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Complex time evolution in tensor networks and time-dependent Green’s functions
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Real-time calculations in tensor networks are strongly limited in time by entanglement growth, restricting
the achievable frequency resolution of Green’s functions, spectral functions, self-energies, and other related
quantities. By extending the time evolution to contours in the complex plane, entanglement growth is curtailed,
enabling numerically efficient high-precision calculations of time-dependent correlators and Green’s functions
with detailed frequency resolution. Various approaches to time evolution in the complex plane and the required
postprocessing for extracting the pure real-time and frequency information are compared. We benchmark our
results on the examples of the single-impurity Anderson model using matrix product states and of the three-
band Hubbard-Kanamori and Dworin-Narath models using a tree tensor network. Our findings indicate that the
proposed methods are also applicable to challenging realistic calculations of materials.
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I. INTRODUCTION

The time evolution of quantum many-body systems such
as solids or ultracold gases out of equilibrium is of central
interest in physics. Experimental results both in the linear
response regime and far from equilibrium may be resolved in
real time, such as in pump-probe experiments on solids or in
quantum simulations in ultracold atom gases. Time evolution
is also reflected in frequency-dependent information, e.g., as
absorption spectra and inelastic scattering cross sections, or
through the measurement of transport properties. As most of
these many-body systems are not amenable to analytical treat-
ment, a large effort has been devoted to developing numerical
algorithms for the time evolution of quantum many-body
systems.

In the case of low-dimensional systems, tensor networks
[1–6] have established themselves as a very powerful de-
scriptive framework. Tensor network algorithms have been
proposed which work directly in frequency space [7–15] and
are typically used for the calculation of spectral functions. A
large number of other tensor network methods work directly
in real time [4,6,16–23]. Frequency-dependent information
can then be obtained by Fourier transformations [19]. Most
applications have been in the special case of matrix product
states. In this paper we will present calculations based both
on matrix product states and tree tensor network states.

The common limitation of all these methods is that they
have difficulty in accessing long times or, equivalently, high-
frequency resolution. This is due to the entanglement barrier:
in general, entanglement grows during time evolution. In the
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worst case, the bipartite von Neumann entanglement entropy
S is upper bounded as [24–29]

S(t ) � S(0) + a−1vt, (1)

where v is a typical velocity scale of the system, such as
the spin wave or Fermi velocity, and a a constant of unit
length. As the required resources in tensor networks, typically
measured by the bond dimension m, scale exponentially with
the entanglement m ∼ eS [24,25], the computational cost of
time evolutions then grows exponentially in the worst case
[24,30] which drastically limits accessible times.

The worst-case scenario occurs for global quenches of
systems. In many cases, however, one is rather interested in
numerically more benign time-dependent correlation func-
tions because they relate directly to experimental probes. In
the case of zero-temperature calculations for a system with
Hamiltonian Ĥ , ground state |ψ0〉, and ground-state energy
E0, they are generically given by

COP(t ) = 〈ψ0| Ô†(t )P̂ |ψ0〉 (2)

for two operators Ô, P̂, where in many applications Ô = P̂.
The time evolution of operators is given by

Ô(t ) = e+i(Ĥ−E0 )t Ôe−i(Ĥ−E0 )t . (3)

Here, entanglement growth is typically logarithmic in t
[28,31], leading to a power-law growth of the required re-
sources. While this increases accessible times, these times and
hence the achievable frequency resolution are still quite lim-
ited. This is a particular problem if one is especially interested
in (very) low-frequency behavior, which is often the case in
solids.
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Since their invention, time-evolution methods for tensor
networks have also been frequently used on the imaginary
axis, for instance, for ground-state searches. This reflects the
fact that imaginary-time evolution generally acts as a grad-
ual energy truncation: it suppresses high-energy states and
enhances low-energy states exponentially in the long-time
limit [4]. Entanglement growth does not act as a limiting
factor. So far, energy truncation algorithms have only been
combined successfully with tensor network methods that
calculated correlation function directly in frequency space
[11,13]. Imaginary-time evolution methods for tensor net-
works have also been successfully employed in the context of
dynamical mean-field theory (DMFT) and related embedding
methods [32–34] giving access to realistic multiband models,
but with limited reliable information on low-frequency be-
havior [35–38]. Related real-time methods for DMFT have
made good progress over the last years [39–42] but realistic
materials with multiband physics are very challenging and
frequency resolution is limited by finite simulation times due
to entanglement growth.

The goal of this paper is to combine real- and imaginary-
time evolutions in the complex plane in order to de-
velop methods to extract real-time information while using
imaginary-time evolution to limit the growth of entanglement
during time evolution. This leads to much faster, less resource-
intensive calculations which in turn give cheaper access to
the same information as real-time evolutions or allow one
to proceed to longer times and better frequency resolution.
Note that the idea of complex time evolution has been recently
discussed in the context of quantum Monte Carlo simulations
[43]. Similar ideas are also published in another work [44].

We introduce contours in the complex plane as z(t ) = t +
iτ (t ) and extend the definition of COP(t ) as

COP(z) = 〈ψ0| Ô†(z)P̂ |ψ0〉 , (4)

where

Ô(z) = e+i(Ĥ−E0 )zÔe−i(Ĥ−E0 )z (5)

with z the complex conjugate of z. Effectively, then

COP(z) = 〈ψ0| Ô†e−i(Ĥ−E0 )zP̂ |ψ0〉 . (6)

Any discussion of possible contours in the complex plane
cannot be exhaustive; we present easily implemented contours
for which reliable postprocessing methods exist to extract the
desired real-time result. The various schemes allow mutual
verification, and present a different balance of speed vs pre-
cision. We first focus on the single-impurity Anderson model
(SIAM) as a test case for which extremely precise data are
available, also within the framework of tensor network meth-
ods. After establishing benchmark data (Sec. II), we introduce
two main classes of contours: a contour parallel to the real
axis (Sec. III) and a tilted contour inclined with respect to
the real axis (Sec. IV). The results from these contours all
have to be postprocessed, for which we present various ap-
proaches; we will denote the resulting methods by “contour
used (postprocessing approach)”. We show results both for
the impurity spectral function and for the numerically chal-
lenging calculation of the self-energy at very low frequencies,
down to the Fermi-liquid regime where Im �(ω) ∼ ω2. An

additional procedure is based on a kink contour; it requires
no postprocessing at all, but has to be controlled for numer-
ical instability; it is discussed in Appendix D, but not used
in the main text. All methods exhibit a substantial speedup
and provide accurate results. The methods are robust and
cheap. Furthermore, unlike in [44], our methods do not require
to calculate powers of the Hamiltonian, a task which may
prove difficult for multiband systems. We further illustrate our
method on the example of a model with three impurity orbitals
that interact via a Hubbard-Kanamori or a Dworin-Narath
interaction (Sec. V). We show that even the calculation of
the self-energy at very low frequencies can be achieved in the
three-band case, with a quality comparable to the numerical
renormalization group (NRG) [45–47]. We therefore expect
that our methods are also applicable in realistic calculations
for multiband materials.

II. BENCHMARK MODEL: SIAM

The first test case for the usefulness of the various com-
plex time-evolution schemes is the retarded impurity Green’s
function and the associated impurity spectral function of the
single-impurity Anderson model (SIAM). The SIAM is a pro-
totypical model describing magnetic impurities in metals [48]
that features low-energy structures that are well understood
both numerically [45–47,49] and analytically [48,50].

The Hamiltonian of the SIAM is given by Ĥ = Ĥimp +
Ĥbath with

Ĥimp = Un̂0↑n̂0↓ + ε0(n̂0↑ + n̂0↓), (7)

Ĥbath =
Nb∑

k=1

∑
σ

(
v0,kσ ĉ†

kσ
ĉ0σ + v∗

0,kσ ĉ†
0σ ĉkσ

) +
Nb∑

k=1

∑
σ

εkσ
n̂kσ ,

(8)

where ĉ†
kσ

(ĉkσ
) are fermionic creation (annihilation) operators

with spin σ ∈ {↑,↓}. The impurity site is located at k = 0.
n̂kσ

are occupation number operators and U is the Coulomb
repulsion strength. ε0 is chosen as −U/2; the model is at
half-filling. The on site potentials εkσ

and the impurity-bath
hopping elements v0,kσ are obtained by discretizing the hy-
bridization function �(ω). For our calculations we use a semi
elliptical hybridization function defined as

− 1

π
Im�(ω) = D

2π

√
1 −

(
ω

D

)2

, (9)

for ω ∈ [−D, D], where D represents the half-bandwidth. The
support of the hybridization function is discretized linearly
into an odd number of equally sized intervals; see [47,51] for
details of this discretization procedure. For simplicity, we will
drop all spin indices in the following.

The T = 0 retarded impurity Green’s function is, without
spin indices, given by

G(t ) = −iθ (t )〈{ĉ0(t ), ĉ†
0}〉ψ0, (10)

where |ψ0〉 is the ground state of the SIAM with energy E0. A
Fourier transformation yields

G(ω) =
∫ ∞

0
dt eiωt e−ηt G(t ), (11)
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FIG. 1. Parallel contour t + iτ . Multiple complex parallel con-
tours are obtained with a small shift δτ from a first contour (cf. text).

where η is the usual damping factor. By definition, the impu-
rity spectral function is then given by

A(ω) = − 1

π
Im G(ω). (12)

The calculation of G(t ) requires a real-time evolution.
For time-independent Hamiltonians as here the problem of
entanglement growth in the calculation of time-dependent
correlators by matrix product state methods can be reduced
by exploiting the homogeneity in time [52,53], e.g.,

〈ψ0| ĉ†(0)ĉ(t ) |ψ0〉 = 〈ψ0| ĉ†(−t ′)ĉ(t ′′) |ψ0〉 , (13)

where we have split t > 0 into t = t ′ + t ′′ with t ′, t ′′ > 0. This
can be written as

〈ψ0| ĉ†(0)ĉ(t ) |ψ0〉 = [ĉ(−t ′) |ψ0〉]†ĉ(t ′′) |ψ0〉 . (14)

The real-time evolution up to t has been split into two time
evolutions up to −t ′ and t ′′, respectively, and a final over-
lap which also occurs in the original formulation. Optimal
limitation of entanglement growth is typically achieved for a
symmetric split t ′ = t ′′ = t/2. The following real-time calcu-
lations all use this symmetric split.

For the time evolution we used the two-site version of the
time-dependent variational principle (2TDVP) [4,6,22]. All
results were obtained using a time step of δt = 0.2D−1 and
a truncated weight (the sum of the discarded reduced density
matrix eigenvalues) of wt = 10−11, which we checked to give
a converged result; the MPS bond dimension is allowed to
grow accordingly. Up to the maximum time of tmax = 90D−1

the calculations reached a maximum bond dimension of m ∼
1500 for wt = 10−10 and m ∼ 2700 for wt = 10−11. We chose
values U/D = 2 and as bath size Nb = 59, except when stated
otherwise. In the Fourier transformation, we used η = 0.001D
for spectral functions, except if stated otherwise, and η = 0
for self-energies. All tensor network simulations were per-
formed using the SYTEN toolkit [54].

III. CONTOUR AT CONSTANT IMAGINARY TIME:
PARALLEL CONTOUR

We now turn to the first complex time method, where time
is evolved along a complex contour parallel to the real-time
axis, i.e., at constant imaginary time (see Fig. 1). We have
z(t ) = t + iτ with t ∈ [0, tmax] and τ > 0 constant. Here, z
starts at 0, moves up to iτ , and then continues from iτ to
tmax + iτ . The entanglement growth with time is strongly

limited compared to the real-time evolution, as illustrated in
Fig. 13 in Appendix E, where we compare the time depen-
dency of the entanglement for all the contours introduced in
this paper. This contour suppresses high-energy states aggres-
sively, as reflected in the small entanglement growth at short
times compared to other contours. It is therefore advantageous
to use comparatively small τ > 0 to retain a sufficient amount
of high-energy spectral weight.

An attractive feature of the parallel contour is that addi-
tional parallel contours offset by δτ can be obtained very
cheaply from a first contour. Let us illustrate this point with
one correlator

〈ψ0| ĉ†ĉ[t + i(τ + δτ )] |ψ0〉
= [e−(Ĥ−E0 )δτ ĉ |ψ0〉]†ei(Ĥ−E0 )(t+iτ )ĉ |ψ0〉 .

We first compute the time evolution of the right ket up to time
t + iτ , and the additional time evolution δτ for the left bra,
which is cheap to compute for small δτ . Note that we can
use positive or negative δτ . In practice, we use δτ < 0, as
illustrated on Fig. 1. This allows us to obtain the correlations
on a contour closer to the real axis, which is a priori harder
to compute, at the price of a positive exponential evolution of
the left term for a short time δτ .

Let us introduce the complex time spectral function Aτ

defined by

Aτ (ω) ≡ 1

2π

∫
dt ei(ω+iη)t 〈{ĉ0(t + iτ ), ĉ†

0}〉ψ0. (15)

At τ = 0, this function is the ordinary spectral function
Aτ=0(ω) = A(ω) = − 1

π
Im GR(ω). Due to the simple form of

the contour, we have an explicit relation between Aτ and A:

Aτ (ω) = A(ω)e−τ |ω| (16)

which is established in Appendix A and exact in the limit
η → 0 as is used here. Our method consists simply in comput-
ing Aτ (t ), then Aτ (ω) using a Fourier transform, and finally
invert (16) to obtain the spectral function A(ω). Despite its
apparent simplicity, this inversion presents, however, two dif-
ficulties, both at low and high frequencies.

First, the inversion of (16) is clearly difficult at high
frequencies, as small errors in Aτ (ω) are amplified by the
exponential. Such errors may result from a too small tmax

for Aτ (t ) to be fully decayed, or from a broadening in the
Fourier transform. This issue can be solved by introducing a
cutoff frequency ωc that limits the growth of the exponential
factor as

A(ω) = Aτ (ω)eτ min(|ω|,ωc ), (17)

where ωc is chosen such that it only acts in the high-frequency
tail of the spectral function. We found ωc = 3D to yield over-
all good results in our calculations.

Second, the inversion of (16) is also difficult at low fre-
quencies, even though the exponential term is close to 1. In
this work, and in many physics applications, we are interested
in a high-precision computation of the behavior of the spectral
function A(ω) or the self-energy �(ω) at low frequencies.
The difficulty comes from the kink in Aτ (ω) at ω = 0 in
Eq. (16), caused by |ω| in e−τ |ω|. This is an exact feature, but
as A(ω) does not exhibit a kink at ω = 0, this must be exactly
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compensated by a kink in Aτ (ω) at ω = 0. The latter requires
high-accuracy results from long-time evolutions where tensor
network methods are limited. As a result, the compensation is
imperfect.

Our solution of this issue uses a linear combination of a few
Aτk (ω) computed on parallel contours t + iτk (as described
above), which is designed to compensate the low-frequency
singularity introduced by the e−τ |ω| factor. Introducing some
weights ak , and defining the function

h(ω) ≡
n∑

k=1

ake−τk |ω| (18)

we have

A(ω)h(ω) =
n∑

k=1

akAτk (ω). (19)

We choose the weights ak such that the function h(ω) is flat
close to ω = 0, i.e., we cancel the first powers of its low-ω
expansion:

n∑
k=1

ak = 1, (20a)

n∑
k=1

akτ
l
k = 0 (20b)

for l = 1, . . . , n − 1. As h is close to 1 at low ω, h(ω) = 1 +
O(ωn), we can now safely invert (20):

A(ω) = 1

h(ω)

n∑
k=1

akAτk (ω). (21)

In practice, we need to take τk which are neither too close
[leading to large ai that amplify numerical noise, due to the
Vandermonde determinant in the linear system (21)], nor too
distant as time-evolution errors affect precision. In this work,
we used n = 3 and τk = 1, 1.15, 1.3, if not stated otherwise.
We will refer to this approach as the parallel (inversion)
method.

Note that one can also perform a direct extrapolation to
τ = 0 using several parallel contours, which we call the par-
allel (extrapolation) method. We present it in Appendix B
for completeness, but it turns out to be slightly inferior to
the parallel (inversion) method. The parallel (extrapolation)
method will be used in this paper as a check for the parallel
(inversion) method.

Results. We present results of the spectral function of the
benchmark SIAM in Figs. 2(a) and 2(b). We use δt = 0.2D−1,
wt = 10−11, Nb = 59, tmax = 90D−1, and η = 0.001D. The
simulation reached a maximum bond dimension of m =
1023. Both the parallel (inversion) and parallel (extrapolation)
method provide spectral functions in excellent agreement with
the much more costly (more than an order of magnitude)
real-time benchmark data both at higher and in particular
also at very low frequencies. The (generalized) Friedel sum
rule πDA(0) = 2 is matched to fractions of a percent. As
both methods operate on the same numerical data, the parallel
(extrapolation) method provides a cheap control of the quality
of the spectral function. For Fig. 3(a) we use larger baths and
a larger maximum bond dimension to calculate the spectral

FIG. 2. (a) Comparison of spectral functions obtained on a par-
allel contour: “real” stands for the real-time reference data, τ = 1
on the parallel contour without post-processing, parallel (extrapo-
lation) and parallel (inversion) for the two methods of the main
text. Nearly all spectral weight can be recovered by both methods
in excellent agreement. The parallel (inversion) method used n = 3
with τk = 1, 1.15, 1.3; the coefficients ak (see text) are then approx-
imately 33.2, −57.8, 25.6. The parallel (extrapolation) method used
corrections to sixth order with 13 contours centered on τ = 1 with
a distance δτ = 0.075. (b) Zoom at low frequencies with the same
labels, showing the high accuracy of the parallel (inversion) and
parallel (extrapolation) methods at very low frequencies.

function for larger values of U/D both by real-time calcula-
tions and by the parallel (inversion) method. The Friedel sum
rule is matched to very high accuracy in all cases; real-time
results are much less accurate for larger U/D.

The determination of the self-energy �(ω) is numerically
more challenging than that of the spectral function A(ω).
We calculate it from the Dyson equation �(ω) = G−1

0 (ω) −
G−1(ω), where G0(ω) is the impurity Green’s function for
the noninteracting case. Its inverse is given by G0(ω)−1 =
ω + iη − ε0 − �(ω) with η = 0 here. We used the analyt-
ically known hybridization function. We obtain G(ω) from
the parallel (inversion) method, which yields A(ω), i.e., the
imaginary part of G(ω). We then use the Kramers-Kronig rule
to obtain the real part of G(ω).

To assess the quality of our self-energies, we henceforth
include benchmark results from NRG. The NRG data were
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FIG. 3. (a) Spectral function of the SIAM for U/D ∈ {2, 3, 4}
with Nb = 299, using the n = 2 parallel (inversion) method with
τk ∈ {1.15, 1.3}; the coefficients are approximately ak ∈ {8.6, −7.6}.
We have an overall higher-frequency resolution due to a finer
bath discretization, zero broadening, and a time evolution tmax ∈
{150D−1, 200D−1, 250D−1}. The maximum bond dimension is m =
1500 SU(2) states. In all cases, in particular for larger U/D, the
matching of the Friedel sum rule is less accurate for the real-time
method. (b) Corresponding self-energies.

obtained in a state-of-the-art implementation [55–60] based
on the QSpace tensor library [61], using a symmetric im-
proved estimator for the self-energy [62]. The latter allows
one to follow the imaginary part of the self-energy down to
extremely low values of |Im �|/D.

As shown in Fig. 3(b), the self-energies calculated by com-
plex time evolution reach the Fermi-liquid ω2 regime. The
final breakdown at very low frequencies (ω/D ≈ 0.007) is due
to small deviations from the sum rule and the use of Dyson’s
equation. We expect that the use of improved estimators [62]
will alleviate this problem in future implementations. Before
the breakdown, agreement with NRG results is excellent. Note
that self-energies calculated from real-time results are much
less accurate and plagued by unphysical oscillations.

IV. COMPLEX TIME EVOLUTION
AT FIXED ANGLE: TILTED CONTOUR

In our second complex time approach, time is evolved
along a complex contour tilted by various angles α with

FIG. 4. Symmetrically split complex time contour: Contour Cres

from 0 to z is replaced by two symmetric contours C+ and C− from 0
to z/2 and −z/2, respectively.

respect to the real axis, where z(t ) = t + it tan α, i.e., τ =
t tan α > 0. We adapt the symmetric splitting of real-time
evolutions to the complex plane by splitting z = z′ + z′′ with
z′ = z′′ = z/2. Then we have

〈ψ0| ĉ†(0)ĉ(z) |ψ0〉 = [ĉ(−z/2) |ψ0〉]†ĉ(z/2) |ψ0〉 , (22)

〈ψ0| ĉ(z)ĉ†(0) |ψ0〉 = [ĉ†(z/2) |ψ0〉]†ĉ†(−z/2) |ψ0〉 . (23)

The two contours on which complex time evolution occurs
now look as in Fig. 4.

In all calculations, we use δ|z| = 0.2D−1, and again wt =
10−11 and Nb = 59. The maximum complex time is in all
cases |z|max = 90D−1, or real times tmax = 90D−1 cos α. The
resulting Green’s function is Fourier transformed as

Gα (ω) =
∫ ∞

0
dt Gα (z(t ))eiωt−ηt (24)

(again with η = 0.001D); the subscript α indicates that we
evaluate on a tilted contour. The spectral function A(ω) is then
extracted as Aα (ω) ≡ −(1/π )ImGα (ω). Results are shown on
a linear and a logarithmic frequency scale in Fig. 5. Note that
we do not expect to obtain the correct A(ω) for α �= 0, as Aα

is just an intermediate step in the computation. Nevertheless,
we find that peak positions in Aα are well preserved for
moderate angles, thus still allowing for a rough interpretation
of quasiparticle peaks [see Fig. 5(a)]. We find a significant
reduction in the entanglement entropy for all angles that can
be understood as the result of damping the statistical weight
of high-energy states, as it is reflected in a reduction in the
time-dependent energy expectation value of the system (see
Fig. 6). The dampened growth in the entanglement entropy
leads to a speed up of a factor of the order 100 in the SIAM
model for the specified parameters compared to our real-time
reference calculation. This is reflected in the very small final
bond dimensions, m = 52 for α = 0.3, m = 66 for α = 0.2,
and m = 137 for α = 0.1. In order to compute the spectral
function A(ω), the data have to be postprocessed, in this
case by an analytical continuation of the complex time data
to the real axis by MAXENT, yielding the tilted (MAXENT)
method (see Appendix C for a detailed discussion of MAX-
ENT). The agreement with the real-time data is overall very
good and the Friedel sum rule obeyed to 0.4%, but there are
small, but noticeable, deviations from the true A(ω) between
ω/D ∼ 10−2 and ω/D ∼ 10−1 [Fig. 5(b)]. As the analytic
continuation kernel is generally ill conditioned and its current
formulation leads to deviations around the Fermi edge, this
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FIG. 5. (a) Comparison of spectral functions obtained on tilted
contours with real-axis reference data (“real”) and the tilted (MAX-
ENT) result from the tilted contour with α = 0.1. The kink at ω/D =
±1 is model specific. The dashed lines are data before posthyp pro-
cessing. (b) Shows the spectral functions of (a) and A(ω) obtained
after a MAXENT continuation of G0.1(z) on a logarithmic frequency
scale for ω/D > 0 in [10−3, 100].

is not surprising. In comparison to the parallel (inversion)
and parallel (extrapolation) methods, accuracy is lower for the
tilted (MAXENT) method, in particular at low frequencies. The
tilted (MAXENT) method is, however, the fastest, so may be
very useful in DMFT applications for the intermediate steps
of the iteration procedure. Note that the tilted contour can also
be combined with the extrapolation scheme of Appendix B to
yield the tilted (extrapolation) method; results will be shown
for the self-energies calculated in the following section.

V. THREE-BAND MODEL CALCULATIONS

The need for reliable high-performance calculations of
low-frequency information is particularly pressing for mul-
tiorbital models used in realistic quantum embedding com-
putations of strongly correlated materials [32–34], more
specifically for transport computations. Accurate real fre-
quencies quantum impurity solvers are rare, with the notable
exception of NRG, which is however limited in the num-
ber of orbitals. In order to benchmark our method in such
a case, we use the three-band Anderson model with the

FIG. 6. Energy (a) and entanglement entropy (b) during time
evolution for U/D = 2. Imaginary-time evolution along a tilted con-
tour shifts the energy expectation value of the time-evolving state
towards the ground-state energy. Entanglement entropy, here given
by the sum of the entanglement entropies for all system cuts, is
reduced strongly along the tilted contours resulting in substantial
speed ups.

Hubbard-Kanamori interaction, which reads as

ĤK = U
∑

m

n̂m↑n̂m↓ + U ′ ∑
m �=m′

n̂m↑n̂m′↓

+ (U ′ − J )
∑

m<m′,σ

n̂mσ n̂m′σ − J
∑

m �=m′
d̂†

m↑d̂m↓d̂†
m′↓d̂m′↑

+ J
∑
m �=m′

d̂†
m↑d̂†

m↓d̂m′↓d̂m′↑, (25)

where m, m′ run from 1 to 3, U and U ′ are the intraorbital
and interorbital Hubbard interactions, and J is the Hund’s
coupling. d̂mσ and d̂†

mσ are fermionic annihilation and creation
operators on band m. For the sake of consistency with real
material calculations, we choose U ′ = U − 2J [63]. Each im-
purity couples to a bath as in the SIAM. While it is not the
most generic case (which would have nondiagonal bath cou-
plings), we expect our approach to generalize without major
difficulty.

As density of states we use the same semicircular density
of states as before and obtain the bath parameters as for
the SIAM. Each bath is modeled by Nb = 99 bath sites, if
not stated otherwise. As interaction parameters we consider
U/D = 2 and J/D = 0.3. In all calculations, we set η = 0.

The simulations are carried out using 2TDVP until t =
20D−1 and 1TDVP until the final time of t = 180D−1. We use
a tree tensor network, more specifically a T3NS [64] where
trees are constructed only of rank-three tensors. These are
either branching tensors with three legs establishing a tree
geometry or physical tensors identical to matrix product state
tensors with two auxiliary connecting legs and one physical
leg carrying the physical degrees of freedom (see Fig. 7).
This representation is more adequate to multiorbital impurity
problems and contains the fork geometry of [42] as a special
case without the need of numerically costly four-leg tensors.
The TDVP implementation follows [65]. The computational
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FIG. 7. T3NS for three-orbital calculations: The physical basis
of all three impurities and their associated bath sites are split into
spin-up and spin-down representations (empty or occupied). Impu-
rity sites are placed as to minimize the distance to each other and their
baths, to minimize the number of branching tensors while allowing
for efficient two-site update schemes. The bath sites are attached as
MPS-like chains.

cost of NRG scales exponentially with the number of orbitals;
systems with up to three orbitals have been studied [66–73].
Here, we again use NRG results as a benchmark since it is
currently the most accurate method available for low frequen-
cies if certain orbital symmetry requirements are met. The
Hubbard-Kanamori Hamiltonian in its band-degenerate form
has an SO(3) orbital symmetry which makes it accessible
to standard multiorbital NRG [66–69] (without the need for
interleaving the Wilson chain [69–73]). Note that we do not
exploit the SO(3) orbital symmetry in our T3NS calculations.
Despite the tailored representation on a tree tensor network,
pure real-time calculations fail at high-frequency resolution.
The complex-contour calculations, on the other hand, yield
reliable results. In Figs. 8(a) and 8(b) we show that the
spectral function results from the tilted (MAXENT) method
and from the parallel (inversion) method agree overall very
well, whereas the real-time results show unphysical wiggles.
There is, however, again a small discrepancy between the
tilted (MAXENT) and the parallel (inversion) methods at ω/D
a bit above 0.01; in view of the results below we interpret this
as an inaccuracy of the tilted (MAXENT) result. NRG results
agree excellently at low frequencies, but show the expected
deviations for larger frequencies due to the logarithmic dis-
cretization of NRG.

We calculate the self-energy of the Hubbard-Kanamori
Hamiltonian as in the case of the SIAM, but add further meth-
ods to have some mutual benchmarking. We obtain G(ω) in
four different ways: (i) from a real-time calculation; (ii) from
a tilted (MAXENT) calculation at α = 0.05; (iii) from a tilted
(extrapolation) calculation; and (iv) from a parallel (inversion)
calculation at τ = 1.3. In cases (ii) and (iv), we obtain A(ω)
and then Im G(ω) with the Kramers-Kronig transformation.

In Fig. 9, we observe that the real-time result shows weak,
but unphysical, oscillations at frequencies above ω/D ≈
0.05 and fully misses the low-energy Fermi-liquid physics
Im �(ω) ∼ ω2 at lower frequencies. Both the tilted (MAX-
ENT) and tilted (extrapolation) methods perform somewhat
better, but also fail at low frequencies. At higher frequencies,

FIG. 8. Spectral function A(ω) for a three-orbital model with
Hubbard-Kanamori interaction. All calculations are at truncated
weight wt = 10−10 and without broadening (η = 0). Real-time re-
sults stem from a time evolution up to tmax = 120D−1 with a
maximum bond dimension m = 1024. For the tilted (MAXENT)
method at angle α = 0.05 the corresponding values are tmax =
180D−1 and m = 2048, for the parallel (inversion) method at τ =
1, tmax = 220D−1 and m = 1024; in that case, an increased bath
size Nb = 139 was used. The postprocessing for the parallel (in-
version) method used n = 3 contours at τk ∈ {1, 1.15, 1.3} with
coefficients ak ∈ {33.2, −57.8, 25.6} (rounded). The Friedel sum
rule is obeyed to an accuracy of 0.2% for the tilted (MAXENT)
data and 0.02% for the parallel (inversion) data versus 0.8% in
the real-time calculation. (b) Zoom into (a) with additional data
obtained from the tilted (extrapolation) method using contours α ∈
[0.05, 0.1, 0.15, 0.2, 0.25, 0.3], averaging over all fourth-order con-
tributions. The oscillations in the real-time result are now clearly
visible. The tilted (MAXENT) result using α = 0.05 shows a simi-
lar unphysical slight dip between ω/D = 10−2 and 10−1 as for the
SIAM.

the tilted (extrapolation) result is in perfect agreement with
the parallel (inversion) result.

The parallel (inversion) method easily reaches the ω2

regime. As in the case of the SIAM, sum rule violations in
connection with the use of Dyson’s equation lead to a break-
down at very low frequencies. Interestingly, the breakdown
does not occur at higher frequency than in the SIAM case,
indicating that this problem is not aggravated by the higher
complexity of the model studied.
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FIG. 9. Imaginary part of the self-energy of the Hubbard-
Kanamori Hamiltonian. The real-time result (“real”) shows oscilla-
tions and fails at ω/D ≈ 0.05, missing the low-frequency physics.
The dotted line indicates the ω2 Fermi-liquid behavior of the self-
energy. The tilted (MAXENT) and tilted (extrapolation) methods do
not reach this regime. The parallel (inversion) method (with n = 2
with τk ∈ {1.15, 1.3} and ak ∈ {8.7,−7.7}) is in very good agree-
ment with NRG data but for a prefactor (see text) down to ω/D ≈
0.002.

In the case of the three-band Hubbard-Kanamori model,
NRG provides the best results for comparison but is no longer
an exact benchmark: The large dimension of the local Hilbert
space requires a rather large value of the discretization param-
eter, here � = 6 [47]. Averaging over nz shifted discretization
grids mitigates the effects of a coarse resolution of the hy-
bridization function to some extent [57]. As discussed in
Appendix F, we found the best results by extrapolating to
nz → ∞. Generally, we observe that the NRG result for the
ω2 coefficient of −Im � decreases with increasing resolution
of the hybridization function (decreasing �, increasing nz). It
is therefore remarkable that the T3NS result is slightly offset
from the NRG result by a factor <1 in the ω2 regime before
the breakdown occurs at ω/D ≈ 0.002.

We also considered the Dworin-Narath Hamiltonian,
which can be represented similarly as in Eq. (25), except
that one necessarily has U ′ = U − J and that the last term
in Eq. (25) (known as pair hopping) is missing [63]. It obeys
a larger orbital symmetry than the Hubbard-Kanamori Hamil-
tonian [SU(3) instead of SO(3)], and thus allows for highly
accurate NRG calculations at � = 4 (see also Appendix F).
Figure 10 shows the imaginary part of the self-energy for
the Dworin-Narath Hamiltonian with the same parameters as
before (U/D = 2 and J/D = 0.3). The performance of the
time-evolution methods is similar to Fig. 9: going toward low
frequencies, the real-time evolution soon yields unphysical re-
sults, the tilted (MAXENT) and tilted (extrapolation) schemes
improve on this, while the best result by far is obtained via
the parallel (inversion) method. The corresponding curve fol-
lows the Fermi-liquid ω2 behavior down to ω/D ≈ 0.004.
Importantly, the agreement with NRG is excellent, as the
coefficients of the ω2 behavior match. This indicates that the
small difference in the prefactor of the self-energy in Fig. 9
comes from the fact that the Hubbard-Kanamori NRG result
is not fully converged in all numerical parameters.

FIG. 10. Imaginary part of the self-energy of the Dworin-Narath
Hamiltonian. The parallel (inversion) method is in very good agree-
ment with NRG data down to ω/D ≈ 0.004. All calculations are at
truncated weight wt = 10−10. Real-time evolution is up to tmax =
120D−1 with a maximum bond dimension m = 512. The tilted
(MAXENT) method uses angle α = 0.05 and goes to tmax = 180D−1

and maximum bond dimension m = 1024, the parallel (inversion)
method uses τ = 1 and goes to tmax = 140D−1 and maximum bond
dimension m = 1500, the bath size was increased to Nb = 139.
Results for the parallel (inversion) method are shown for n = 4 with
τk ∈ {0.85, 1, 1.15, 1.3}; the coefficients ak (see main text) are then
approximately {9.8,−14.2, 7.5, −2.1}.

The parallel (inversion) method emerges as the most
reliable and performing among the methods tested here. More-
over, it can be further improved systematically: it rests on
an analytically exact formula and the breakdown at very low
frequencies occurs because G(t + iτ ) was not calculated for
long enough times to yield highly reliable Gτ (ω) for very
small ω. As entanglement growth is curtailed, the region of ω2

scaling can be extended to smaller frequencies by longer time
evolutions. Note that the complex time evolutions employed
here easily generalize to less symmetric situations, as we did
not use any of the emerging larger symmetries, and also have
sufficient numerical efficiency to move to systems with more
than three orbitals. Additionally, we expect that the accu-
racy of the self-energies provided by complex time evolution
can be further improved by using improved estimators as in
NRG [62].

VI. CONCLUSION

Complex time evolution is an addition to the toolbox of
tensor network simulations that offers high resolution when
computing Green’s functions at low frequencies at a fraction
of the computational cost. At the same time, it maintains
the quality of high-frequency data previously available. The
speedup is highest for the tilted contour, about two orders of
magnitude. MAXENT as a method of analytical continuation
provides very good, but not excellent, agreement with real-
time data where the latter is essentially exact.

The parallel contour calculations yielded the second
highest speedup of (more than) an order of magnitude;
postprocessing by two different methods, inversion and
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extrapolation, provided excellent mutual agreement, allowing
mutual control, as well as with benchmark data. Results were
always somewhat more accurate than tilted (MAXENT) results.
In the very low-frequency regime for the self-energy of the
three-band model, our most challenging calculation, the tilted
(extrapolation) method ran into difficulties, but the parallel
(inversion) method was stable and accurate: The calculation of
the self-energy of the Hubbard-Kanamori and Dworin-Narath
three-band models reaches successfully into the Im �(ω) ∼
ω2 Fermi-liquid regime down to ω/D ≈ 0.002 in agreement
with NRG benchmark results. The parallel (inversion) method
therefore seems to provide the best compromise in speedup
and accuracy. It can be systematically improved to reach even
lower frequencies, albeit at mounting numerical cost; design
decisions here will reflect compromises between required
low-frequency resolution and available CPU time.

The availability of multiple complex time-evolution
schemes that can be directly used or postprocessed in different
ways to extract real-time information makes these methods
very controlled. We expect these methods to be particularly
useful in the context of quantum-embedding methods using
frequency-based information such as DMFT and its deriva-
tives, where efficiency of impurity solvers is paramount. In
fact, the very high efficiency of the tilted contour calculations
may make them the preferred approach for DMFT despite
the limited accuracy. It remains as a challenge for the future
to apply these methods in the context of global quenches or
higher-dimensional systems simulated directly on their real-
space lattices. It is hoped that the suppression of high-energy
contributions by imaginary-time evolution may give access
to long-time information inaccessible to real-time methods
without substantial loss of accuracy.
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APPENDIX A: PROOF OF EQ. (17)

Using the definition of the complex time evolution (5) we
obtain

〈{ĉ0[z(t )], ĉ†
0}〉ψ0 =

∑
A

|〈ψ0|ĉ0|A〉|2e−iEA(t−iτ )

+ |〈ψ0|ĉ†
0|A〉|2e+iEA(t+iτ ),

where |A〉 is an eigenstate basis of the many-body Hamilto-
nian H − E0, and EA its eigenvalue. From the definition of Aτ

(15), we have

Aτ (ω) =
∑

A

|〈ψ0|ĉ0|A〉|2δ(ω − EA)e−EAτ

+ |〈ψ0|ĉ†
0|A〉|2δ(ω + EA)e−EAτ

in the limit η → 0. By definition of the ground state, EA >

0. In the first term, ω = EA = |ω|, while in the second term
EA = −ω = |ω|, so we get

Aτ (ω) = e−|ω|τ ∑
A

|〈ψ0|ĉ0|A〉|2δ(ω − EA)

+ |〈ψ0|ĉ†
0|A〉|2δ(ω + EA)

and therefore

Aτ (ω) = Aτ=0(ω)e−|ω|τ .

APPENDIX B: EXTRAPOLATION METHOD

We assume that we know n Green’s functions G(t + iτk )
for n different τk . As seen previously, they can be generated
at low numerical cost from a single contour. We approximate
the behavior by a power series incorporating terms up to order
n − 1,

G(t + iτ ) = G(t ) +
n−1∑
m=1

τmhm(t ). (B1)

For n values τk , we have n equations with n unknown vari-
ables, the Green’s function G(t ) we are interested in and n − 1
coefficients hm(t ) which we will not require explicitly. This
linear equation system can be written as g = M · h, where
the vector components are gk = G(t + iτk ), h0 = G(t ), and
hk = hk (t ) for k > 0, and

Mkl = τ l−1
k . (B2)

An inversion of M yields

G(t ) =
n∑

k=1

(M1 k )−1 G(t + iτk ). (B3)

For increasing n the inversion of M becomes more difficult.
To stabilize it, it is useful to rescale both hk (t ) and M such
that G(t ) remains unaffected. With τmax the largest τk , we
rescale as

Mkl =
(

τk

τmax

)l−1

. (B4)

If we want to solve at order n, but know G(t + iτk ) for more
than n different τk , we found a substantial increase of accuracy
by averaging over all different nth-order extrapolations with
different choices of n values of τk . In practice, we used n = 6
for 13 different G(t + iτk ). In the calculations shown here
[Figs. 2(a) and 2(b)], they were equidistantly (δτ = 0.075)
centered on τ = 1. (Note that the extrapolation method can
also be applied to the linear contours of Sec. IV.)

APPENDIX C: ANALYTIC CONTINUATION

For the analytical continuation by MAXENT, we follow the
procedure outlined in [43]. There is a connection between
G(z) and the spectral function A in the case of complex time
contours, given by

G(z) = −i�(t )
∫ ∞

−∞
dωA(ω)K (z, ω), (C1)
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where the integration kernel K (z, ω) is defined as

K (z, ω) =
{

exp ( − iz ω), if ω � 0

exp ( − iz ω), if ω < 0.

As the kernel may be complex valued, the equations have to
be slightly adapted [43]. Aside from this, the well-established
methods of MAXENT were used [74,75]. We found analytic
continuation to be rather stable with this kernel. However,
care must be taken at low frequencies as the kink of the
kernel at zero frequency leads to results deviating from spec-
tral functions obtained from purely real-time evolution. We
propose two different measures as possible resolutions. First,
we use a broadening around the discontinuity, by replacing the
problematic sgn(ω) with tanh(ω/σ ), with the free factor σ . The
kernel then reads as

K (z, ω) = exp[−(it + tanh(ω/σ )τ )ω]. (C2)

In the limit σ → 0 this kernel is exact. Hence, σ has to be
chosen sufficiently small to leave the overall structure of the
inversion problem unchanged. We found sensible values to
be smaller than the width of the main peak, at σ = 0.11.
Although this change helps a bit, we found it to be not
very reliable, leading to strong oscillations around ω = 0. We
therefore implemented a second method, which introduces a
correction term to Q(A) = −χ2 + S(A), maximized in nor-
mal MAXENT. We rather take

Q(A) = −χ2 + αS(A) − β

∫ ∞

−∞
dω

(
dA
dω

)2

f (ω). (C3)

The additional last term favors smooth spectral functions
since, when maximizing Q, it tries to minimize the quadratic
slope of A. The observed quick oscillations around zero are
thus smoothed out since they increase the quadratic slope.
f (ω) serves as a weighting factor focusing on small fre-
quencies. We used a Gaussian f (ω) = exp[−(ω/σ )2]. The new
parameter β controls this correction term; β = α turned out
to be a viable choice. For all MAXENT calculations involving
the three-band model, we chose σ = 1. The MAXENT with
correction term maintains the correct peak heights. We leave
an even better stabilization of the kernel at low frequencies to
further research.

APPENDIX D: REAL-FREQUENCY RESULTS WITHOUT
ANALYTIC CONTINUATION: KINK CONTOUR

For an additional approach, we reformulate the idea of time
splitting in the complex plane in a different way by splitting
real time into two complex times via t = z′ + z′′ with z′ = t ′ −
iτ , z′′ = t ′′ + iτ , t, t ′, t ′′, τ > 0 where t = t ′ + t ′′. Then

〈ψ0| c†(0)c(t ) |ψ0〉 = [c(−z′) |ψ0〉]†c(z′′) |ψ0〉 . (D1)

Note that in this case no analytical continuation or any other
postprocessing is required. If we continue to use linear con-
tours in the complex plane, we get two contours C+ and C−
in the upper right and lower left quadrants of the complex
plane at angles α′ and α′′ which need not be identical as no
symmetric splitting of t is required [see Fig. 11(a)]. The two
angles α′, α′′ can be chosen freely, but the imaginary-time
steps in C+ suppress the entanglement growth of the real-time
evolution, whereas the same steps increase that entanglement

FIG. 11. (a) Contour for complex time evolution with no post-
processing. (b) Stable version with a horizontal contour (cf. text).

growth on contour C−. This suggests a splitting where α′ > α′′
and hence t ′ < t ′′. In our calculations, we chose α′′ = 0.1
and α′ = π/2, i.e., a purely imaginary-time evolution on a
vertical contour C−; t = t ′′ and t ′ = 0. Numerical instabilities
in the time evolution on C− limit our maximum evolution time
on the corresponding contour C+ to about |z′′| = 20D−1 or
τ ′′ = 1.996D−1 for α′′ = 0.1 and α′ = π/2. The numerical
instabilities in the time evolution on C− can be seen clearly in
Fig. 12(a). It might be suspected that the exponential growth
of the weight of higher-energy states on contour C− suppresses
the contribution from low-energy states which are enhanced
on contour C+ and numerical cancellations fail, leading to
the instabilities. At the onset of the instabilities, the norm
difference is only of the order 104, which should only lose
insignificant digits. So, even though exponential growth will
eventually make this method unstable, it does not seem to be
the origin of the currently observed instabilities. We suspect
that they are related to the relatively subtle interplay of errors
in the TDVP method which suggests that improvements are
possible at the level of the time-evolution method.

The instability is mended by continuing with a contour par-
allel to the real axis for larger times, before instabilities occur
[see Fig. 11(b)]. Figure 12(b) shows the excellent quality of
the result for the spectral function of the SIAM.

This method is at the moment the least performant in speed,
roughly a speed up of a factor 3, but attractive due to the
absence of postprocessing. Methodological progress in the
time-evolution methods may make it fully competitive.
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FIG. 12. Imaginary part of the retarded Green’s function vs t
and spectral function vs ω for the SIAM at U/D = 2 and other
parameters as before, obtained using the kink contour method with
α′′ = 0.1 and α′ = π

2 . The “stable” label refers to the second contour
in Fig. 11(a) with tmax = 20D−1 or τmax = 0.998 = 1.996D−1. The
“stable” contour result is in excellent agreement with the real-time
reference data.

APPENDIX E: COMPARISON OF CONTOURS

The ideal choice of complex contour is dependent on the
model and its specific high-energy quasiparticle peak struc-
ture, as the loss of high-energy information is greater if
the contour is further away from the real-time axis during
early times. A second, more crucial, aspect is the growth of
entanglement entropies over time on the complex contours,
as it determines the computational cost. This is illustrated
on Fig. 13. Not surprisingly, the real-time contour has the
strongest overall growth of entanglement, which does not
saturate, explaining the vastly larger numerical resources re-
quired. The tilted contour (here α = 0.1) starts with a similar
growth of entanglement at early times when it is close to
the real axis, but actually reveals even a slight decrease
before saturation at some relatively small value. The kink
contour without postprocessing (kink α = 0.1) has a very
strong initial growth of entanglement, even stronger than for
real-time evolution, because it does not exploit time splitting
in the real-time direction. Ultimately, though, entanglement
strongly resembles that of the tilted contour, reminiscent of the

FIG. 13. Comparison of the entanglement entropy on different
complex time contours. As the system is heterogeneous, the sum of
the entanglement entropies for all system cuts is shown. Kink α =
0.1 is the postprocessing free contour with vertical contour along the
negative imaginary axis and a tilted contour in positive imaginary
direction until t = 30D−1 and τ = 0.563 a parallel contour with
constant imaginary part τ = 0.563. Times of contours exploiting
real-time splitting were multiplied by a factor 2 to represent the same
final time.

observed saturation of entanglement growth for all complex
time contours. Finally, the parallel contour at constant τ has
the slowest early growth of entanglement as it aggressively
suppresses high-energy states, but then settles on a somewhat
larger saturation value as the contour stays closer to the real
axis. (Note that the α = 0.1 and τ = 0.563 data do not allow
for immediate comparison; they are rather indicative of typ-
ical behavior for the respective contours.) The saturation of
entanglement observed for all complex contours explains the
large accessible times. Note that significant deviations from
the presented values for α and τ can deteriorate results. While
small values for α and τ essentially constitute real-time calcu-
lations, large values for α can result in ill-conditioned analytic

FIG. 14. Coefficient c of −Im �(ω) = c ω2 obtained in NRG
calculations at weak interaction for various M, �, and nz ∈
{3, 4, 6, 12}. For each M and �, one observes a roughly linear de-
pendence of cNRG in 1/n2

z , permitting an extrapolation toward the
ideal nz = ∞ limit. The extrapolated value is in perfect agreement
with the analytically known result cexact .
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TABLE I. Symmetries used and number of multiples Nkp (or
approximate number of states N∗

kp) kept during the NRG iterative
diagonalization (1 k denotes 103).

No. orbitals M Hint Symmetry Nkp N∗
kp

1 SU(2)ch ⊗ SU(2)sp 32 k 300 k
3 DN U(1)ch⊗SU(2)sp⊗SU(3)orb 20 k 800 k
3 HK U(1)ch⊗SU(2)sp⊗SO(3)orb 15 k 200 k

continuation kernels while large τ lead to the presence of
numerical artifacts at high-energy spectral weight.

APPENDIX F: NRG EXTRAPOLATION IN nz

For the cases studied in this paper, the self-energy obeys the
zero-temperature Fermi-liquid behavior −Im �(ω) = c ω2 at
low frequencies ω. The NRG result for c is sensitive to the
discretization of the hybridization function, i.e., it varies no-
tably with the discretization parameter � [47] and the number
of z shifts nz [57]. The hypothetical continuum limit � → 1
is numerically not feasible. For one-orbital calculations, �

can be chosen as small as, say, 1.7; three-orbital calculations
require � � 4. The limit of nz → ∞ similarly is not feasible.
For our one-orbital calculations, we consider nz values up to
12; for our three-orbital calculations, nz � 6.

For the particle-hole-symmetric Anderson model with
a flat hybridization, −Im �(ω) = ��(D − |ω|), in the
wide-band limit (D → ∞) and at weak interaction u ≡
U/(π�) � 1, the coefficient c is known from second-order

perturbation theory [76]. This applies to the one-orbital case
[77] and can be readily generalized to multiple orbitals [78]
(setting J = 0 for simplicity). The result, with M the number
of orbitals, is

cexact = 1
2 u2M. (F1)

We computed NRG results using D = 100, � = 1, U =
0.2, T = 0. The coefficient c is deduced from a fit in the
frequency range 5 × 10−4 < ω < 5 × 10−2, after adaptive
broadening [60] with αz = α/nz and α = 1. Figure 14 shows
cNRG, for one- and three-orbital calculations and selected val-
ues of �, for various values of nz. One observes a roughly
linear behavior in 1/n2

z , nicely extrapolating to the analytic
value cexact at nz = ∞. Not surprisingly, the dependence of
cNRG on nz is stronger for larger �. We determined the extrap-
olated values from the two data points at nz = 4 and 6. The
same choice is used for the frequency-dependent self-energies
extrapolated in nz shown in the main text.

Table I summarizes the symmetries used in NRG (charge,
spin, and orbital symmetries) and the number of states kept
during the iterative diagonalization. In the three-orbital case,
one can distinguish the Hubbard-Kanamori (HK) and the
Dworin-Narath (DN) Hamiltonians [63], with SO(3) and
SU(3) orbital symmetry, respectively. The large SU(3) orbital
symmetry of the DN Hamiltonian (also used here at J = 0)
allows us to effectively keep a much larger number of states
N∗

kp than in the calculations of the HK Hamiltonian, so that the
former results can be considered significantly more accurate
than the latter.
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