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Phase diagram and critical behavior of the Hubbard model on the square-hexagon-octagon lattice
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Employing the projective formalism of determinant quantum Monte Carlo (DQMC) simulations, we metic-
ulously explore the ground-state phase diagram and critical behavior of the half-filled Hubbard model on
a square-hexagon-octagon (SHO) lattice. This lattice, a two-dimensional (2D) structure comprising squares,
hexagons, and octagons, is representative of the biphenylene network (BPN). Our findings reveal an intriguing
ground-state phase diagram, featuring an antiferromagnetic (AFM) Mott insulating phase enveloped by three
valence-bond-solid-like (VBS-like) insulating phases. Analyzing the single-particle gap, spin gap, and single-
particle spectral function, we observe that the metallic state in the noninteracting case becomes unstable under the
influence of Hubbard U . This interaction drives the system into a hexagon insulating phase before transitioning
into an AFM Mott insulating phase. To quantify the critical exponents, we use finite-size scaling techniques. The
critical exponents of quantum critical points between the AFM Mott insulating phase and two insulating phases,
plaquette insulator, and ethylene insulator, closely align with the 3D O(3) universality class. However, the critical
exponents of quantum critical points between the hexagon insulating phase and the AFM Mott insulating phase
deviate from the 3D O(3) universality class. This deviation can be attributed to the coupling effect between
the fluctuations of magnetic order parameters and very low-energy fermionic excitations. Our comprehensive
study not only advances the understanding of correlation effects on the SHO lattice but also sheds light on the
less-explored critical exponents in a weakly insulating quantum critical point.
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I. INTRODUCTION

The discovery of single-layer graphene [1] and its novel
quantum physical phenomena [2,3], like the massless Dirac
fermion, have attracted wide attention to the research of
two-dimensional (2D) materials. Besides graphene, single or
multilayer 2D structures have also been discovered in other
materials, such as MoS2 [4], they all share the hexagon lattice
structure which contributes to the unique physical properties.
In order to enrich the family of low-dimensional graphenic
structures, many efforts have been made by researchers and
embedding nonhexagonal rings into sp2-hybridized carbon
networks is considered as a promising strategy. In Ref. [5],
they proposed an on-surface synthesis of graphene-like
nanoribbons with periodically embedded four- and eight-
membered rings, making it possible to unveil the properties
induced by nonhexagonal rings. Subsequently, Ref. [6] re-
port the growth of an ultraflat biphenylene network with
periodically arranged four-, six-, and eight-membered rings
of sp2-hybridized carbon atoms. Density functional theory
(DFT) calculations of the biphenylene sheet [7–9] show that it
has peculiar electronic properties and the potential to achieve
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high-temperature superconductivity [9–12]. In addition, the
topological magnons and the Einstein-de Haas effect were
studied on the square-hexagon-octagon lattice [13].

The impact of strong correlation effects of Hubbard model
on hexagonal honeycomb lattice has been deeply studied,
revealing very interesting phenomena such as metal-insulator
transition of Dirac fermions, antiferromagnetism and super-
conductivity [14–19]. To the best of our knowledge, no
large-scale numerical simulation has been performed for the
ground-state phase diagram and critical behavior of Hubbard
model on square-hexagon-octagon (SHO) lattice. Motivated
by the biphenylene network, we want to study the correlation
effects of Hubbard model on the SHO lattice or its topo-
logically equivalent bond-depleted square (BDS) lattice. The
BDS lattice may be synthetized using transition-metal oxide
or simulated in cold atoms more easily. To investigate the
ground-state properties of Hubbard model on the SHO lattice,
we employ the determinant quantum Monte Carlo (DQMC)
simulations [20] which is absence of sign problem in the
half-filled case. It uses randomly sampling the auxiliary field
based on Markov chain Monte Carlo (MCMC) algorithm.
Ground-state properties can be efficiently obtained through
projective formalism [21]. DQMC has been used to study the
Hubbard model on single-layer honeycomb lattice [17–19]
and π -flux model on square lattice [19,22], where the Dirac
cone is stable against the local interactions and can only be
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destroyed by sufficient strong interaction, leading to an AFM
Mott insulating phase transition that belongs to the chiral
Heisenberg Gross-Neveu universality class [19,22–27].

In this paper, we use the projective formalism of DQMC
to study the ground-state phase diagram and critical behavior
of the Hubbard model on SHO lattice. In the noninteract-
ing tight-binding limit, there are some flat dispersions along
high-symmetry lines and some accidental crossing point at
the Fermi level. The noninteracting metallic state is unstable
to the Hubbard-U interaction, leading to a hexagon VBS-like
insulating phase before going into antiferromagnetic Mott
phase. We also do the finite-size scaling to determine the exact
quantum critical points and study critical exponents of quan-
tum phase transitions. In addition, we also study the evolution
of single-particle spectrum with Hubbard U interaction, which
directly displays the correlation effects and can be compared
with angle resolved photoemission spectroscopy (ARPES)
results. Our systematic numerical results are very helpful to
understand the correlation effects of the SHO-lattice Hubbard
model in transition metal oxides or cold atom systems.

The rest of this paper is organized as follows. In Sec. II, we
introduce the model and computational methods used in this
work. In Sec. III, we analyze all the phases and quantum crit-
ical points in detail and give an accurate ground-state phase
diagram. Finally, in Sec. IV, we provide a brief summary and
discussion of the entire paper.

II. MODEL AND METHODS

We consider the half-filled Hubbard model on the SHO or
BDS lattice (Fig. 1) with D2 crystalline point-group symme-
try. The Hamiltonian is given in the following,

H = −
∑
〈i, j〉σ

ti j (c
†
iσ c jσ + c†

jσ ciσ )

+ U

2

∑
i

(ni↑ + ni↓ − 1)2, (1)

where 〈i, j〉 denotes the nearest-neighbor bonds, c†
iσ and ciσ

are creation and annihilation operators for fermions at site i
with spin σ =↑,↓, and niσ = c†

iσ ciσ is the operator of electron
occupation. In the biphenylene network, DFT calculation [9]
shows that the hopping amplitudes within four-site plaquette
are stronger than the other, therefore, we choose two kinds
of hopping amplitudes in the DQMC calculations: ti j = t for
the hopping within the four-site plaquette, and ti j = t ′ for the
hopping on the ethylene bonds, as shown in Fig. 1(a). U � 0
denotes the strength of the on-site repulsion. On the SHO and
BDS lattice, we set the nearest-neighbor bond a = 1 as the
length unit, the first Brillouin zone and high-symmetry points
are present in Figs. 1(c) and 1(d).

In this paper, we employ the projective formalism of de-
terminant quantum Monte Carlo (DQMC) [21], to study the
ground-state phase diagram and critical behaviors of quantum
phase transitions. The DQMC simulations were carried out
based on the ALF package [28]. The main idea of projective
formalism of DQMC is that the nondegenerate ground-state of
a many-body Hamiltonian can be projected from any known
trial state that have nonzero overlap with the ground-state.
The ground-state expectation value of an observable can be
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FIG. 1. (a) Illustration of the SHO lattice which is composed
of squares, hexagons, and octagons. The black dashed box shows
one unit cell with six sites. The bonds with red and light blue
colors represent two kinds of nearest-neighbor hopping amplitudes
t and t ′, respectively, used in the calculations. (b) The bond-
depleted square (BDS) lattice which is topologically equivalent to
the SHO lattice. We use this geometry to do the Fourier transform
of static spin-spin correlation function with the square-lattice Bril-
louin zone. (c) The purple region is the first Brillouin zone of the
SHO lattice, and high-symmetry points Γ = (0, 0), X = ( π

2+√
2
, 0),

Y = (0, π

1+√
2

), and M = ( π

2+√
2
, π

1+√
2

). (d) The red region is the
first Brillouin zone of the square lattice, the high-symmetry points
Γ ′ = (0, 0), X ′ = (π, 0), Y ′ = (0, π ), and M ′ = (π, π ) are also
shown in the figure.

obtained after projecting the trial wave-function

〈Ô〉 = 〈�0 | Ô | �0〉
〈�0 | �0〉 = lim

�→∞
〈�T | e−�Ĥ Ôe−�Ĥ | �T 〉

〈�T | e−2�Ĥ | �T 〉 ,

(2)

where � is the projection parameter. To make it be applicable
by Monte Carlo calculation, we need to transform the quan-
tum mechanics problem into multiple summation or integral
of a classical problem. To realize that, we use Suzuki-Trotter
decomposition [29,30] and introduce auxiliary field

e−�Ĥ = (e−�τ Ĥt e−�τ ĤI )M + O(�τ 2), (3)

where � = �τM, Ht is kinetic terms, and HI represents in-
teraction term. We can decompose the two-body interaction
term by introducing auxiliary field. Then the Hubbard-
Stratonovitch transformation [31] can be used to do that

e�τλÔ2 = 1

4

∑
l=±1,±2

γ (l )e
√

�τλη(l )Ô + O(λ4�τ 4). (4)

As the � increases, and the �τ decreases, the QMC results
approach closer to the exact value. Considering the limitations
of computational costs, we usually adopt a suitable � and �τ

in the simulation in order to get the accurate results. Some
details about the convergence tests for � and �τ are shown in
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Appendix C. In the following sections, we choose �τ = 0.1
for calculating equal-time correlation function and �τ = 0.05
for calculating time-displaced correlation function. In most
cases, we set � = 150, while in the large U region with larger
gaps, � = 100 is also used to expedite the calculations. And
to study the physical quantities in the thermodynamic limit,
we mainly use the linear system sizes L = 2, 4, 6, 8, 10, 12,
to do the extrapolations. L represents the number of unit cells
along each primitive lattice vectors. The total sites are equal
to 6L2 where 6 is the number of sublattices within a unit
cell. Unless stated otherwise, all calculations in this paper are
conducted using periodic boundary conditions (PBC).

In order to characterize possible magnetic order, we calcu-
late the spin structure factor S(q) = 1

N

∑
i, j eiq·(ri−r j )〈Si · S j〉,

where Si = 1
2 c†

i σci. For the sake of convenience, we show the
S(q) by transforming SHO lattice into a BDS lattice (Fig. 1)
and then do the Fourier transform as the square lattice. The
Bragg peak at M ′(π, π ) point is the signal of AFM ordering.
And we label the value of spin structure factor at this specific
point as SAF = S(M ′)

Apart from SAF, to obtain the quantum critical points be-
tween AFM and nonmagnetic insulators quantitatively, we
calculate the correlation ratio RAF of the structure factor which
is defined as

RAF(U, L) = 1 − SAF(Q + dq, L)

SAF(Q, L)
, (5)

where Q is the wave vector of the magnetic Bragg peak,
and Q + dq is the wave vector nearest to the peak position.
This quantity is dimensionless. It tends to 1 in the magneti-
cally ordered phase and 0 in the disordered phase, exhibits a
size-independent behavior at the quantum critical point, and
provides precise estimation of quantum critical points.

In addition, to study the possible metal-insulator transi-
tion, we calculate the single-particle gap �sp, which can be
extracted from the Matsubara Green’s function G(k, τ ) ∝
exp(−τ�sp(k)) in the large imaginary time τ . Similarly, the
spin gaps can be obtained from the imaginary-time displaced
spin-spin correlation functions Ss(k, τ ) ∝ exp(−τ�s(k)).
Using these two gaps, we can identify whether some phases
are gap or gapless. Furthermore, utilizing the maximum en-
tropy (MaxEnt) method [32,33] in the ALF package [28], we
can also extract spectral information from the aforementioned
imaginary-time functions, where the correlation effects origi-
nated from Hubbard interaction can be clearly seen.

III. NUMERICAL RESULTS

The full phase diagram obtained from DQMC simulations
is shown in Fig. 2. Four different insulating phases exist:
plaquette insulator, ethylene insulator, hexagon insulator and
Néel AFM Mott insulator. The hexagon insulator is lying
between AFM phase and the noninteracting metallic phase.
Based on our results, the critical exponents between plaque-
tte (ethylene) nonmagnetic insulating phase and AFM Mott
insulating phase is very close to the 3D O(3) universality
class [34–41]. However, for the phase transition between the
hexagon insulating phase and the AFM phase, the values of
the critical exponents deviate from the 3D O(3) universality
class and closer to the chiral Heisenberg universality class

Plaquette
insulator

Hexagon
insulator

Ethylene
insulator

   AFM
insulator

Metal

FIG. 2. Phase diagram of the half-filled Hubbard model on the
SHO lattice, the solid lines are the phase boundaries. The plaquette
insulator, ethylene insulator and hexagon insulator are separated by
the Néel AFM Mott insulator. In the absence of on-site interaction
(the yellow line with U = 0), the entire system remains metallic no
matter the ratio t ′/t or t/t ′ is. According to the Hellmann-Feynman
theorem, we exam the bond energy and its first-order derivative along
the function path in Appendix B, revealing no phase transition signal
and affirming that this region belongs to the same phase.

using linear system sizes L � 12. We attribute this devia-
tion from 3D O(3) universality class to the finite-size effect
and the small single-particle around quantum critical points.
In the following three sections, we will explain how we ob-
tained the phase diagram, and show the physical properties of
these phases.

A. Band structure at U = 0

Figure 3 shows the noninteracting band structure of the
SHO lattice. In the half-filling case, there is always metallic
state with some flat dispersions along high-symmetry lines
and some accidental crossing points at the Fermi level. The
flat dispersions contribute to the divergent density of state at
the Fermi level which is unstable to the local interactions.
In the region of 0 < t ′/t < 1, the bands around the Fermi
level touch at a momentum point between Γ and X , form-
ing a type-II Dirac point [13,42–47]. Within this region, the
system maintains D2 crystalline point-group characterized by
four group elements and four one-dimensional inequivalent
irreducible representations. Consequently, this band touching
point can be classified as an accidental degeneracy [48–52]. In
other words, it is nonrobust and can potentially be disrupted
by small local interactions. As t ′/t increases, the intersec-
tion moves toward Γ . When t ′ = t , two Dirac points merge
together at Γ point with linear band touching along Γ -Y
direction and quadratic band touching along Γ -X direction. In
the region of 1 > t/t ′ > 0, the bands do not overlap directly.
The introduction of Hubbard U would push upper and lower
bands away from Fermi energy.
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FIG. 3. Noninteracting band structure of the SHO lattice along
the high-symmetry path. In the region of 0 < t ′/t � 1, e.g., (a)–(c),
there are some accidental band crossing points; in the region of
1 > t/t ′ > 0, e.g., (d), two bands near the Fermi energy do not
overlap directly.

B. Phase transition along t ′/t = 1

What we are most concerned about is how the system
changes after introducing the on-site Coulomb repulsion U .
In this section, we will fix t ′ = t = 1 to study the correlation
effects induced by U . When U is large enough, due to the
bipartite nature, the SHO lattice system often develops a long-
range antiferromagnetic order. To characterize this magnetic
order, we show the static spin structure factor S(q) in Fig. 4(a).
At U = 5, the static spin structure factor show sharp peak
around (π, π ) point, which exhibits a Néel AFM Bragg peak.
From Fig. 4(b), it can be observed that the value of S(π, π )
is monotonically increasing with growing U , that indicates no
other magnetic phase exists. Here we want to mention that all
the data we present in the paper contains error bars, and in
most cases, the errors are very small and may hidden behind
the data points.

Next, we want to investigate where the AFM order begins
to emerge. Figure 4(c) shows the finite-size extrapolations
of SAF/N with different on-site Coulomb repulsion U to the
thermodynamic limit (TDL). From the extrapolations, the
AFM order occurs at U ≈ 2.3. The square root of extrapolated
values ms = √

SAF/N as a function of U are also shown in the
inset of Fig. 4(c). Above the Uc, the AFM order parameter
ms exhibits a monotonic increasing behavior. We also use a
dimensionless quantity which is called correlation ratio RAF

to identify the location of quantum critical point shown in
Fig. 4(d). The extrapolation of the joint of neighboring sizes
shown in inset gives an more accurate estimation of the loca-
tion of the quantum critical point Uc ≈ 2.23. The above results
suggest that AFM order occurs at finite values of U along
t = t ′ = 1 vertical line in the t-t ′-U plane.

The appearance of the quantum critical point (QCP) at
finite U implies the presence of a nonmagnetic phase in
smaller U region. In the next step, we need to answer what the
nonmagnetic phase is, and whether it is a metallic phase or an
insulating phase. To further explore the nonmagnetic phases

FIG. 4. (a) The contour plots of static spin structure factor S(q)
obtained with L = 8, t = t ′ = 1 and U = 5. S(q) exhibits a sharp
peak at (π, π ). (b) The value of S(π, π ) as a function of U . The lin-
ear system size is L = 8. (c) Second-order polynomial extrapolation
of SAF/N to TDL for t = t ′ = 1. Inset shows the magnetic moment
(square root of limN→∞ SAF/N) as a function of U . (d) Correlation
ratio RAF as a function of interaction strength U for t = t ′ = 1. The
intersection points indicate the quantum phase transition between
disorder phase and magnetic ordered phase. Inset, the size depen-
dence of Uc(L) of (L, L + 2) crossings. The joint fits give Uc ≈ 2.23.

in the intermediate U region, we calculate the single-particle
gap �sp from the time-displaced green function G(k, τ ),
and obtain the spectral function A(k, ω) via analytical con-
tinuation using the maximum entropy method [32,33]. The
single-particle gap is the minimum energy necessary to extract
(add) one fermion from (to) the system, corresponds to the gap
that can be observed in photoemission experiments and used
to distinguish the metallic or insulating phase. In Fig. 5(a), we
present the single-particle gap �sp obtained from the DQMC
simulations. The single-particle gap exhibits a continuous in-
creasing with U for all system sizes. Finite-size extrapolations
of the available data points suggest a finite �sp has already
developed before the magnetic transition.

To numerically find out whether the single-particle gap
opens at U = 0 or at finite U (e.g. 0 < U < 1) is technically
challenging due to the extremely small gap when U is small.
However, from analyzing the double occupancy 〈ni↑ni↓〉 in
Appendix B, we do not see any signals of finite-U metal-
insulator-transition before the magnetic transition. We believe
the low-U phase is an nonmagnetic insulating phase. From
the spectral function at U = 2.0 shown in Fig. 5(c), before the
AFM order emerges, the spectral function A(k, ω) exhibits
a noticeable gap at the Fermi level. The energy bands near
Fermi level are still quasiparticle like with coherent peaks,
while the other bands away from the Fermi level become
incoherent. At U = 2.8 within the AFM phase, the gap of
the spectral function A(k, ω) becomes larger, and the spec-
trum near Fermi level also becomes incoherent due to the
strong correlation effect. Therefore we can conclude that the
metallic phase is unstable to the interaction, and a very small
on-site Coulomb repulsion U will change it to an insulator. In
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FIG. 5. (a) Extrapolation of single particle gap �sp to TDL by
fixing t = t ′ = 1. We use second-order polynomial functions to do
the extrapolation. Inset, �sp for L = 2, 4, 6, 8 and the extrapolated
values (TDL) as functions of U . (b) The fitting of spin gap �s with
second-order polynomials in 1/L. Inset, �s for L = 2, 4, 6, 8 and the
extrapolated values (TDL) as functions of U . (c) and (d) show the
single-particle spectral function A(k, ω) along the high-symmetry
path at U = 2.0 (hexagon insulating phase) and U = 2.8 (AFM Mott
insulating phase), respectively. And the system size used here is
L = 8.

other words, there is an intermediate insulating phase between
noninteracting metallic phase (U = 0) and AFM phase in the
t-t ′-U phase diagram which is shown in Fig. 2.

Further details about the intermediate phase are obtained
by examining the spin excitation gap �s extracted from the
time-displaced spin-spin correlation function. The AFM in-
sulator, with a long-range magnetic order, breaks the SU(2)
spin rotational symmetry and has gapless Goldstone modes.
Therefore the spin gap should be zero in the TDL. For
the noninteracting metallic phase, the spin gap is also zero.
Figure 5(b) shows the values of �s obtained with different
sizes and U , along with the extrapolations to the TDL. A
finite value of �s persists within the intermediate interaction
regime, 0 < U < Uc. That means the intermediate nonmag-
netic phase has not only nonzero single-particle gap but also
nonzero spin gap. It is very similar to the valence-bond-solid-
like phase [53–55].

To characterize whether the intermediate-U phase is an
VBS-like phase, we compute the nearest-neighbor kinetic
energy 〈c†

i c j〉 and spin-spin correlations 〈Si · S j〉 under open
boundary conditions (OBC) to break the translational symme-
try, which are shown in Figs. 6(a1) and 6(b1). Under the in-
fluence of interactions U , both kinetic energy 〈c†

i c j〉 and spin-
spin correlations 〈Si · S j〉 form noticeable hexagonal patterns.
From the data in Figs. 6(a2) and 6(b2), the kinetic energy
〈c†

i c j〉 and spin-spin correlations 〈Si · S j〉 within hexagons are
larger than that ones between hexagons even in the thermody-
namic limit. However, the hexagonal pattern phase does not
break any translational or point group symmetry. We refer to
this phase as a VBS-like hexagon insulating phase [55,58]. It
is worth noting that using 〈c†

i c j〉 as the hopping amplitudes for
calculating the band structure does not yield any Dirac points

FIG. 6. Nearest-neighbor (a1) kinetic energy −〈c†
i c j〉 and (b1)

spin correlation 〈Si · S j〉 at t = t ′ = 1, U = 1.0. The calculation
were performed with L = 8 lattice under open boundary condition.
Here, we only show the middle four unit cells of them. The thickness
of the lines indicate the relative magnitudes. And the numerical
values are also shown on the bonds. (a2) and (b2) display the absolute
difference of the corresponding values inside and between hexagons.
(The average value inside the hexagon minus the average value
outside the hexagon.) In the TDL, the correlations within the hexagon
evidently dominate.

near the Fermi level. Consequently, it becomes implausible
for the two Dirac points located at the Γ point of the Brillouin
zone to separate and shift away from Γ upon entering the
hexagon phase. Instead, a more likely result would be the
direct opening of the single-particle gap at the Γ point.

Finally, we want to elucidate the critical properties of
the phase transition between the VBS-like hexagon phase
and the AFM Mott insulating phase. We collapse the SAF/N
close to the phase transition with the finite-size scaling re-
lation SAF/N = L−2β/ν f [L1/ν (U/Uc − 1)]. The collapse data
are shown in Fig. 7(a). The finite-size scaling analysis is
performed with a recently proposed method based on the
Bayesian statistics [59]. We follow the fitting process in [22],

FIG. 7. (a) Data collapses of the SAF/N close to the critical
point to obtain the critical exponents, along t = t ′ = 1. The best
parameters used for the collapse are Uc = 2.21(8), ν = 0.92(2), and
β = 0.70(5). (b) Scattering plots of the optimal fitting parameters
Uc, ν and β, after one thousand resampling. We calculate their mean
value and standard deviation, and apply them to do the data-collapse
shown in (a). The red dot represents the critical exponents of the
chiral Heisenberg universality class [22–26,56,57], while the red
star denotes the critical exponents of the 3D O(3) universality class
[34–41].
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outlined below to obtain the optimal fitting parameters. First,
we prepare a data set SAF/N and introduce Gaussian noise
based on the standard deviation of it. Second, we set appropri-
ate initial values of the fitting parameters, Uc = 2.3, ν = 0.9,
and β = 0.6. Third, we perform the data-collapse analysis and
fit the curve based on the Bayesian statistics [59] to get the
χ2. Finally, we adjust the parameters to closely align with
the fitting curve (minimizing the χ2) to obtain the optimal
parameters, Uc, ν, and β. By employing this method, we
can reliably obtain the average and standard deviation of the
fitting parameters. After repeating the above procedure over
a thousand times, we get the accurate phase transition point
and critical exponents: Uc = 2.21(8), ν = 0.92(2), and β =
0.70(5) using four linear system sizes L = 6, 8, 10, and 12.
We project the three-dimensional scatter plot of the fitting
parameters onto Fig. 7(b). It is evident that the sampling data
are closer to the red dot representing the critical exponents of
the chiral Heisenberg universality class.

The universality class is determined by the symmetries
inherent in the order parameter and the spatial dimension-
ality of the system. In the context of a two-dimensional
(2D) system, a quantum phase transition, transitioning from
a gapped valence-bond-solid-like (VBS) insulating phase to
the antiferromagnetic Mott insulating phase, typically aligns
with the 3D O(3) universality class due to the spontaneous
breaking of SU(2) symmetry. However, when the transition
occurs within a weakly insulating phase characterized by a
minute single-particle gap, and the size of the finite system re-
mains insufficient relative to the correlation length within the
fermionic sector, the fluctuations in the spin or magnetic order
parameters might couple with low-energy fermionic excita-
tions. This coupling can lead the universality class to deviate
from conventional expectations [60–63]. In our specific sce-
nario, near the quantum critical point, such as at U = 2.0, both
the single-particle gap and the spin gap are extremely small
and of the same order, around O(10−2), evident in the insets of
Figs. 5(a) and 5(b). Even with L = 12, the system size remains
small in comparison to the fermionic correlation length (ξe),
estimated to be approximately O(102) and roughly inversely
proportional to the single-particle gap. However, conducting
extensive DQMC simulations with considerably larger system
sizes (L � 12) would progressively emphasize the dominance
of the spin sector as the system size increases. Eventually,
this evolution would likely lead to the critical exponents con-
verging toward the 3D O(3) universality class. The critical
exponents obtained from data collapse using “small” system
sizes indicate β = 0.70(5) and ν = 0.92(2). These values di-
verge from the expected 3D O(3) values of β = 0.3689(3)
and ν = 0.7112(5) [34–41], but align more closely with the
critical exponents of the chiral Heisenberg universality class
β = 0.76(2) and ν = 1.02(1) [22–26,56,57]. We attribute this
phenomenon to the fluctuations of Dirac fermions near Γ

point and the coupling effect between the magnetic order
parameter and very low-energy fermionic excitations.

C. Other QCPs

In this section, we will show how we map out the full phase
diagram in the t-t ′-U plane. Figure 8 presents the finite-size
scalings of magnetic orders and correlation ratio RAF to get

FIG. 8. Extrapolation of SAF/N to TDL for (a) t ′/t = 0.5 and
(b) 0.5. (c) and (d) are the corresponding correlation ratios RAF of the
AFM order as a function of interaction strength U . Inset in (d) shows
the variation of intersection points with different sizes. For t/t ′ =
0.5, we obtain the QCP from two methods, and Uc located between
4.6–4.8. For t ′/t = 0.5, within the system sizes we could calculate,
a concentrated intersection has not been observed. However, through
the extrapolation in (a), we can roughly determine its Uc ∼ 0.8 for
t ′/t = 0.5.

the Uc along t ′/t = 0.5 and t/t ′ = 0.5. For t ′/t = 0.5, the
noninteracting band structure has a band touching point at
1/3 of the path from Γ to X as shown in Fig. 3(a). Only
when L is an integer multiple of 6 this momentum point can
be taken, causing the scaling behavior of L = 6 system to
deviate from that of other system sizes. Therefore we only use
L = 2, 4, 8, and 10 to do the extrapolations. Even worse, it is
for this reason, we can not get a clear intersection in the cor-
relation ratio RAF. Anyway, we take the extrapolated results
of magnetic structure factor m2

s shown in Fig. 8(a) to estimate
the quantum critical points. And we get Uc = 0.8(2) for t ′/t =
0.5. For t/t ′ = 0.5, we can use both the extrapolation of ms

2

and the crossing of RAF to get the QCP which is Uc ∼ 4.7. To
obtain more accurate QCP and critical exponents, we follow
the same procedures as in the previous subsection III B. We
obtain the following parameters: Uc = 4.7(2), ν = 0.91(6),
and β = 0.46(2) shown in Fig. 9, more closer to the critical
exponents of 3D O(3) universality class than that at t = t ′ =
1. Around this QCP, the single-particle gap is larger than in
the case where t = t ′ = 1. Consequently, although there are
still deviations from the precise critical exponents of the 3D
O(3) universality class, the critical exponents here are now
closer. This observation, when compared to the t = t ′ = 1
case, strongly supports our explanation for the deviation of
critical exponents.

In addition to the hexagon insulating phase and AFM phase
mentioned earlier, there are other two insulating phases named
plaquette insulator and ethylene insulator in the phase dia-
gram. These two insulating phases are nonmagnetic phases
and have their own decoupled limits. Then, we want to get
the QCPs between the AFM phase and these two phases. The
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FIG. 9. (a) Data collapses of the SAF/N at t/t ′ = 0.5 close to the
critical point to obtain the critical exponents. The best parameters
used for the collapse are Uc = 4.7(2), ν = 0.91(6), and β = 0.46(2).
(b) Scattering plots of the optimal fitting parameters Uc, ν and β,
after one thousand resampling. We calculate their mean values and
standard deviations, and apply them to do the data-collapse shown
in (a). The red dot represents the critical exponents of the chiral
Heisenberg universality class [22–26,56,57], while the red star de-
notes the critical exponents of the 3D O(3) universality class [34–41].

plaquette VBS-like insulator is a fully gapped state which is
adiabatically connected to the decoupled plaquette limit with
the direct product of each plaquette singlets as ground state.
Therefore the QCP between plaquette insulator and AFM
ordered phase fits the formalism of classical critical point,
and these QCP are called conventional QCP [64]. It exists in
many dimerized models [35–40] that have been thoroughly
studied. The phase transition belongs to the 3D O(3) uni-
versality class [41]. The ethylene insulator exhibits the same
behavior. To get the critical points and critical exponents,
we collapse the SAF/N with the finite-size scaling relation
SAF/N = L−2β/ν f [L1/ν (t/tc − 1)] similar to that in Sec. III B.
When t ′ controls the phase transition, t is replaced by t ′. As
shown in the Figs. 10(a) and 10(b), taking U = 6 as an exam-
ple, different sizes have nearly the same intersection points.
The data collapse shown in Figs. 10(c) and 10(d) obtain the
accurate critical points and critical exponents. We show their
numerics in the lower of the figures. These two sets of critical
exponents closely resemble the 3D O(3) critical exponents,
which demonstrates that both phase transitions belong to the
3D O(3) universality class. Interestingly, the critical exponent
ν, which characterizes the correlation length, exhibits value
at the QCP between the plaquette insulator and the AFM
insulator that are closer to the 3D O(3) model compared to
those obtained from the QCP between the ethylene insulator
and AFM insulator. This observation may attributed to the fact
that at U = 6.0, the gaps of the plaquette insulator are larger
than that of the ethylene insulator.

In the lower-right corner of the phase diagram shown in
Fig. 2, hexagon insulating phase and ethylene insulating phase
are very close. To determine whether there is a direct phase
transition between them or if there is an intermediate AFM
phase, we calculate the RAF as a function of t/t ′. Taking
U = 4.0 as an example, from the data in Fig. 11, we observe
that there is an AFM phase sandwiched between the hexagon
insulator and the ethylene insulator. The AFM phase region
decreases as U reduces from 4.0 to 3.0 and further to 2.0. Sup-
plemented by the contour plot of SAF/N using a linear system
size L = 4 and the spin gaps of two decoupled limits (t ′/t = 0
and t/t ′ = 0), as shown in Fig. 16(a) of Appendix D.

FIG. 10. [(a) and (b)] Correlation ratio RAF close to the plaquette-
AFM transition and AFM-ethylene transition. [(c) and (d)] Collapse
of SAF/N close to the critical points. The parameters obtained form
the Bayesian statistics are shown in the corresponding figure. When
tuning t ′/t , we fix t = 1 and vary the value of t ; when tuning t/t ′, we
fix t ′ = 1 and vary t .

IV. CONCLUSIONS

In summary, we have mapped out the ground-state phase
diagram of the Hubbard model on the SHO lattice at half
filling with projective formalism of DQMC simulation. Based
on the numerical results, we observe a AFM phase surrounded
by three VBS-like insulators. The phase transition between
AFM and plaquette (ethylene) insulator belongs to 3D O(3)
universality class. In addition, we have computed the criti-
cal exponents at the QCP between the AFM phase and the
VBS-like hexagon phase. It seems that this QCP deviates
from the 3D O(3) universality class. we attribute this deviation
to the small single-particle gap with strong charge fluctua-
tion in the hexagon phase which corresponds to finite-size
effect. The critical exponents are expected to fall into the
3D O(3) universality class in the thermodynamic limit. We
hope our systematic numerical results will motivate further

FIG. 11. Correlation ratios RAF of the AFM order as a function
of t/t ′ at U = 4, the protruding region represents the AFM phase
sandwiched between two VBS-like insulating phases in the lower-
right corner of the phase diagram.
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FIG. 12. Semilogarithmic plots of (a) imaginary-time displaced
Green’s function and (b) imaginary-time displaced spin-spin corre-
lation function with t/t ′ = 1, L = 8 for different U . Single-particle
gap and spin excitation gap are obtained by linearly fitting the tail
of them. (c) and (d) correspond to the G(k, τ ) and S(k, τ ) in some
high-symmetry momentum points with the same linear system size
L = 8. We can see that the lowest single-particle gap is at the Γ point,
while the lowest spin gap at the Y point.

experimental investigations of the correlation effects on the
SHO lattice in transition metal oxides or cold atoms.

The hexagon insulating phase shares similarities with the
plaquette and ethylene insulating phases. Therefore we spec-
ulate that it might adiabatically connect to the decoupled
hexagon limit, where only nearest-neighbor hopping within
hexagon exists. To confirm this, we can change the ratio
of the nearest-neighbor hopping within hexagons (t) to the
nearest-neighbor hopping between hexagons (t ′) to explore
the possible adiabatic connection between hexagon phase at
t = t ′ = 1 and the decoupled limit. Further details will be
explored in our future research.

For the biphenylene network, first principle calculations
show the band structure near the Fermi level does not have flat
bands [7–9]. To fit this band structure, Ref. [9] shows the tight
binding model needs 15 different hopping energies to achieve
a more accurate fit. Our simpler model is not accure enough
to study the correlation effect on the biphenylene material.
Unfortunately, we cannot apply DQMC to study the fitting
model due to Fermi sign problem. However, other methods
like density matrix renormalization group and tensor network
are suitable there, which we also leave for future study.
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APPENDIX A: IMAGINARY-TIME DISPLACED GREEN’S
FUNCTION AND IMAGINARY-TIME DISPLACED

SPIN-SPIN CORRELATION FUNCTION

Single-particle gap �sp(k) can be extracted from the
imaginary-time displaced Green’s function by G(k, τ ) ∝
exp(−τ�sp(k)), corresponding to the difference between one
particle excitation energy and chemical potential μ. In this
system, with half-filling electrons, the chemical potential μ

is zero. Similarly, spin excitation gap can be obtained from
the imaginary-time displaced spin-spin correlation function
by S(k, τ ) ∝ exp(−τ�s(k)). Figures 12(a) and 12(b) display
the imaginary-time displaced Green’s function and imaginary-
time displaced spin-spin correlation function for different U ,
which can be used to extract the single-particle gap and spin
excitation gap shown in Figs. 5(a) and 5(b) of main text.
Figures 12(c) and 12(d) reveal that the minimum value of
single-particle gap occurs at Γ (0, 0), while the minimum
value of spin gap appears at Y (0, π ).

FIG. 14. The double occupation 〈ni↑ni↓〉 of A site and B site as
a function of U , at t = t ′ = 1. Insets are the first-order derivative of
double occupancy.
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FIG. 15. The AFM structure factor SAF/N are plotted with re-
spect to different (a) � and (b) �τ , at U = 2.3 and t = t ′ = 1.

APPENDIX B: PHASE TRANSITION WITHIN HEXAGON
INSULATING PHASE

To verify whether the nonmagnetic region below AFM
phase in the phase diagram shown in Fig. 2 is the same phase,
we exam the bond energy on the red t and light blue t ′ bonds
shown in Fig. 1 (respectively named as 〈Ht 〉 and 〈Ht ′ 〉), and
double occupancy along the function path of

U =
{

t ′/t 0.5 < t ′/t � 1,

2 − t/t ′ 1 > t/t ′ > 0.5.

As shown in Fig. 13, The absence of peaks or discontinuities
in the first derivative results indicate that there is no quantum
phase transition along this path. Therefore we have confirmed
that all the nonmagnetic regions below the AFM phase belong
to the same phase.

In the main text, we observe a pronounced single-particle
gap at U � 1, t = t ′ = 1. It is difficult to find out whether
the single-particle gap opens at U = 0 or finite 1 > U �
0. So that we show the double occupancy 〈ni↑ni↓〉 and its
first-order derivative in Fig. 14. In the range of U ∈ [0 − 1),
double occupancy 〈ni↑ni↓〉 monotonously decrease, with no
discontinuity when 1 > U > 0. This is also reflected in the
first derivative. Except for the magnetic transition peak Uc =
2.21(8), there is no peak at 1 > U > 0. Hence, we conclude
that the low-U phase is an nonmagnetic insulating phase.

APPENDIX C: THE CHOICES OF PROJECTION
TIME � AND DISCRETE TIME SLICE �τ

In this section, we provide convergence tests for projection
time � and discrete time slice �τ along t ′/t = 1. For projec-
tion time �, we test its convergence near the phase transition

FIG. 16. (a) The contour plot of AFM structure factor SAF/N
for a smaller size L = 4. (b) The spin gap �s of one Plaquette or
Ethylene calculated by exact diagonalization (ED).

point at U = 2.3 for different sizes. As shown in Fig. 15(a),
� � 40 is able to get the covergent structure factors for the
L = 4, 6, 8 system sizes. However, we choose � = 100. We
also conduct the similar test on �τ , and the data are presented
in Fig. 15(b). �τ = 0.1 is already suitable for calculating the
static correlation functions. For time-displaced green func-
tions, we use �τ = 0.05 to ensure longer projection time and
longer tail to fit the gaps.

APPENDIX D: REDUCTIONS OF THE AFM
REGION AT TWO LOWER CORNERS

To estimate the phase boundaries at lower left and lower
right corners of phase diagram shown in Fig. 2. We computed
the AFM structure factor for a smaller system size, L = 4,
spanning the entire phase diagram, depicted in Fig. 16(a).
The green regions at low U values indicate weak long-range
antiferromagnetic order. These green regions appear to extend
towards the limits of U → 0, t ′/t → 0, and U → 0, t/t ′ → 0.
From this observation, we can reasonably speculate that the
AFM phase region persists for small U values but disappears
in the U = 0 limit at these two limits.

Additional evidence supporting these viewpoints is derived
from analyses of two decoupled limits. In the limits of t ′/t =
0 and t/t ′ = 0, based on calculations of the lowest excitation
gap (triplet gap) with four or six lattice sites, finite energy
gaps are observed at U > 0, as can be seen in Fig. 16(b).
These gaps can facilitate the extension of the plaquette phase
or ethylene phase to finite values of t ′/t or t/t ′ while keeping
U fixed at a finite value.
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