1T′-MX 2

monolayers. Particularly noteworthy are MoSe2 and WS2,
which stand out as the first examples of temperature-promoted
topological insulators. The former emerges as a promising
candidate for room-temperature applications owing to its re-
markable resistance to thermal expansion, while the latter
exhibits a tunable topological behavior when subjected to the
combined influence of strain and temperature. Overall, our
findings enrich the family of materials where temperature can
promote topology.

The paper is organized as follows: In Sec. II, we present the
theory of finite-temperature band structures and its first prin-
ciples implementation in the context of the finite-difference
method. In Sec. III, we apply the method to investigate
1T′-MX 2, showcasing the competition between electron-
phonon coupling and thermal expansion. In Sec. IV, we
propose a simple model that aids in understanding the circum-
stances under which electron-phonon coupling can promote
the topological phase in the presence of significant band in-
version. In Sec. V, we show that the topological order of
WS2 can be manipulated through a combination of strain and
temperature, illustrating a transition from a low-temperature
normal to a high-temperature topological phase. Finally, we
summarize the contributions and findings of our research in
Sec. VI.

II. TEMPERATURE-DEPENDENT TOPOLOGICAL
BAND GAP

A topological phase transition induced by temperature
from a topological insulator to a trivial insulator (or the
other way around) requires the bulk band gap to re-order.
In the case of centrosymmetric materials, the band re-
ordering is mediated by a gapless Dirac semimetal phase
[40], where the Dirac cone is located at one of the time-
reversal-invariant momentum points. Therefore, the key to
exploring the role of temperature in topological insulators
is to consider the temperature dependence of certain energy
eigenvalues.

The temperature-dependent eigenenergy Enk(T ) of a sin-
gle electron with band index n and wave vector k can be
approximated by the sum of two independent contributions:
the renormalization of the eigenenergy by electron-phonon
interactions, �EEP

nk (T ); and by thermal expansion, �ETE
nk (T ).

For practical calculation reasons, the former needs to be fur-
ther decomposed into the short- and long-wavelength phonon
contributions, �ES

nk(T ), and �EL
nk(T ), each treated sepa-

rately. Overall, the total shift of the electron eigenenergy at

temperature T reads

�Enk(T ) = �ES
nk(T ) + �EL

nk(T ) + �ETE
nk (T ). (1)

In the following sections, we discuss each contribution in
turn. We use atomic units, h̄ = e = mel = 4πε0 = 1, unless
otherwise stated.

A. Band gap renormalized by short-wavelength phonons

The investigation of band renormalization through cou-
pling electrons to short-wavelength phonons has a long
history, culminating in the well-established Allen-Heine-
Cardona (AHC) theory [41–43]. The AHC theory can be
reformulated in a manner that can readily lend itself to imple-
mentation within the first-principles finite-difference method:

�ES
nk(T ) = 1

2

∑
νq

1

2ωνq

∂2Enk

∂μ2
νq

[1 + 2nB(ωνq, T )], (2)

where ωνq is the frequency of a phonon with the branch
number ν and wave vector q, μνq is the real-valued
phonon displacement [see the detailed definition in Eqs. (A1)
and (A4)], and nB(ωνq, T ) = [exp( ωνq

kBT ) − 1]−1 is the Bose-
Einstein factor. It is worth noting that there is a nonzero
correction to the energy band even at zero temperature with
the vanishing Bose-Einstein factor, arising from the zero-
point motion of the ions as a purely quantum effect. We
refer readers who are interested in the rigorous mathematical
derivations of the theory to Refs. [41–46], where the same
results have been obtained through alternative approaches. We
show the equivalence between our formulation and others in
Appendix A.

B. Band gap renormalized by long-wavelength phonons

In principle, Eq. (2) captures the coupling between elec-
trons and all-wavelength phonons. However, in practice,
explicitly accessing the q points close to the center of the
Brillouin zone (BZ) can become computationally prohibitive
due to the inherent incompatibility of the long-wavelength
limit with the Born-von Kármán periodic boundary condi-
tion. As a result, accounting for the band-gap renormalization
contributed by long-wavelength phonons requires a separate
treatment.

Specifically, in the long-wavelength limit, the significance
of atomic-scale interactions diminishes, and electrons can be
regarded as becoming coupled with the macroscopic electric
field induced by longitudinal optical phonons. This mech-
anism is known as the Fröhlich interaction [47,48]. It is
especially crucial in the case of ionic crystals, where the in-
teraction has been shown to be strong enough to significantly
influence physical phenomena such as electron lifetimes and
carrier mobilities [49].

Nery and Allen derived an analytical expression to address
the missing portion of the contribution associated with the
long-wavelength optical phonon modes for three-dimensional
(3D) materials [50]. Following a similar methodology, com-
bined with the latest results on polarons in two-dimensional
(2D) systems [51,52], we have derived the corresponding
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band-gap renormalization for a 2D material:

�EL
nk(T ) =

∫ ∞

0
dq

1

2
m∗q2

0dωLO(ε0 − ε∞)
q

(q0 + q)2

×
[

1 + nB(ωLO, T )

−q2 − 2m∗ωLO
+ nB(ωLO, T )

−q2 + 2m∗ωLO

]
. (3)

Here, m∗ is the effective mass of the band, q0 is a character-
istic wave vector of the polaron in 2D materials [defined in
Eq. (B6) and Refs. [51,52] ], d is the effective thickness of the
2D material, ωLO is the frequency of the longitudinal-optical
phonon, and ε∞ and ε0 are the high-frequency and static rel-
ative permittivities, respectively. The details of the derivation
are presented in Appendix B, where, very interestingly, we
find that the dimensionality change from three to two signif-
icantly amplifies the mathematical intricacy involved in band
renormalization.

C. Thermal expansion

In the context of experimentally probing the temperature
dependent electron eigenenergy, a prevailing practice entails
the execution of experiments under constant-pressure condi-
tions. Therefore, it is necessary to also include the influence of
thermal expansion on electron eigenenergies, which has been
shown to make a comparable contribution to electron-phonon
coupling in three-dimensional topological materials [21]. The
temperature dependence of the electron eigenenergy induced
by thermal expansion can be expressed as [42,43]:

�ETE
nk (T ) =

∫ T

0
dT

(
∂Enk

∂V

)
T0

(
∂V

∂T

)
P0

. (4)

Here, (∂Enk/∂V )T0 represents the eigenenergy shift as the
system volume changes at constant temperature T0, and
(∂V /∂T )P0 represents the volume change as the system tem-
perature increases at constant pressure P0.

D. First-principles implementation

To calculate band renormalization induced by short-
wavelength phonons from first principles, we use Eq. (2) as
our starting point. This choice [instead of Eq. (A6)] enables
us to bypass the explicit calculation of the electron-phonon
coupling matrix elements. The only terms that need to be
numerically evaluated are the second-order derivatives of
the band structure with respect to the displacement of each
phonon. We implement this in the finite difference context
using a three-point central formula:

∂2Enk

∂μ2
νq

� E (+δμνq)
nk + E (−δμνq)

nk − 2E (0)
nk

δμ2
νq

, (5)

where E
(+δμνq )
nk represents the band structure calculated by

incorporating a “frozen” phonon characterized by ν and q with
a real displacement of +δμνq. In the case of degenerate band
structures, the above second derivatives are averaged over all
degenerate states. The BZ integration required by Eq. (2) is
implemented by invoking the nonuniform q-point sampling
and nondiagonal supercell techniques [27,53] to ensure opti-
mal efficiency.

To calculate band renormalization induced by long-
wavelength phonons, we employ Cauchy’s principal value
integration to evaluate Eq. (3), circumventing the divergence
arising from the singularity in the integrand when −q2 ±
2m∗ωLO = 0. We note that Ref. [50] proposed the alternative
approach of invoking the adiabatic approximation to merge
the two singularities into one and shifting them off the real
axis by an amount iη. Although we have also derived the
counterpart for 2D materials following the same idea [as
shown in Eq. (B7)], which might provide accurate results with
a less dense q-point grid when iη is judiciously chosen, we opt
not to adopt this approach in this work to avoid introducing
the ad hoc parameter. All the parameters within Eq. (3) can
be acquired through well-established first-principles methods.
For instance, m∗ can be determined by fitting the curvature of
the band, while ε∞ and ε0 can be calculated by assessing the
response of the system to an applied electric field.

To model thermal expansion from first principles through
(∂V /∂T )P0 in Eq. (4), we use the quasiharmonic approx-
imation to incorporate the volume dependence of phonon
frequencies, such that the Helmholtz free energy of the vi-
brating lattice can be expressed as [54]:

F (V ; T ) = U (V ; 0) + kBT
∑
νq

ln

[
2 sinh

(
ωνq(V )

2kBT

)]
, (6)

where the first term is the potential energy for the static lattice
and the second term is the vibrational contribution to the free
energy. It is worth noting that the second term does not vanish
at zero temperature; instead, it equals 1

2

∑
νq ωνq(V ), which

leads to the contribution from zero-point motion to thermal
expansion. We further implement Eq. (6) by calculating the
system of interest at a few volumes in the expansion and com-
pression regime. At each volume, the static lattice potential
energy U (V ; 0) can be obtained through a lattice-constrained
geometry optimization, and the volume-dependent phonon
frequency ωνq(V ) can be obtained from the corresponding
phonon calculations. By fitting the resulting Helmholtz free
energy F (V ; T ) with a polynomial function, we determine
the volume corresponding to the minimum of F (V ; T ) for a
given temperature T , that is, the equilibrium volume at that
temperature.

III. RESULTS AND DISCUSSION

A. Crystal structure

Monolayer TMDs have been confirmed to exhibit a series
of stable and metastable phases, both in theory and experi-
ments [55,56]. Of particular interest within this work is the
1T′ phase, which adopts a monoclinic structure characterized
by the space group P21/m. Figure 1(a) visualizes the crystal-
lographic structure from both top and side perspectives. The
structure emerges as a spontaneous symmetry breaking from
the 1T phase (with space group P3̄m1) induced by the Peierls
instability in which the M-M dimerization takes place, thereby
eliminating the degeneracy of the states near the Fermi level
and lowering the energy of the system. Despite the distortion
of M atoms leading to the loss of certain symmetries, the 1T′
phase still possesses an inversion center, a mirror plane, and a
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FIG. 1. (a) Crystal structure of 1T′-MX 2 and (b) its BZ. The
gray and yellow balls represent the M = W, Mo and X = S, Se
atoms respectively. The gray shaded area represents the irreducible
Brillouin zone.

twofold screw axis. Therefore, its irreducible Brillouin zone is
a quarter of the whole Brillouin zone, as depicted in Fig. 1(b).

B. Computational details

We perform first-principles calculations at the density
functional theory (DFT) level [57,58] with the Vienna
ab initio simulation package (VASP) [59]. A vacuum layer with
a thickness of 20 Å is used in the calculation to avoid periodic
image interactions along the direction perpendicular to the
plane. The interaction between ions and valence electrons
is modeled with pseudopotentials based on the projector-
augmented wave [60,61] method, where the valence electrons
of the transition metals are ns2(n − 1)d5 (where n = 6 for
M = W and n = 5 for M = Mo) and the valence electrons
of chalcogen are ns2np4 (where n = 4 for X = Se and n = 3
for X = S). The exchange-correlation functional is treated
in the generalized gradient approximation parametrized by
Perdew-Burke-Ernzerhof (PBE) [62] in most calculations.
The Heyd-Scuseria-Ernzerhof (HSE) hybrid functional [63]
is further used for WS2 to reinforce the robustness of the
findings on the band-gap size and temperature dependence.
An energy cutoff of 500 eV for the plane-wave expansion and
a 
-centered k-point grid of size 5 × 9 × 1 for Brillouin-zone
integration are adopted in the calculations. The spin-orbit
coupling is included in the calculations via a perturbation to
the scalar relativistic Hamiltonian [64].

C. Electronic structures

It has been confirmed both in theory and experiments that
the 1T′-MX 2 family are topological insulators [38,65–70]. In
a broader context, the band structure of an inversion sym-
metric topological insulator is generally characterized by two
band gaps, the indirect band gap, which corresponds to the
minimum energy to excite an electron in the material bulk,
and the direct band gap, where the band inversion takes place.
Using WS2 as a representative example, we show a typical
band structure of a topological insulator in Fig. 2, where the
band inversion induced by spin-orbit coupling occurs at the

 point and leads to a double-well-shaped dispersion for the
conduction band.

FIG. 2. Band structures of WS2 with and without spin-orbit cou-
pling (SOC) in the vicinity of the 
 point. The direct and indirect
gaps are highlighted, where the former corresponds to the inverted
band gap in the context of topological insulators.

Following Ref. [38], we refer to the direct band gap at
the 
 point as the inverted band gap, which reflects the band
inversion strength of MX 2. Table I summarizes the values of
the inverted band gaps for WS2, WSe2, MoS2, and MoSe2

at the static DFT level, where MoSe2 exhibits the largest
gap of 713 meV while WS2 exhibits the smallest one of
183 meV. The results agree with previous first-principles stud-
ies [38,71].

The atomic-orbital projection analysis of the inverted band-
gap point further reveals that the nontrivial topology of
1T′-MX 2 can be understood from the p-d band-inversion pic-
ture. We find that across all four compounds, the conduction-
band inversion is primarily influenced by hybridization of
metal dxz and dyz states. In the cases of MoS2, WS2, and WSe2,
their inverted conduction bands exhibit a similar pattern, pre-
dominantly stemming from contributions of the chalcogenide
py orbitals. On the contrary, MoSe2 distinguishes itself from
them, displaying an inverted conduction band dominated by a
mixture of Mo dx2−y2 and dz2 states. This state manifests a dis-
tinctly different orientation compared with the chalcogenide
py orbitals, as shown in Figs. 3(a) and 3(d).

TABLE I. Static and renormalized band gap of WS2, WSe2,
MoS2, and MoSe2 at T = 0 and 300 K. The total renormalization
is equal to the sum of the renormalization induced by short- and
long-wavelength phonons, �ES(T ) and �EL(T ), and the thermal
expansion, �ETE(T ).

WS2 WSe2 MoS2 MoSe2

Static 183 meV 693 meV 531 meV 713 meV
�ES 0 K +17 meV +5 meV +4 meV +8 meV

300 K +38 meV +17 meV +17 meV +21 meV
�EL 0 K −8 meV −5 meV −2 meV −5 meV

300 K −8 meV −5 meV −1 meV −5 meV
�ETE 0 K −4 meV −3 meV −2 meV −0.4 meV

300 K −17 meV −16 meV −13 meV −1 meV
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FIG. 3. Hole density of the state associated with the conduction-band extremum at the 
 point, alongside two vibration modes at the X
point that exhibit strong coupling with it. Panels [(a)–(c)] correspond to MoS2, WS2, and WSe2, while panels [(d)–(f)] correspond to MoSe2.
The red arrows indicate the vibration of the corresponding atoms.

D. Band-gap renormalization induced by
electron-phonon coupling

To effectuate an electronic structure phase transition from
a topologically nontrivial state (i.e., 1T′-MX 2 at 0 K) to a
topologically trivial state (if it exists), it is imperative for the
inverted band gap at the 
 point to undergo closure. Therefore,
in subsequent sections, we focus on the temperature effects
on this inverted band gap. It is also worth noting that, as
one of the most important manifestations of topology, the
topologically protected metallic edge states are required to
intersect at the 
 point because of time-reversal symmetry.
The presence of a finite gap guarantees the insulating nature
of the bulk and ensures that electronic transport can occur only
through the topologically protected metallic edge states.

1. Short-wavelength phonon-induced band-gap renormalization

To obtain the phonon-induced band-gap renormalization,
we first calculate the phonon spectra for the four compounds
thereby determining the concrete form of real-valued opera-
tors ∂/∂μνq for them. The obtained phonon spectra also allow
us to theoretically confirm the dynamical stability of MX 2 at
ambient pressure as there are no imaginary vibrational modes
[see the Supplemental Material (SM) [72] ].

Figure 4(a) shows the band-gap corrections �ES as a func-
tion of temperature, while the specific values at both absolute
zero and room temperature (T = 300 K) are presented in
Table I. In contrast with the behavior typically observed in
most semiconductors, where the band gap diminishes with ris-
ing temperature, 1T′-MX 2 exhibits an opposite trend. Across
the four TMDs investigated, regardless of the distinct chem-
ical compositions, a consistent positive correlation between
the band gap and temperature is evident. It is particularly
pronounced at temperatures exceeding 100 K, showing an
asymptotic linear dependence of the gap change with tem-
perature. Below this temperature, only the low-frequency
vibrational modes are excited and the phonon-induced band-
gap renormalization remains relatively constant. For WSe2,
MoS2, and MoSe2, we find that they exhibit comparable
band-gap corrections, around 20 meV at room tempera-
ture. In comparison, WS2 manifests stronger electron-phonon

coupling, resulting in a band-gap renormalization of 38 meV,
which is approximately double the values observed in the
other three TMDs. This is a substantial correction, whose
magnitude accounts for nearly 21% of the static band-gap size
in WS2.

To better understand the microscopic origin of the phonon-
induced band-gap renormalization, we define the electron-
phonon coupling strength in the temperature-dependent band
structure context as

Sel-ph
νq = ∂2Egap

∂μ2
νq

, (7)

followed by the q-resolved electron-phonon coupling strength
defined as

Sel-ph(q) =
∑

ν

Sel-ph
νq . (8)

The bottom-left panels of Figs. 5(a)–5(d) depict the band
structures for the four compounds along the high-symmetry
path, from which it can be seen that their conduction-band
minima are all located on the 
-Y path. For WS2 and MoSe2,
they exhibit a (negative) parabolic and quartic shaped valence
band around the 
 point, respectively, while for WSe2 and
MoS2, their valence band manifests a double-peak shape,
resulting in the valence-band maximum shifting close to the
conduction-band maximum on the 
-Y path.

The top-left and -right panels of Figs. 5(a)–5(d) show
the q-resolved electron-phonon coupling strength along the
high-symmetry path and on the whole irreducible Brillouin
zone, respectively. Within the upper half plane of the irre-
ducible Brillouin zone, the electron-phonon coupling strength
is nearly negligible. The principal contributions to the band
renormalization are concentrated in proximity to the 
 and
X points. Focusing on phonons at the X point, which corre-
sponds to vibrational modes exhibiting a wavelength twice
that of the original unit cell, we visualize in Figs. 3(b), 3(c)
and 3(e), 3(f) the two modes that most strongly couple to
the inverted band gap. Interestingly, these modes are highly
localized along certain directions. For MoS2, WS2, and WSe2,
the dominant modes are very similar, all exclusively associ-
ated with chalcogenide atoms. One mode involves vibrations
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FIG. 4. Band-gap renormalization as a function of temperature
for WS2, WSe2, MoS2, and MoSe2, where panels (a) and (b) show
the contribution from short-wavelength phonons, �ES(T ), and ther-
mal expansion, �ETE(T ), respectively, and panel (c) shows the
overall effect including both electron-phonon coupling and thermal
expansion.

along the b direction, inducing alternating shear deforma-
tion, while the other involves vibrations along the a and c

directions, asymmetrically stretching chalcogenide atoms. On
the other hand, MoSe2 shows a very different behavior, with
the strong-coupling modes governed by atoms that remain
static in the cases of MoS2, WS2, and WSe2. This difference
can be attributed to its distinct orbital component. As men-
tioned earlier, MoS2, WS2, and WSe2 display a conduction
band at the 
 point that mainly arises from chalcogenide py

orbitals, whereas in MoSe2, it originates from Mo dx2−y2 and
dz2 orbitals. The modes we observe here can bring about a
notable alteration in hole density, consequently renormalizing
the inverted band gap.

A noteworthy finding is that within WS2 alone, the in-
verted band gap exhibits a nonzero coupling to phonons at
the 
 point, where the eighth phonon branch with a flat
dispersion (ωνq ≈ 28 meV) contributes nearly 73% electron-
phonon coupling strength. This unique 
 point contribution
drives a larger band-gap renormalization at room temperature
in WS2 compared with that of the other three compounds
in the TMD family. Given the notorious band-gap problem
of DFT [73], we have further employed the HSE hybrid
functional to examine the lattice vibration modes that were
observed to contribute significantly to the overall electron-
phonon coupling strength at the PBE level. We find that
the HSE functional “scales up” the static band gap and the
electron-phonon coupling strength induced by the 
 and X
phonons [74]. This observation is consistent with findings in
conventional insulators; that is, extending calculations beyond
semilocal DFT generally yields larger static band gaps and
stronger electron-phonon coupling strength [75,76]. Since the
overall electron-phonon coupling strength of WS2 is domi-
nated by the 
- and X-phonons, we conclude that the HSE
functional should not qualitatively change the finding based
on the PBE functional, that is the temperature effect will
increase the topological band gap in WS2.

Finally, it is also worth noting that the electron-phonon
coupling strength curves diverge at some k points. This di-
vergence manifests as sharp peaks in the top-left panel of
Figs. 5(a)–5(d) and visually evident red-blue dividing lines
in the right panel. This feature arises from the double-peak
and double-well characteristics of the band structure through
the divergence of the electron-phonon coupling strength on
the isoenergetic surface. This phenomenon can be rationalized
using a perturbation theory framework and has been discussed
in the case of bismuthene in Ref. [27]. The computational
cost associated with treating the singularity in the electron-
phonon coupling strength prevents the calculation of band-gap
renormalization using the traditional uniform q-point grid.
Therefore, here we have used a Farey grid of order 13, sam-
pling 696 q points in the Brillouin zone, corresponding to
12 528 modes, to ensure convergence [77].

2. Long-wavelength phonon-induced band-gap renormalization

Given that monolayer 1T′-MX 2 possesses polar chemical
bonds between M4+ and X 2− ions, it is worth examining
the band renormalization contributed by long-wavelength
phonons (i.e., Fröhlich coupling). Table II summarizes the
essential quantities characterizing the Fröhlich interaction
and the corresponding band renormalization values calculated
at both 0 and 300 K. We find that the magnitude of the
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FIG. 5. q-resolved electron-phonon coupling strength (top-left panel) and band structure (bottom-left panel) for (a) WS2, (b) WSe2,
(c) MoS2, and (d) MoSe2 along a high-symmetry path in the irreducible Brillouin zone. To calculate the band-gap renormalization, the
irreducible Brillouin zone is sampled by a nonuniform Farey grid as shown in the right panel, where red and blue represent positive and
negative electron-phonon coupling strengths, respectively, and the color depth represents the absolute value of the strength.

renormalization closely resembles that observed in the case
induced by short-wavelength phonons at 0 K. Nevertheless,
it is worth noting that the polaron-induced band renormaliza-
tion exhibits minimal sensitivity to temperature fluctuations.
This remarkable temperature independence can be attributed
to the very small ionic contribution to the dielectric con-
stant, ε0 − ε∞ ≈ 0.5, across all four considered 2D TMDs. In

TABLE II. Material-specific parameters to evaluate the band-
gap renormalization induced by long-wavelength phonons for WS2,
WSe2, MoS2, and MoSe2. Except for �EL which is in units of meV,
the remaining quantities are reported in atomic units; that is, ωLO in
units of Hartree, m∗

c and m∗
v in units of the electron mass me, d in

units of the Bohr radius a0, and q0 in units of 1/a0.

WS2 WSe2 MoS2 MoSe2

ωLO 1.26 × 10−3 9.25 × 10−4 1.26 × 10−3 9.13 × 10−4

ε0 20.2 15.2 18.9 20.9
ε∞ 19.4 14.8 18.6 20.5
m∗

c −0.553 −0.099 −0.127 −0.076
m∗

v −0.622 −2.034 0.798 27.781
d 11.5 12.2 11.5 12.2
q0 8.97 × 10−3 1.11 × 10−2 9.36 × 10−3 18.0 × 10−3

�EL(0K) −8 meV −5 meV −2 meV −5 meV
�EL(300K) −8 meV −5 meV −1 meV −5 meV

contrast, HgTe in CdTe/HgTe/CdTe quantum wells (as an-
other realization of topological insulators) have ε0 − ε∞ = 6
[20], and typical ionic compounds have even larger values
[78].

E. Thermal expansion

Now we consider the band gap renormalization induced
by thermal expansion. Due to the 2D materials nature, all
of 1T′-MX 2 have weak thermal expansion. The degree of
thermal expansion is proportional to the atomic weight, where
MoS2 has the largest thermal expansion, but still does not
exceed 0.7% [79].

Figure 4(b) shows the band-gap corrections �ETE as a
function of temperature, while the specific values at both
absolute zero and room temperature (T = 300 K) are pre-
sented in Table I. Overall, the inverted band gaps of all four
TMDs decrease as temperature increases. This behavior is
expected to some extent, given that thermal expansion drives
materials toward their atomic limits, while at the same time
resulting in a topologically trivial band structure. However,
it is worth noting that the band structures of WS2, MoS2,
and WSe2 exhibit significant sensitivity to thermal expansion,
in contrast with MoSe2, which shows minimal tempera-
ture dependence. This discrepancy may be attributed to the
fact that the conduction-band extremum of WSe2 at the 


point predominantly arises from dx2−y2 and dz2 orbitals which
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exhibit greater localization. The localized nature of these or-
bitals results in smaller changes in the band gap of MoSe2

when the lattice parameter changes due to thermal expansion.
Finally, it is worth highlighting that our quasiharmonic

approximation model is exclusively focused on isotropic ther-
mal expansion. Nevertheless, the established dependence of
the band gap in MX 2 under anisotropic strain [15] implies
that the inclusion of anisotropic thermal expansion would not
qualitatively alter our conclusions.

F. Overall temperature dependence

In the end, we investigate the overall temperature de-
pendence of the inverted band gap. Figure 4(c) shows total
band-gap corrections as a function of temperature, taking into
account the contributions from both electron-phonon coupling
and thermal expansion. We find that although WS2 exhibits
the strongest electron-phonon coupling, this effect is tem-
pered by substantial thermal expansion, thereby attenuating
the band-gap renormalization to some extent. On the other
hand, MoSe2, despite its less prominent electron-phonon cou-
pling, stands out with the most substantial renormalized band
gap when the temperature exceeds 200 K, thanks to its very
weak thermal expansion. The corresponding band-gap renor-
malization reaches around 15 meV at room temperature. In
comparison, MoS2 and WSe2 show a less pronounced tem-
perature dependence. The band-gap renormalization of MoS2

reaches a negligible maximum of 3 meV at 300 K. Beyond
this point, thermal expansion gains prominence, resulting in a
reduction in the band gap. As for WSe2, the electron-phonon
coupling is outweighed by thermal expansion at all tempera-
tures, leading to a monotonic decrease in the band gap with
increasing temperature.

IV. INVERSE VARSHNI EFFECT DRIVEN BY
BAND INVERSION

Our observations in the four monolayer TMDs show that
there seems to be no general trend for the sign of the correc-
tion to the band gap in topological insulators: temperature can
either promote or suppress the topological phase. This com-
plexity arises from the multiple ways in which temperature
can exert its effects, and the competition between these effects
is highly contingent upon the very details of the system.

Nevertheless, valuable insights can be gleaned from a very
simple model in which electron-phonon coupling itself is
indeed conducive to promoting the topological phase when
significant band inversion occurs. To illustrate this, let us
first consider a normal insulator characterized by parabolic
valence and conduction bands at the 
 point where mc > 0
and mv < 0. The band extrema are simply coupled to all
other states by a dispersionless phonon with frequency ω0.
Assuming that the Debye-Waller term is considerably smaller
than the Fan-Migdal term (see the definitions in Appendix A),
the predominant correction to the band gap occurs near the 


point where E (0)
n
 − E (0)

m
+q = ±q2/2|m∗| [see Eq. (A6)]. The
plus (minus) sign is for the valence (conduction) band, and
m∗ describes the effective masses. As a result, the temperature

dependence of the band gap takes the form

Egap(T ) =
⎧⎨
⎩

−Ceω0/(kBT )

eω0/(kBT )−1
for 3D

A−Beω0/(kBT )

eω0/(kBT )−1
for 2D,

(9)

where C > 0 and B > A. The negative sign arises from the
opposite curvatures of the valence and conduction bands. This
simplified model affords insights into the so-called “Varshni
effect” [80] observed in semiconductor physics: the reduc-
tion in the energy gap of semiconductors as a function of
temperature, a phenomenon observed in the vast majority of
insulators.

Interestingly, when applying this same simplified model to
an insulator with an inverted band gap, characterized by mc <

0 and mv > 0, we find

Egap(T ) =
⎧⎨
⎩

C
eω0/(kBT )−1

for 3D

B−Aeω0/(kBT )

eω0/(kBT )−1
for 2D,

(10)

from which one can anticipate an “inverse Varshni effect.”
This is particularly relevant because topological insulators
often exhibit band inversion with the above band curvature
characteristics.

The same argument also holds to the band renormalization
induced by Fröhlich coupling [see Eq. (B8)], where the sign
of the effective mass of the electrons and holes determines the
sign of the renormalization. In a more general manner, one can
interpret gmnν (k, q) in Eq. (A6) as gmnν (k, q) = gS

mnν (k, q) +
gL

mnν (k, q), encompassing both short- and long-wavelength
contributions to the electron-phonon coupling matrix element
[49]. Thus, we conclude that electron-phonon coupling should
broadly promote the topology of systems with a significant
band inversion feature. Following the above insight, we have
applied the model in Eq. (10) to fit the band-gap renormaliza-
tion induced by electron-phonon coupling in 1T′-MX 2. The
model is found to be able to accurately reproduce the results
from first principles [81].

Overall, our simple model suggests that the inverse Varshni
effect should be more prevalent in topological insulators than
in normal insulators. We also note that Garate and Saha
reached the same conclusion by considering the renormal-
ization of Dirac mass (instead of the band gap) at finite
temperatures [19,20], while Antonius and Louie further pro-
vided a symmetry argument making the picture more nuanced
[22].

V. TEMPERATURE-TUNABLE TOPOLOGICAL STATES
IN 1T′-WS2

The strong electron-phonon coupling in 1T′-WS2 which
promotes topology offers a facile mechanism to control the
topological order by temperature. To realize this, we consider
applying positive biaxial strain to first drive the system to a
normal insulator with an uninverted gap. Without considering
electron-phonon coupling, we find that the inverted band gap
first decreases to zero at strain of 2.2% and then reopens as the
strain increases. By explicitly calculating the Z2 topological
invariant, we confirm that this gap-closing indeed induces a
topological phase transition associated with the destruction of
the edge states.
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FIG. 6. Temperature-strain phase diagram of WS2.

Figure 6 shows the temperature-strain phase diagram of
WS2. In the range of strain up to 5%, we consistently observe
that electron-phonon coupling drives the electronic structure
of 1T′-WS2 toward its topologically nontrivial region. This
agrees with the previous theoretical model introduced in
Sec. IV. In particular, we find that at a strain of approximately
2.5%, elevating the temperature to 300 K drives a phase tran-
sition taking the system from the topologically trivial state
imposed by strain to the topologically nontrivial phase. There-
fore, temperature has an impact on the critical point of the
topological phase transition engineered by strain. For exam-
ple, referring to Fig. 6, at zero temperature the critical strain
is found to be 2.2%, while at room temperature T = 300 K,
the critical strain increases to 2.5%. As the first example
of temperature promoted topological insulating phases, this
temperature-strain tunable state holds promise for tailoring
device functionalities.

VI. CONCLUSION

In summary, through first principles calculations, we
have elucidated the role of three critical temperature-related
factors: electron-phonon coupling, Fröhlich coupling, and
thermal expansion, providing a comprehensive examination
of the intricate temperature effects in 1T′-MX 2 monolayers.

Our findings demonstrate that within 1T′-MX 2 monolayers
electron-phonon coupling generally promotes the topology of
the electronic structures. However, the counteracting influence
of thermal expansion should not be overlooked because it
generally diminishes the topological attributes and holds the
potential to reverse the temperature dependence of the band
gap in some cases. This finding also sheds light on using a
substrate that can suppress thermal expansion to achieve better
thermal robustness of 2D topological insulators.

Furthermore, our investigation into Fröhlich coupling in
2D materials has revealed its relatively modest tempera-
ture dependence within 1T′-MX 2 monolayers due to the
small ionic contribution to the dielectric constant. How-
ever, the formulation we have found is universal for all 2D

materials, which can be useful for understanding the strong
band renormalization in the 2D materials that exhibit large
ionic contribution to the dielectric constant.

In the context of material science, one of the outcomes
of our study is the identification of MoSe2 as a promis-
ing candidate for room-temperature applications. It exhibits
remarkable resilience against thermal expansion, making it
a robust choice for electronic devices operating at higher
temperatures. Additionally, WS2 displays tunable topolog-
ical behavior under the combined influence of strain and
temperature, opening up possibilities for tailored device func-
tionalities. Both materials stand out as novel examples of
temperature promoted topological insulators.

Overall, our work advances the fundamental understanding
of temperature effects in 1T′-MX 2 monolayers, paving the
way for the applications of 2D topological insulators.
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APPENDIX A: REAL-VALUED PHONON
DISPLACEMENT OPERATOR

Following the procedure that has been described in many
textbooks of lattice dynamics [82,83], we define the normal
coordinates uνq from the atomic displacements lpα j for the
phonon system as follows:

uνq = 1√
Np

∑
pα j

√
mαlpα je

−iq·Rpα ξ ∗
νqα j, (A1)

or inversely,

lpα j = 1√
Np

∑
νq

1√
mα

uνqeiq·Rpα ξνqα j, (A2)

where p and α run over all primitive cells of the crystal
and the ions in the cell, respectively, j denotes the Cartesian
components, mα is the mass of ion α, Np is the number of
primitive cells in the crystal, and ξνqα j is the eigenvector of
the dynamical matrix of the system.
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It is worth noting that uνq is generally complex (because
ξνqα j is complex), but one can construct a set of real-valued
phonon displacement from uνq by partitioning the phonon BZ
into three parts:

BZ = BZ0 ∪ BZ+1 ∪ BZ−1. (A3)

Here BZ0 = {q /∈ BZ±1|q = −q modG} represents a set of
discrete q points invariant under inversion modulo a
reciprocal-lattice vector (i.e.the center of the Brillouin zone,
the centers of its faces, and the corners), and BZ±1 = {q /∈
BZ0| − q ∈ BZ∓1} are mutually inversion-symmetric images,
each including all the q-points that are not inversion partners.
On this partitioning, we define the real phonon displacement

μνq =

⎧⎪⎪⎨
⎪⎪⎩

uνq for q ∈ BZ0

1√
2

(
uνq + uν−q

)
for q ∈ BZ+1

i√
2

(
uνq − uν−q

)
for q ∈ BZ−1,

(A4)

or inversely,

uνq =

⎧⎪⎪⎨
⎪⎪⎩

μνq for q ∈ BZ0

1√
2

(
μνq + iμν−q

)
for q ∈ BZ+1

1√
2

(
μν−q − iμνq

)
for q ∈ BZ−1.

(A5)

From Eq. (A4), one can naturally define a real-value phonon
differential operator ∂/∂μνq, which has been used in the main
text to reformulate AHC theory.

We note that one widely used formulation of Enk(T ) is
given as follows [84]:1

Enk(T ) = E (0)
nk

+ 1

Np

∑
νq

[∑
m

|gmnν (k, q)|2
E (0)

nk − E (0)
mk+q

+ gDW
nnνν (k, q,−q)

]

× [
1 + 2nB

(
ωνq, T

)]
, (A6)

where

gmnν (k, q) = 〈ϕmk+q|∂νqVel|ϕnk〉 (A7)

is referred to as the Fan-Migdal electron-phonon coupling
matrix, Vel is the potential experienced by the electrons in
crystals, and gDW

nnνν (k, q,−q) is a particular case of the Debye-
Waller electron-phonon matrix,

gDW
mnνν ′ (k, q, q′) = 1

2 〈ϕmk+q+q′ |∂νq∂ν ′q′Hel|ϕnk〉. (A8)

Here the (complex) phonon differential operator ∂νq is formu-
lated as [46,85]

∂νq ≡ 1√
2ωνq

∑
pα j

1√
mα

eiq·Rpα ξνqα j
∂

∂lpα j
. (A9)

We show that Eqs. (2) and (A6) are equivalent. First, the
second-derivative term in Eq. (2) can be split into two terms

1The sum excludes q = 0 for the first term in
∑

νq[. . .] when
m = n.

by invoking the Hellmann-Feynman theorem [86], i.e.,

∂2Enk

∂μ2
νq

=
〈
ϕnk

∣∣∣∣∣∂
2Hel

∂μ2
νq

∣∣∣∣∣ϕnk

〉

+
〈
ϕnk

∣∣∣∣ ∂Hel

∂μνq

∣∣∣∣ ∂ϕnk

∂μνq

〉
+
〈
∂ϕnk

∂μνq

∣∣∣∣ ∂Hel

∂μνq

∣∣∣∣ϕnk

〉
, (A10)

where the derivative of the state can be resolved by an un-
perturbed complete basis set {|ϕnk〉} according to perturbation
theory [87] as follows:∣∣∣∣ ∂ϕnk

∂μνq

〉
=

∑
(m, k′)
�= (n, k)

|ϕmk′ 〉
〈
ϕmk′

∣∣ ∂Hel
∂μνq

∣∣ϕnk
〉

E (0)
nk − E (0)

mk′
. (A11)

Second, using the chain rule, one can find that the com-
plex phonon differential operator is related to our real-
displacement phonon differential operator by the relation

∂

∂μνq
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
2ωνq

Np
∂νq for q ∈ BZ0

2
√

ωνq

Np
∂νq for q ∈ BZ+1

0 for q ∈ BZ−1,

(A12)

and thus

lim
Np→∞

∑
νq

∂

∂μνq
= lim

Np→∞

∑
νq

√
ωνq

Np
∂νq. (A13)

Substituting Eqs. (A10)–(A13) into Eq. (2) yields exactly
Eq. (A6), so the equivalence is proved. We also note that
Refs. [44,88] derived another formulation of Enk(T ) using a
generalized Janak’s theorem. Similarly, one can also show that
their result

Enk(T ) = E (0)
nk + 1

2Np

∑
νq

∂Enk

∂nB
[1 + 2nB(ωνq, T )], (A14)

with

∂Enk

∂nB
= 1

2ωνq

∑
pα j

∑
p′α′ j′

∂2Enk

∂lpα j∂lp′α′ j
e−iq·(Rpα−Rp′α′ )

× ξνqα j√
mα

ξ ∗
νqα′ j′√
mα′

, (A15)

is equivalent to ours.
It is worth noting that the Debye-Waller term involving

second-order electron-phonon matrix elements is very chal-
lenging to calculate in the density functional perturbation
theory framework, therefore one has to invoke the rigid-
ion approximation to rewrite it as the product of first-order
electron-phonon matrix elements. However, it can be easily
included in the finite difference framework as used in this
work.

APPENDIX B: FRÖHLICH COUPLING IN
TWO DIMENSIONS

For polar insulators, it has been known that the presence
of Fröhlich coupling can play a role in the additional renor-
malization of the band structure. Here we provide a derivation
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for this. We start by considering a hole at the 
 point of the
conduction band E (0)

mq interacting with a single dispersionless
polar longitudinal-optical phonon of frequency ωLO. At a fi-
nite temperature T , the self-energy for the hole polaron reads

�Fr (ω) =
∫

dq
�BZ

|g(q)|2
[

1 − nF
(
E (0)

cq , T
)+ nB(ωLO, T )

ω − E (0)
cq − ωLO + iη

+nF
(
E (0)

cq , T
)+ nB(ωLO, T )

ω − E (0)
cq + ωLO + iη

]
, (B1)

where �BZ is the volume of the Brillouin zone, η is a positive
infinitesimal, and nF(E (0)

cq , T ) = [exp(E (0)
cq /kBT ) + 1]−1 is the

Fermi-Dirac factor. The band renormalization arising from
�Fr (ω) can be obtained from the standard prescription of
many-body perturbation theory:

Ec
 (T ) = E (0)
c
 +

∫
dq
�BZ

|g(q)|2

×
[

1 + nB(ωLO, T )

−|q|2 − q2
LO

+ nB(ωLO, T )

−|q|2 + q2
LO

]
, (B2)

where we have made the following approximations: (i) the
conduction band near the 
 point is isotropic and parabolic,
i.e., E (0)

cq = q2/2m∗, where m∗ is the effective mass. (2)
kBT � E (0)

cq thereby nF(E (0)
cq , T ) = 0 for all conduction states

near the 
 point. (iii) �Fr(ω) is purely real-valued, i.e., iη = 0.
In addition, we have defined the effective longitudinal optical
wave vector q2

LO = 2m∗ωLO.
We first examine Eq. (B2) in the 3D case, in which the

Fröhlich electron-phonon coupling matrix has a long-known
expression given by [47–49]

|g(q)|2 = 2π

Vcell
ωLO

(
1

ε∞
− 1

ε0

)
1

|q|2 , (B3)

where Vcell is the volume of the primitive cell, ε∞ and
ε0 are the high-frequency and static relative permittiv-
ity, respectively. By substituting Eq. (B3) into Eq. (B2)
and approximating the Brillouin-zone integration as

∫
dq =∫ qBZ

0 dq4πq2 = �BZ, we arrive at

Ec
 (T ) = E (0)
c
 +

∫ qBZ

0
dq

2

π
m∗ωLO

(
1

ε∞
− 1

ε0

)

×
[

1 + nB(ωLO, T )

−q2 − q2
LO

+ nB(ωLO, T )

−q2 + q2
LO

]

= E (0)
c
 + 2

π
m∗ωLO

(
1

ε∞
− 1

ε0

)

×
[
−1 + nB(ωLO, T )

qLO
tan−1

(
qBZ

qLO

)

+nB(ωLO, T )

qLO
tanh−1

(
qLO

qBZ

)]
. (B4)

A frequently employed treatment to further simplify the
above expression is to set qBZ → ∞, typically leading to
an error in the value of the integral of the order of 10%
[89]. Following this treatment and considering T = 0, we ob-
tain the Fröhlich zero-point band renormalization �EFr

c
 (0) =
−m∗ωLO

qLO
( 1
ε∞

− 1
ε0

) = −αωLO, where α = m∗
qLO

( 1
ε∞

− 1
ε0

) is the
dimensionless polaron constant. This outcome aligns pre-
cisely with the previously known conclusion about polarons
[89].

Now, we move to the 2D case. It is worth noting that, unlike
the 3D case where the volume element (i.e., spherical shell)
4πq2dq can alleviate the singularity of the integral at q = 0,
in the 2D case the area element (i.e.an annulus) 2πqdq does
not possess the same capability. If one insists on using the
Fröhlich electron-phonon coupling matrix given in Eq. (B3)
which is proportional to |q|−2, the 2D integral involved in
Eq. (B2) will invariably diverge. The primary cause for this
divergence can be attributed to the oversimplification of a 2D
material, treated merely as a mere sheet lacking thickness, in
the modeling of polarons. This has been clearly described in
Ref. [52].

To avoid the divergence mentioned above, we employ the
recently proposed 2D Fröhlich electron-phonon coupling ma-
trix [51]

|g(q)|2 =
[

πd

2Acell
ωLO(ε0 − ε∞)

]
q2

0

(|q| + q0)2 (B5)

to derive the Fröhlich band renormalization for 2D materials,
where Acell is the area of the primitive cell, d is the effective
thickness of the 2D material, and q0 is defined as

q0 = 4ε∞
(2ε2∞ − 1)d

. (B6)

Again, by substituting Eq. (B5) into Eq. (B2) and approximat-
ing the Brillouin zone integration as

∫
dq = ∫∞

0 dq 2πq, we
arrive at

Ec
 (T ) = E (0)
c
 +

∫ ∞

0
dq

1

2
m∗q2

0dωLO(ε0 − ε∞)
q

(q0 + q)2

[
1 + nB(ωLO, T )

−q2 − q2
LO

+ nB(ωLO, T )

−q2 + q2
LO

]

= E (0)
c
 + 1

2
m∗q2

0dωLO(ε0 − ε∞)

{
−q2

LO − q2
0[2nB(ωLO, T ) + 1]

q4
0 − q4

LO

− πq0qLO[nB(ωLO, T ) + 1](
q2

0 + q2
LO

)2

−
[
2q2

0

(
q4

0 + 3q4
LO

)
nB(ωLO, T ) + (

q2
0 − q2

LO

)3]
[ln (q0) − ln (qLO)](

q4
0 − q4

LO

)2

}
. (B7)

In a similar manner, one can find the expression for the correction to the valence band Ev
 (T ).
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Invoking the adiabatic approximation by replacing the term in the bracket of Eq. (3) by [2nB(ωLO, T ) + 1]/(−q2 + i2m∗η)
and then taking the real part [50], we obtain

Ec
 (T ) = E (0)
c
 + Re

{∫ ∞

0
dq

1

2
m∗q2

0dωLO(ε0 − ε∞)
q

(q0 + q)2

2nB(ωLO, T ) + 1

−q2 + i2m∗η

}

= E (0)
c
 + 1

8
m∗q2

0dωLO(ε0 − ε∞)[2nB(ωLO, T ) + 1]

× Re

{
−2(π − 4i)m∗η − (4 − 4i)πq0

√
m∗η(

2m∗η + iq2
0

)2 − (4 − iπ )q2
0 + 2

(
q2

0 + i2m∗η
)[

ln
(
2m∗η/q2

0

)]
(
2m∗η + iq2

0

)2

}
. (B8)

It is worth noting that the small imaginary component iη introduced here is ad hoc rather than ab initio. The physical meaning
of η can be inferred as a finite lifetime for the unoccupied electronic states due to thermal effects. In principle, in more accurate
approaches the η should be replaced by the finite physical linewidth of electrons. As already pointed out by Ref. [88], decreasing
η does not lead to convergence for polar materials. One has to treat this with caution in band renormalization calculations.
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