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In the quest for exotic phases of matter due to the interplay of various interactions, iridates hosting a spin-orbit
entangled jeff = 1/2 ground state have been in the spotlight in recent years. Also in view of parallels with the
low-energy physics of high-temperature superconducting cuprates, the validity of a single- or few-band picture
in terms of the jeff states is key. However, in particular, for its structurally simple member Ba2IrO4, such a
systematic construction and subsequent analysis of minimal low-energy models are still missing. Here we show
by means of a combination of different ab initio techniques with dynamical mean-field theory that a three-band
model in terms of Ir- jeff states fully retains the low-energy physics of the system as compared to a full Ir-5d
model. Providing a detailed study of the three-band model in terms of spin-orbit coupling, Hund’s coupling,
and Coulomb interactions, we map out a rich phase diagram and identify a region of an effective one-band
metal-insulator transition relevant to Ba2IrO4. Compared to available angle-resolved photoemission spectra, we
find good agreement of salient aspects of the calculated spectral function and identify features which require the
inclusion of nonlocal fluctuations. In a broader context, we envisage the three- and five-band models developed
in this paper to be relevant for the study of doped Ba2IrO4 and to further clarify the similarities and differences
with cuprates.
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I. INTRODUCTION

Over the last decade, iridates have attracted a lot of interest,
mainly due to their spin-orbit entangled jeff ground state [1,2].
It emerges as a consequence of the interplay of strong spin-
orbit coupling (SOC), electronic Coulomb interactions, and
crystal-field splitting and gives rise to exotic phases of matter
such as quantum spin liquids, topological semimetals, and
spin-orbit entangled insulators [3–13].

A particular focus has been set on Sr2IrO4, whose
half-filled jeff = 1/2 band suggests a description in terms
of a twisted one-band Hubbard model [10] with parallels
to isostructural high-temperature superconducting cuprates.
However, despite similarities in their magnetic [14] and spec-
troscopic [15–17] properties, no superconductivity has been
reported to date for doped Sr2IrO4. Possible explanations for
this absence are twofold. First, rotations of the IrO6 octahedra
lead to a spin canting of the Ir momenta [18], which results
in a Dzyaloshinsky-Moriya term in the effective pseudospin
model [8,19], absent in spin models of cuprates [20]. Second,
the validity of a simple single-band picture has been cast into
doubt, questioning either the local [16,21] or the single-band
nature [22] of the jeff = 1/2 state upon doping.
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Instead, Ba2IrO4, a closely related material with the same
nominal 5d5 configuration on the iridium site, crystallizes in a
K2NiF4-type crystal structure (space group I4/mmm) [14] like
La2CuO4, see Fig. 1. The combination of a tetragonal ligand-
field splitting and strong SOC leads to the much-invoked jeff

picture inherited from Sr2IrO4. In this picture, the 5d5 con-
figuration realized in Ba2IrO4 amounts to a single electron in
the jeff = 1/2 state, giving rise to a Mott insulating state when
accounting for the strong electron-electron interactions within
this half-filled band. The absence of rotations of the IrO6

octahedra leads to an in-plane antiferromagnet below a Néel
temperature of TN ≈ 240 K [14]. This magnetic order is well
described by a pseudospin model dominated by Heisenberg
terms [23,24] and thereby even closer to the situation realized
in cuprates.

Both the magnetically ordered and the paramagnetic
phases of Ba2IrO4 are insulating [14,25–27], the latter up
to at least 300 K [25,26]. Angle-resolved photoemission
spectroscopy (ARPES) studies have shed light on the band
structure of both phases [26,27], but differ in their find-
ings concerning changes in spectral features at the transition
temperature. Given the difference in the type of samples
used—thin films [27] and high-pressure synthesized bulk
samples [26]—spectral signatures of antiferromagnetic order
in Ba2IrO4 still need to be firmly established. First, theoreti-
cal studies including extensions of density functional theory
(DFT+U) [26,27] and its combination with dynamical mean-
field theory (DFT+DMFT) [28,29] found good qualitative
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FIG. 1. K2NiF4-type crystal structure of Ba2IrO4. The IrO2

planes are responsible for its quasi-2D low-energy physics and in
contrast to Sr2IrO4, the elongated IrO6 octahedra are not rotated
around the c axis.

agreement with the most salient aspects of ARPES spectra,
but focused mainly on its antiferromagnetic phase. These
studies also suggested a half-filled jeff = 1/2 ground state for
Ba2IrO4, without rigorously justifying the range of validity of
this picture.

To assess the supposed parallels to the low-energy physics
realized in cuprates, the derivation of such minimal effective
models for Ba2IrO4 is crucial. Whereas this question has been
addressed in the case of the cuprates, mainly with respect
to the role of oxygen atoms [30–32], it needs to be asked
here, first of all with respect to the impact of Ir-eg and jeff =
3/2 bands. In this paper, we hence first study the electronic
structure of Ba2IrO4 in detail and derive different ab initio
models to describe its low-energy properties. Following a
top-down approach, we motivate the use of a three-band jeff

model by comparing its properties to the one of a complete
five-band description in terms of total angular momentum J
states. Then, focusing on the former and restricting ourselves
to paramagnetic phases, we investigate the metal-insulator
transition (MIT) as a function of interaction strength, SOC,
and temperature to establish a region of validity for a further
reduction to a single-band jeff = 1/2 model. Using DMFT, we
map out a phase diagram of our model to study the proximity
of Ba2IrO4 to topological and Mott transitions. By comparing
the resulting spectral functions to available angle-resolved
photoemission spectroscopy data [26,27], we can finally iden-
tify signatures of short-range spatial correlations that require
a scheme going beyond a local self-energy.

The remainder of the paper is organized as follows. In
Sec. II, we construct two effective low-energy models of
Ba2IrO4 from first principles, which we study by means of
DMFT in Sec. III. The interplay of SOC and Coulomb in-
teraction and their impact on the Mott transition is analyzed
in Sec. IV before comparing ARPES data from literature to
calculations done for a parametrization of our model relevant
to Ba2IrO4 in Sec. V. Finally, Sec. VI summarizes the main
conclusions of the paper and discusses the parallels to the
low-energy physics in cuprate.

II. MODEL CONSTRUCTION FROM FIRST PRINCIPLES

In this section, we derive from first principles two low-
energy models for Ba2IrO4: a highly accurate five-band Ir-5d
model and an effective three-band Ir-t2g one, which will then
be solved by means of DMFT. The models are defined by the
following generic Hamiltonian:

Ĥ = Ĥ0 + ĤSOC + Ĥint, (1)

where the one-body term Ĥ0 is defined by

Ĥ0 =
∑

σ

∑
iR, jR′

tiR, jR′ ĉ
†
σ iR ĉ

σ jR′ . (2)

The indices R, R′ run over the Ir sites and σ denotes the elec-
tron spin. The labels i, j refer to the five 5d orbitals on each
site or only to the three t2g states, depending on the considered
model. ĉ(†)

σ jR′ are electron (creation) annihilation operators and

tiR, jR′ are the tight-binding (TB) parameters. Local on-site
energies are included in the kinetic term [Eq. (2)] for R = R′.

The SOC term ĤSOC is purely local and defined using an
isotropic SOC constant λ between the spin orbitals (i, σ ) and
( j, σ ′) :

ĤSOC = λ
∑
σσ ′

∑
i jR

〈iσ |L̂ · Ŝ| jσ ′〉 ĉ†
σ iR ĉ

σ ′ jR. (3)

The Coulomb interaction Ĥint is also local and defined in
the extended Hubbard-Kanamori form [33,34]

Ĥint = 1

2

∑
σ

∑
i j

Ui j n̂iσ n̂ jσ̄ + 1

2

∑
σ

∑
i �= j

(Ui j − Ji j )n̂iσ n̂ jσ

− 1

2

∑
σ

∑
i �= j

Ji j[ĉ
†
iσ ĉiσ̄ ĉ†

jσ̄ ĉ jσ − ĉ†
iσ ĉ†

iσ̄ ĉ jσ ĉ jσ̄ ], (4)

where, for the sake of readability, we omitted the sum over R.
The first two terms are the density-density terms, representing
the Coulomb repulsion between electrons with antiparallel
and same spins, respectively. The last one includes the spin-
flip and pair hopping terms.

All parameters have been calculated from first principles.
In particular, starting from a standard DFT reference calcu-
lation, we construct maximally localized Wannier functions
(MLWFs) [35] and we estimate the SOC constant λ through a
fitting procedure [36]. From our localized basis set, we also
evaluate the resulting Coulomb parameters via constrained
random phase approximation (cRPA) [37]. Computational de-
tails can be found in Appendix A.

A. Density functional theory band structure

The DFT calculations, using the Perdew-Burke-Ernzerhof
(PBE) functional [38], are performed starting from the exper-
imental crystal structure of Ba2IrO4 in the primitive cell [39].
The atomic positions within the cell are then relaxed up to a
convergence factor of 10−3 a.u. on the forces, which leads to
a small reduction of the Ir-O bond length along the z direction
(apical oxygen), enhancing the crystal field anisotropy, see
Appendix B.

The Kohn-Sham band structure is shown in Fig. 2. To fa-
cilitate the comparison to photoemission spectra documented
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FIG. 2. Kohn-Sham band structure of Ba2IrO4. DFT bands cal-
culated without (a) and with (b) spin-orbit coupling using the
PBE functional. The high-symmetry k points chosen are Z =
(0, 0, π/c), � = (0, 0, 0), X = (π/a, 0, 0), and M = (π/a, π/a, 0)
in the Brillouin zone of the conventional unit-cell. Colors represent
the principal character of the bands with respect to the Ir 5d orbitals.

in literature, we refer here to the high-symmetry points in the
conventional cell, i.e., X = (π/a, 0, 0), M = (π/a, π/a, 0),
and Z = (0, 0, π/c). In the nonrelativistic band structure
shown in Fig. 2(a), the full d manifold is clearly separated into
eg and t2g manifolds. Even if the eg bands are nearly empty, the
dx2−y2 band crosses the Fermi level. A crystal-field anisotropy
is clearly evident in the band structure, with the dxy band over-
all lower in energy and showing a wider dispersion. Due to
the layered structure, the Ir-5d bands are nearly dispersionless
along the kz direction.

Figure 2(b) reports the electronic structure including rel-
ativistic effects. The SOC splits the t2g states into two lower
jeff = 3/2 bands and a jeff = 1/2 band. The effect of SOC on
the eg manifold is rather small, but gives rise to the slightly
more entangled states ẽg. Still, four bands cross the Fermi
level, including the d̃x2−y2 , but, in contrast to DFT without
SOC, the jeff = 1/2 band is nearly half filled (n1/2 = 1.23)
and the jeff = 3/2 bands nearly completely filled (n3/2,1/2 =
1.83 ; n3/2,3/2 = 1.89). Focusing only on the occupied t2g man-
ifold, previous works [26–29] then considered an effective
three-band model. However, the choice of such a low-energy
model for Ba2IrO4 requires rigorously confirming the weak
impact of the ẽg manifold before integrating these degrees of
freedom out. In the following, we will then define a full five-
band model and an Ir-t2g model and compare their properties
at every step of the calculation.

B. Parametrization of the models

We now detail the parametrization of the two models built
to describe the low-energy part of the electronic band structure
of Ba2IrO4 using MLWFs. We stress that the Wannierization
and subsequent cRPA calculations are different for the two
models. This is, in particular, visible in the spread of the dxy

Wannier function, which is smaller in the five-band model
than in the three-band model (4.21 Å2 vs 4.41 Å2), whereas
the spread of the other two t2g Wannier functions remains very
similar (4.18 Å2 vs 4.19 Å2). This difference is explained by

FIG. 3. Energy-level diagram for Ba2IrO4. Ligand-field splitting
and spin-orbit coupling lead to the formation of spin-orbit entangled
jeff and ẽg states. For �(cub) � λSOC, the SOC can be applied to the
t2g manifold only, leading to the j (cub)

eff states described in the text.

the presence of the dx2−y2 Wannier function, which allows us
to disentangle its contribution to the dxy Wannier function and
causes a smaller spatial extent of the latter.

Despite the different Wannierizations, the TB models for
both cases are very similar. In particular, the TB parameters
within the t2g manifold differ at most by 10−2 eV since the
lattice symmetry leads to a nearly absent t2g − eg hybridiza-
tion without SOC. The hopping intensities decrease quickly
as the distance increases. The main hopping intensities are the
nearest- and next-nearest-neighbor interactions.

For the five-band model, the local spin-resolved Hamil-
tonian H loc

d splits into a block-diagonal form consist-
ing of two 5×5 blocks and can be parametrized in
terms of only four parameters. In their respective ba-
sis {dxz±, dyz±, dxy∓, dz2∓, dx2−y2∓}, where we denoted up
(down) spins with + (−), the blocks read as

H loc
d =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

δ ∓ λ
2 i λ

2 i ±
√

3λ
2 ∓ λ

2

± λ
2 i δ ∓ λ

2 −
√

3λ
2 i − λ

2 i

− λ
2 i ∓ λ

2 0 0 ∓λi

±
√

3λ
2

√
3λ
2 i 0 � + δ′ 0

∓ λ
2

λ
2 i ±λi 0 �

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5)

The three terms �, δ, and δ′ are the so-called ligand field
terms. � accounts for the t2g − eg splitting, δ (δ′) encodes
the splitting of the states within the t2g (eg) submanifold, see
Fig. 3. In general, δ and δ′ define an effective tetragonal field.
The cubic (cub) case is recovered for δ = δ′ = 0 eV. From
our set of Wannier functions, we obtain ligand field terms
� = 3.14 eV, δ = 0.24 eV, and δ′ = 0.2 eV for the five-band
model.

In the three-band model, the local Hamiltonian in Eq. (5) is
restricted to the topmost 3×3 block H loc

t2g
. Thus, � and δ′ are

not present in the local Hamiltonian, and the computed value
of δ = 0.25 eV is slightly enhanced compared to the full 5d
one. We note that the sign of the ligand field component δ
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would correspond to the crystal field of a compressed octa-
hedron, in contrast to the elongated IrO6 octahedron found
in Ba2IrO4. This difference between crystal field and ligand
field is due to the different environments of the apical and the
in-plane oxygen atoms [40].

For the SOC constant, we find λ = 0.31 eV in both models.
Thus, λ is an order of magnitude smaller than the crystal field
splitting �. As a result, comparing the full 5d model and the
Ir-t2g one, we note that (i) the three eigenstates of jeff character
contain only small admixtures of the dz2 and dx2−y2 orbitals
and (ii) the ẽg states are nearly cubic, i.e., the effect of δ′ is
very small. This justifies for Ba2IrO4 the so-called T-P ap-
proximation [41] or jeff picture, commonly used for Ir-based
oxides [42,43]. In the T-P approximation, initially introduced
for cubic crystal fields when λ 
 �, the t2g and eg blocks are
treated separately and the SOC is applied to the t2g manifold
only, giving rise to jcub

eff eigenstates by diagonalizing H loc
t2g

.

Given the d5 configuration in Ba2IrO4, this scheme thereby
motivates on a model level the use of a three-band description.

Within the T-P approximation, the consequences of the
tetragonal crystal field on the eigenspectrum are also shown
in Fig. 3. The main difference with respect to the cubic case is
that the jeff = 3/2 states are no longer degenerate, leading to
three doubly degenerate jeff states. In addition, the presence of
finite δ implies a certain degree of deviation in the eigenstates
with respect to the ones relative to a cubic field. For a general
tetragonal field, we can express the jeff states as∣∣∣∣1

2
,±1

2

〉
= sin θ√

2
(
∣∣dyz∓

〉 ± i|dxz∓〉) ∓ cos θ |xy±〉
∣∣∣∣3

2
,±1

2

〉
= cos θ√

2
(±∣∣dyz∓

〉 + i|dxz∓〉) + sin θ |xy±〉
∣∣∣∣3

2
,±3

2

〉
= 1√

2
(∓∣∣dyz±

〉 − i|dxz±〉), (6)

where we still denote (up) down spins with (+) − and the
angle θ is determined from δ and λ. In particular, the cubic
jcub
eff states are obtained for cos θ = 1/

√
3, giving equal contri-

butions of all three t2g orbitals to the jeff = 1/2 state. Instead,
in Ba2IrO4 the finite value of δ leads to cos θ ≈ 0.7/

√
3.

The departure from the cubic value of cos θ induces a
prominent dxy character of the |3/2,±1/2〉 state as well as
the uneven contribution of the t2g orbitals to |1/2,±1/2〉.
This can also be seen in Figs. 4(a)–4(c), which displays the
k-resolved composition of the jeff states in terms of Wannier
orbitals of the Ir atoms for the five-band Ir-5d model (solid
lines) and the effective three-band model (dashed lines). The
two models nearly perfectly agree within the xy plane. Along
�-X-M (�-Y-M), the main contribution to jeff = 1/2 is given
by the dxz (dyz) orbital. Due to their degeneracy, dxz and dyz

equally contribute along the � − M direction. Except for the
vicinity of M, the weight of the dxy orbital is generally smaller
than the one carried by the other two orbitals. Similarly, the
|3/2,±3/2〉 band is dominated by dxz and dyz contributions.
This nontrivial composition of the pseudospin manifold has
already been observed in iridates and similar materials [16,44]
and is related to the crystal-field anisotropy. We finally note
that the eg states carry very small weight on the jeff pseudospin
states, except for the nonnegligible contribution along Z-�.

FIG. 4. k-resolved Wannier decomposition of the jeff states. For
the five-band model (full lines) and the three-band model (dashed
lines), the jeff states are decomposed in terms of the Wannier orbitals
of the Ir atoms.

There, we observe an increasing contribution of the dx2−y2 or-
bital towards Z whereas the one of dxz/dyz diminishes. Within
the three-band model, the absence of hybridization with the
eg states leads to a constant contribution of dxz/dyz along the
Z − � path.

We finally turn to the local Coulomb interactions evaluated
using cRPA, whose values are reported in Tables I and II.
Note that in contrast to a recent study on Ca5Ir3O12 [45], we
here calculate the cRPA interactions for the Wannier functions
without SOC.

Comparing the Coulomb parameter obtained within the
five-band and three-band models, we observe smaller val-
ues within the t2g subspace for the five-band model, where
Ūt2g = 2.03 (1.95) eV for the three-band (five-band) model.
For the former this amounts to the isotropic (monopole) Slater
integral F0 of the model. We note that this value is greater than
the average value of the in plane nearest-neighbor Coulomb
repulsion, V = 0.75 (0.71) eV, which will be neglected within
the DMFT approximation. The Hund’s coupling J within the

TABLE I. Coulomb and exchange parameters obtained for the
three-band model of Ba2IrO4.

U (eV) dxy dyz dxz

dxy 2.49 1.81 1.81
dyz 1.81 2.39 1.86
dxz 1.81 1.86 2.39

J (eV) dxy dyz dxz

dxy 0.00 0.22 0.22
dyz 0.22 0.00 0.22
dz 0.22 0.22 0.00
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TABLE II. Coulomb and exchange parameters obtained for the
five-band model of Ba2IrO4.

U (eV) dxy dyz dxz dx2−y2 dz2

dxy 2.41 1.73 1.73 2.16 1.73
dyz 1.73 2.31 1.78 1.83 2.01
dxz 1.73 1.78 2.31 1.83 2.01
dx2−y2 2.16 1.83 1.83 2.81 1.86
dz2 1.73 2.01 2.01 1.86 2.64

J (eV) dxy dyz dxz dx2−y2 dz2

dxy 0.00 0.22 0.22 0.22 0.27
dyz 0.22 0.00 0.22 0.26 0.21
dxz 0.22 0.22 0.00 0.26 0.21
dx2−y2 0.22 0.26 0.26 0.00 0.36
dz2 0.27 0.21 0.21 0.36 0.00

t2g manifold is identical in the two models. On the other hand,
the t2g − eg part of the Coulomb matrix can be substantial. In
particular the dxy − dx2−y2 and the dxz/yz − dz2 interactions are
greater than 2 eV. We note that the Coulomb matrices reflect
that different Wannier functions are used in the two models: If
the Wannier functions were the same, the larger screening via
the eg bands would lead to much smaller values for the inter-
actions within the three-band model, which is not the case.

We finally stress that in both cases the ab initio calculated
Coulomb tensor deviates from a spherical Hubbard-Kanamori
representation [41], especially due to the anisotropy of the
density-density terms, which must be seen as another footprint
of the nontrivial crystal field for this compound.

III. FIVE-BAND VS THREE-BAND MODEL:
A DMFT-BASED COMPARISON

In this section, we present results of paramagnetic
DMFT calculations for the five-band model of Ba2IrO4 and
compare them to results obtained for the three-band model
at the inverse temperature of β = 80 eV−1 (T � 145 K).
For the calculations, we use the continuous-time quantum
Monte Carlo solver in the hybridization expansion matrix
formulation (CT-HYB) [46–48] to keep all the of-diagonal
terms in the Hamiltonian resulting from intersite mixing.
Other computational details of the calculations can be found in
Appendix A.

Figures 5(a)–5(d) compare the density of states (DOS)
of the two models, expressed in terms of the jeff com-
ponents, which turn out to be in very good agreement in
the electronic part of the spectrum. The three-peak struc-
ture of the jeff = 1/2 band is recovered in both models
with the three-band model jeff = 1/2 spectral function be-
ing closer to the Mott transition: lower and upper Hubbard
bands (LHBs and UHBs) are better defined and the quasi-
particle peak is narrower than for the five-band model. This
is corroborated by the self-energy shown in Fig. 6. The
imaginary part of the jeff = 1/2 self-energy already shows
a divergent behavior for iωn → 0 and only has an upturn
for the lowest six Matsubara frequencies ωn. The quasi-
particle mass of the band, m∗/m = Z−1, is larger for the
three-band model than for the five-band model and the
corresponding quasiparticle residue Z = [1 − ∂ωRe�(ω +
i0+)|ω=0]−1 ≈ [1 − Im�(iω0)/ω0]−1 is Z = 0.14 (Z = 0.18),
respectively.

FIG. 5. Comparison of the results of the three- and five-band DMFT calculations. Contributions of the | 1
2 ; − 1

2 〉 (a), | 3
2 ; − 1

2 〉 (b), and
| 1

2 ; − 3
2 〉 (c) states to the total density of states A(ω), which is shown in (d), for the five-band (solid line) and three-band (dashed line) models.

The k-resolved spectral function A(k, ω) for the three-band (e) and five-band (f) models is plotted along the high-symmetry path (0, 0, π

c ) −
(0, 0, 0) − ( π

a , 0, 0) − ( π

a , π

a , 0) − (0, 0, 0).
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FIG. 6. Imaginary part of the self-energy in Matsubara space.
Comparison of the jeff components of the five-band (solid lines) and
three-band (dashed lines) models shows that the three-band model is
closer to the phase transition.

The filled jeff = 3/2 bands also exhibit remarkable agree-
ment below the Fermi level; see Figs. 5(b) and 5(c). Above
the Fermi level, the jeff = 3/2 states of the five-band model
exhibit some weight due to the hybridization with the eg states,
which is absent in the three-band calculation. As for the jeff =
1/2 band, we observe a stronger renormalization due to the
self-energy, see Fig. 6, where the bandwidth renormalization
is 0.69 (0.71) for the | 3

2 ; 3
2 〉 component and 0.72 (0.76) for the

| 3
2 ; − 1

2 〉 component of the three-band (five-band) model.
The k-resolved spectral functions plotted in Figs. 5(d)

and 5(e) show remarkably good agreement. All features in the
jeff manifold are comparable due to very similar �(iωn) and
nearly identical TB models in the two cases. In particular, we
observe that the jeff = 3/2 states are completely filled, con-
sistent with Figs. 5(b) and 5(c), and a strongly renormalized
flat jeff = 1/2 band appears at the Fermi level. Compared to
the initial DFT simulations, the ẽg bands are moved up above
the Fermi level and do not cross it anymore. This amounts
nearly exclusively to a Hartree shift—additional effects of
correlations and SOC on these bands are minimal, as, for
instance, shown by the very small broadening of the bands.
This result, although expected, has, to our best knowledge,
not been achieved before and is in agreement with available
experiments [26,49]. To further quantify the agreement of the
two models, we report in Table III the band fillings obtained
from DMFT. The fillings of the jeff bands are nearly the
same for both models. The two jeff = 3/2 bands are slightly
less filled in the presence of ẽg orbitals. In the d basis, this
translates to a slightly less filled dxy orbital which transfers
some of its electrons to the eg orbitals. This charge transfer is
made possible due to the small coupling between the t2g and
eg subspaces when adding SOC. We note, however, that these
fillings disagree with a previous RIXS and XAS study [49]
where the authors measured a larger hole filling in the dxy

than in the dxz, dyz states. Our results, though, are in qualitative
agreement with previous theoretical simulations [50,51].

TABLE III. Band fillings within DMFT. For both models, the
fillings are reported with respect to the jeff basis (left) and the orbital
basis (right), respectively. The calculations used cRPA values for the
Coulomb tensor and β = 80 eV−1.

jeff Three band Five band d Three band Five band

|3/2, 1/2〉 0.987 0.985 |dxz〉 0.814 0.803
|3/2, 3/2〉 0.990 0.989 |dyz〉 0.814 0.803
|1/2, 1/2〉 0.519 0.517 |dxy〉 0.868 0.856
|d̃x2−y2 〉 / 0.003 |dx2−y2 〉 / 0.020
|d̃z2 〉 / 0.006 |dz2 〉 / 0.017

To summarize, both models agree to a large extent in the
jeff sector. Given the nonnegligible interactions in the t2g − eg

sector of the Coulomb matrix, this is a nontrivial result. The
rationale behind it is that the eg bands are essentially empty
within our DMFT simulations, thus they do not have a notable
impact on the band structure of the jeff manifold. Our com-
parison thereby validates the applicability of the three-band
model for the low-energy description of Ba2IrO4. From a
computational point of view, this is an important result since
the three-band model is at least one order of magnitude faster
to solve numerically with DMFT. We will focus on it for the
rest of the paper.

The metallic solutions using the ab initio computed pa-
rameters are in contrast to experiment and might at first
glance seem surprising. However, it primarily indicates an
underestimation of the Coulomb tensor. This is a well-known
problem within cRPA, which tends to overscreen the Coulomb
interaction [52]. A partial solution to this problem was found
by treating the dynamic part of U (ω), accessible by cRPA,
whose static limit gives the cRPA Coulomb tensor. It has
been shown that the static effective model obtained by taking
into account the frequency-dependent U (ω) via a Lang-Firsov
transformation is more correlated than the one including
only the static limit of U [53]. The additional correlation
comes from an effective bandwidth reduction, provided by
the ZLF renormalization factor and estimated by the Lang-
Firsov approximation [54]. We computed the full frequency
dependence of the isotropic term (Slater integral F0) in cRPA
for the three-band model, and we found that the resulting
bandwidth reduction factor is ZLF ≈ 0.84. This leads to an
absolute increase in UcRPA by a �U ≈ 0.4 − 0.5 eV. As we
show in the following, such an increase already leads to an
insulating solution within DMFT.

In the next section, we are going to study the effect of
progressively increasing the interaction strength above the
cRPA values on the resulting phase diagram, and we will
evaluate it as a function of �U , λ, J , and T to study whether
the effective model can be further reduced to a single-band
jeff = 1/2 model.

IV. SPIN-ORBIT COUPLING, HUND’S EXCHANGE
AND THE MOTT TRANSITION

In this section, we study the ab initio three-band model
as a function of interaction strength U , SOC λ, and Hund’s
exchange J within DMFT. Computational details are given in
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Appendix A. We will discuss the full phase diagram to carve
out the nature of the Mott transition in Ba2IrO4.

To calculate the phase diagram, we first increase the
density-density part of the Coulomb tensor by an isotropic
amount �U at a fixed temperature of T � 193.5 K
(β = 60 eV−1). In terms of the traditional representation
through Slater integrals [55], this corresponds to increas-
ing the monopole term F0, leaving the higher-order terms
unchanged. In absolute values, the critical transition line
that marks the MIT (MIT) is expressed as Uc(λ) = UcRPA +
�Uc(λ). To distinguish the metallic phase from the insulating
one, we analyze the DOS at the Fermi level and its evolution
within the parameter space. The DOS value A0(�U, λ) as a
function of �U and λ, by keeping J equal to its cRPA value
(Table I), determines the phase diagram reported in Fig. 7(a).
We should note that it is calculated for a temperature above
the second-order end point of the Mott transition. Therefore,
for fixed λ a crossover from a bad metal to a bad insulator is
realized as a function of U . The dashed line �Uc(λ) serves as
a guide to the eye to identify a good insulator. In particular, we
chose a threshold value for A0, such that �Uc(λ) is defined by
A0(�Uc, λ) ≡ 10−2 eV−1. Further details on the interpolation
scheme used for plotting A0 are reported in Appendix C.

By inspection of the orbital-resolved spectral functions,
four distinct regions can be defined: a three-band metal
(3BM), a single-band metal (1BM), a two-band insulator
(2BI), and a single-band insulator (1BI), see Fig. 7(b). For
λ �= 0, this characterization is done in the jeff basis. We fur-
thermore indicate in green a SOC-induced Lifshitz transition
(LT) [56], which transforms the system from 3BM to 1BM
and vice versa, i.e., between metals with a three-sheet and a
one-sheet Fermi surface, respectively. Most interestingly, the
overall phase diagram is qualitatively similar to the one of
a spin-orbit coupled, quarter-filled two-band Hubbard model
reported in Ref. [57].

The remainder of this section is divided into four subsec-
tions. First, we discuss the MIT line and the topological LT
(Secs. IV A and IV B). Afterward, Sec. IV C is dedicated to
the impact of Hund’s coupling on the MIT. Finally, fixing the
SOC constant to its ab initio value of λ = 0.31 eV, we will
derive a U − T phase diagram for Ba2IrO4 (Sec. IV D).

A. The metal-insulator transition

Analyzing the behavior of �Uc(λ) with respect to the SOC
strength, we can distinguish three regions: weak, intermediate
and strong SOC.

The weak SOC region is defined for λ � 0.1 eV. There,
small variations of the coupling constant massively decrease
the value of �Uc. Moreover, the MIT is very sharp. We
gain further insights from looking at the diagonal elements
of the density matrix of the insulating state for U ∼ Uc, see
Figs. 8(a) and 8(b). Excluding the completely filled bands, we
obtain either one or two partially filled bands that are split
by the electron-electron interactions into UHBs and LHBs.
In other words, the 2BI phase is realized when we only have
one band completely filled, while the 1BI is found when two
bands are filled. Consistently with the indicated dashed line in
the phase diagram, we find a 2BI for λ � 0.1 eV and strong
interactions, U > Uc(λ).

FIG. 7. Metal-insulator transition (MIT) in the three-band model
of Ba2IrO4. (a) The U vs λ phase diagram at T � 193.5 K with a
Hund’s coupling J = 0.22 eV is defined by the density of states at the
Fermi level, A0(�U, λ). We use a threshold value of A0 ≡ 10−2 eV−1

to discriminate metallic from insulating solutions. A schematic rep-
resentation of the different metallic and insulating phases is shown
in (b): one-band (three-band) metal solutions are denoted by 1BM
(3BM) and separated along the transition line �Uc(λ) from the in-
sulating solutions. We denote insulators with one (two) of the bands
split in lower and upper Hubbard bands by 1BI (2BI). The dashed
green line in (a) indicates a Lifshitz transition (LT) in the metallic
phase, which extends to λ = 0.6 in the noninteracting limit.

The sharpness of the MIT can be explained as follows.
Since the SOC is small, a representation in terms of t2g orbitals
should still be a good description. The phase transition occurs
when the interaction strength is large enough to move one
band below the Fermi level via the relative Hartree shift. Being
the one with lower local energy, this turns out to be the band
of dominant dxy character. At the noninteracting Kohn-Sham
level, the difference in local energies δ is compensated by
larger intersite hoppings in the xy plane that yield nearly
isotropic filling. In DMFT, the band anisotropy determines
different Hartree shifts �xy < �xz = �yz, thus effectively en-
hancing the difference in the local energies, until the band dxy
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FIG. 8. Characteristics of the metallic and insulating phases.
The diagonal density-matrix elements (filling) of the insulating state
close to the transition line, i.e., along �Uc(λ), are expressed in the
jeff (a) and in the t2g (b) basis, allowing for the discrimination of
two-band insulator (2BI) from one-band insulator (1BI). The Fermi
surface of the model system at �U = 0.0 eV (i.e., U = UcRPA) is
shown in the three-band metal phase (3BM) for λ = 0.21 eV (d) and
in the one-band metal phase (1BM) for λ = 0.31 eV (e).

becomes completely filled. Once this occurs, the system can
be effectively described by a two-band model with an average
filling of 〈n〉 ≈ 3/4 in the t2g representation. In that frame, the
amount of correlation is already sufficient to realize a Mott
insulating state for the dxz and the dyz bands.

In the opposite limit of large SOC, λ � 0.6 eV, we observe
a different situation. There, the critical line Uc(λ) is flat, nearly
independent of λ. We can reveal the reason for this behav-
ior by looking at the model in the noninteracting limit. For
λ � 0.6 eV, the jeff = 1/2 band is half filled, thereby being the
only one crossing the Fermi energy. Due to strong SOC, the
jeff = 3/2 states are already completely filled by construction,
even without interaction. Still, we will refer to this situation
as an effective single-band problem, since there is a nonneg-
ligible mixing in the nonlocal part of the TB Hamiltonian
between the |3/2; 1/2〉 and |1/2; 1/2〉 states. Thus, we are
in an effective single-band jeff = 1/2 problem at half filling,
whose Mott transition is entirely driven by interactions. We
finally note that the critical value of λc to realize this effective
single-band problem is in quantitative agreement with previ-
ous studies for similar model systems [58,59]. Any further
increase in λ > λc does not change this situation qualitatively,
which is why the critical interaction strength Uc is only mildly
affected. Also, this result turns out to be qualitatively in line

with previous studies on the Bethe lattice in the strong SOC
regime [59]. Since the jeff = 3/2 bands are already below
the Fermi level due to strong SOC, the critical interaction
strengths are lower than in the case of weak SOC.

In the intermediate range, for 0.1 � λ � 0.6 eV, the insu-
lating state still involves a single half-filled band, but a finite
interaction strength is needed to push the jeff = 3/2 band
below the Fermi level via a Hartree shift. The consequences of
this are particularly evident in the range 0.1 � λ � 0.2 where
�Uc(λ) develops a slope similar to the one in the weak SOC
regime and, on the metallic side, the transition goes directly
from a 3BM to a 1BM by increasing �U .

Given this analysis, we can draw some partial conclusions.
(i) As a consequence of the orbital polarization induced by
the ligand field δ, the transition is always orbital selective.
(ii) Due to the orbital polarization, the transition occurs over
the entire phase diagram for values of U which are moderate,
considering the electronic filling and the number of orbitals
involved. (iii) In the strong SOC regime, we have an effec-
tive single-band problem, which justifies the construction of
jeff = 1/2 models. For intermediate SOC, however, such an
effective 1BM is only valid close to the MIT.

Finally, Fig. 8(b) also provides some insights with respect
to the natural basis to formulate the problem. Most impor-
tantly, a single-orbital, selective transition in the jeff basis is
a pure Mott transition involving all states from the t2g view-
point. Moreover, upon increasing λ the entanglement of the
t2g orbitals increases and the electronic distribution is reshaped
within the orbital manifold, potentially leading to a perfectly
isotropic jeff = 1/2 state in terms of the t2g orbitals in the limit
λ → ∞.

B. Spin-orbit induced Lifshitz transition

Besides the MIT, we now investigate the nature of the
metallic phase, distinguishing the two topologically different
regions 3BM and 1BM. The dotted green line in Fig. 7 marks
this SOC-driven LT [56]. At �U = 0 eV, the transition oc-
curs at 0.2 < λ < 0.3 eV as shown in Figs. 8(c) and 8(d).
For λ = 0.21 eV, we have a clear jeff = 1/2 sheet dispersing
around the � point, but we can also recognize poles coming
from the two jeff = 3/2 bands at M = (π/a, π/a, 0). Those
poles disappear for λ = 0.31 eV, consistent with the electronic
structure shown in Fig. 5(e). Interestingly, for 0.09 � λ �
0.16 eV, the LT line merges with the MIT line. In that region,
the transition is the narrowest of the entire phase diagram
and we pass from a 3BM to a 1BI. By slightly tuning λ

and �U in this section of the phase diagram, all phases of
the system can be reached. Despite the value of λ being in
the typical order of magnitude observed for heavy 4d com-
pounds [44,60], a real material with these properties does not
exist so far. Nevertheless, it could show an intriguing and
exotic variety of competing phenomena as a function of λ, U ,
and δ. However, decreasing the interactions will increase the
value of λ necessary to induce the change of topology. Finally,
at λ = 0.6 eV the LT happens already in the noninteracting
limit U = 0 eV.

In this perspective, the three regions identified by the
dispersion of �Uc(λ) can be characterized in terms of a
more general argument: The large SOC regime is where

155120-8



RICH PHASE DIAGRAM OF THE PROTOTYPICAL … PHYSICAL REVIEW B 109, 155120 (2024)

FIG. 9. Phase diagram for Hund’s coupling J = 0.0 eV in (a) and
for J = 0.43 eV in (b). The phase diagrams are qualitatively similar
to the one shown in Fig. 7 at J = 0.22 eV.

the single band problem is realized without any correlation
by SOC. The intermediate SOC region is where this map-
ping onto the single band problem in correspondence to
the transition line occurs thanks to cooperation of SOC and
interactions. Ba2IrO4 and most of the iridium compounds
of the Ruddlesden-Popper series are actually placed in this
intermediate coupling region [7,26]. On the other hand, for the
weak SOC regime, a single-band picture is not valid, not even
close to Uc. Instead, within the intermediate and strong SOC
region, a single-band paramagnetic Mott transition is found,
induced by SOC.

C. The role of Hund’s coupling

Before investigating the impact of Hund’s coupling on the
picture derived so far, we note that despite J having been
formally introduced as a tensor on the correlated manifold,
the cRPA calculations yield the isotropic value of 0.22 eV on
the full t2g subset. Thereby, we can refer to it as a scalar with
no ambiguity.

We derived three U − λ phase diagrams depending on the J
value, the first being the one with respect to the ab initio value
(J = 0.22 eV) explained in detail in the previous sections.
In addition, we considered a vanishing Hund’s coupling and,
finally, we doubled the ab initio value. The resulting phase
diagrams are shown in Fig. 9. In analogy to Fig. 7, each of
them is composed by the four regions 3BM, 1BM, 2BI, 1B1.
Based on λ, the three regimes identified for J = 0.22 eV still
hold and the dispersion of �Uc(λ) is qualitatively the same in
all cases.

Overall, increasing the Hund’s exchange term delays both
the MIT and the LT, and can be interpreted as a footprint of
its competition with both U and λ. Considering J = 0.43 eV,
our calculations reveal a larger intermediate 1BM metallic
state between the 3BM and the 1BI for �U = 0.3 eV and
λ = 0.16 eV. Thus, the transition line directly separating
3BM from 1BI shortens for larger J . For λ = 0.31 eV, as
in Ba2IrO4, the MIT occurs at �U = 0.1 eV (0.3 eV) for

J = 0.0 eV (0.43 eV), respectively. The sensitivity of the
phase diagrams with respect to J shows that a multiorbital
treatment is required to describe the physics properly. In
particular, in the intermediate SOC regime, the coupling of
different orbitals through the exchange term can be substan-
tial. This fact and the presence of nonnegligible mixing terms
between the different pseudospin states renders Ba2IrO4 a
multiorbital compound in its essence.

D. U-T phase diagram

After having discussed the effects of SOC and exchange,
we now focus on values relevant to Ba2IrO4, i.e., λ = 0.31 eV
and J = 0.22 eV. Figure 10(a) shows the corresponding phase
diagram as a function of temperature and interaction strength
�U . We again quantify the MIT by the value of the spectral
function at the Fermi level, A0(�U, T ), now expressed as a
function of correlation strength and temperature.

In analogy with Sec. IV A, the transition is generally broad,
with a crossover region between the insulating and metallic
phases. We mark the middle of the crossover region, Um,
as well as the isovalue line of the spectral weight at the
Fermi level, �Uiso = �Uc(λ). The latter can serve as a guide
to identify the insulating phase and thereby an end of the
crossover region, similar to �Uc in the previous section. On
the other hand, �Um defines the inflection point of the spectral
function with respect to �U , ∂2

�U A0(�U, T )|�Um=0. Within
the crossover region, the spectral weight at the Fermi level is
suppressed with respect to the metallic phase, but it is still
nonvanishing due to thermal excitations.

The size of the crossover region, and the reference values
�Um, �Uiso, depend on the temperature. At high temperature,
290 � T � 190 K, the smooth and continuous metal-insulator
crossover extends over several hundreds of meV. For lower
temperatures, the crossover region gets narrower and turns
into a sharp transition line at T � 150 K. This is consistent
with the picture of a second-order end point of the first-order
MIT line known from the Mott transition [61,62]. We report
this temperature effect in more detail in Fig. 10(b), which
displays the evolution of A0(�U, T ) at different temperatures.

Figures 10(c) and 10(d) show the evolution of the spec-
tral function A(ω) for different temperatures, projected on
the jeff = 1/2 state for fixed �U . The quasiparticle peak for
�U = 0.1 eV is more pronounced for lower temperature,
indicating the formation of a well-defined Drude peak in the
metallic phase. Increasing the Coulomb interaction strength
to �U = 0.2 eV, we observe the opposite behavior: At
T = 290 K, the system is a bad insulator, with the spectral
weight very strongly suppressed, but not exactly vanishing.
The insulating gap forms upon decreasing temperature such
that at T = 145 K the system is insulating.

The moderate value of Uiso is actually very close to the
cRPA value, UcRPA, and well inside the estimated error mar-
gin due to the known overestimation of screening processes
within cRPA [52]. Most importantly, at �U = 0.2 eV, we
observe a gap at low temperature, which is in agreement with
experiments [25–27]. Given the experimental evidence of the
insulating state in Ba2IrO4, we take �U = 0.2 eV to compare
our calculations in the next section with experiments.
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FIG. 10. Temperature dependence of the metal-insulator transition. (a) U-T phase diagram for Ba2IrO4 with λ = 0.31 eV and J = 0.22 eV.
(b) Selected cuts at fixed temperature T for A0(�U, T ) showing the metal-insulator transition (crossover) at low (high) temperature. Red
crosses and black dots indicate the positions of the inflection point, �Um, and the isovalue line at A0 ≡ 10−2 eV, �Uiso, respectively. The
evolution of the spectral function A(ω) projected on the jeff = 1/2 state for different temperatures at �U = 0.1 eV (c) and �U = 0.2 eV (d).
The color schemes are the same as in (b).

V. THE ELECTRONIC STRUCTURE OF Ba2IrO4

In this section, we compare the electronic properties of
Ba2IrO4 evaluated within DMFT with existing literature,
focusing, in particular, on the spectral function. Based on the
conclusions of the previous sections, the calculations here are
performed on the three-band model at the inverse temperature
β = 80 eV−1 (T � 145 K) with a SOC constant λ = 0.31 eV,
and the Coulomb parameters U defined in table I increased
by an isotropic amount �U = 0.2 eV. Computational details
of the DMFT calculations and analytic continuations can be
found in Appendix A.

As already mentioned in Sec. IV, the MIT occurs there as
a selective Mott transition with filled jeff = 3/2 bands and
half-filled jeff = 1/2 states, which have well-defined LHBs
and UHBs.

The DOS of the DFT and DMFT calculations are shown
in Figs. 11(a)–11(c). Overall, the DMFT bandwidth is larger
than the DFT reference. The additional correlations within
DMFT open the Mott gap, leading to vanishing spectral
weight at the Fermi energy. Figure 11(b) reports the different
states in the jeff basis, revealing the opening of the Mott gap
in the jeff = 1/2 band. The distance between the maxima of
the DOS of the jeff = 1/2 UHB and the LHB ( jeff = 3/2
bands) is about 1.3 eV (1.9 eV). Optical conductivity mea-
surements of thin-film samples at room temperature showed
two pronounced peaks in the absorption coefficient, α at
∼0.78−0.79 eV and β at ∼1.43−1.50 eV, which were inter-
preted as stemming from excitations from the jeff = 1/2 LHB
and the jeff = 3/2 bands to the UHB, respectively [25,63].
Comparing these peak positions to our DMFT results, we find
that their distance within DMFT is ∼0.5 eV too large with re-
spect to experiments. As we will see below, the overestimation
of the energy gap can be traced back to an overestimation of
the binding energy at the X point. Studying the composition

of the jeff = 1/2 UHB, the contribution of the dxy orbital
is found to be lesser than the one of the dxz, dyz orbitals,
see Fig. 11(c). In particular, we have nxz = nyz = 0.807 and
nxy = 0.887. This anisotropy is consistent with the DFT and
cRPA findings discussed in Sec. II B. For more details on the
t2g-projected spectral function, see Appendix D.

Figure 11(d) shows the total k-resolved spectral function,
compared to bands extracted from ARPES measurements in
Ref. [27]. We focus first on our DMFT results. Consistently
with Fig. 11(a), the flat bands around the Fermi level in Fig. 5
at �U = 0 eV have been split into Hubbard bands, opening
an indirect band gap between � and M. The UHB exhibits a
clear and coherent dispersion over the full k path. With respect
to the DFT Kohn-Sham band structure, the jeff = 3/2 bands
show a negligible renormalization, resulting from a nearly flat
imaginary self energy at low frequencies. The LHB of the
jeff = 1/2 state shows instead a rather incoherent behavior,
see Fig. 11(d).

Comparing with experimental data of Refs. [26,27], we
find a nearly perfect agreement around the M point, where the
bands have a prominent jeff = 3/2 character. The correspond-
ing binding energy of 0.35 eV matches well with experiments
(0.4 eV [26] and 0.26 eV [27]). The good agreement holds for
the full dispersion of the jeff = 3/2 band.

The situation is different for the jeff = 1/2 band. In the ex-
perimental spectrum, the jeff = 1/2 band has a peak at X with
a binding energy in between 0.21 eV [26] and ∼0.3 eV [27],
leading to the gap opening at the X point. In our DMFT simu-
lations, however, the binding energy at that point corresponds
to 0.71 eV. We attribute this mismatch to the absence of
antiferromagnetic fluctuations and local moment formation: A
cooperation of band folding due to the doubling of the unit cell
and modifications of the band structure due to the inclusion of
short-range correlations should suppress the jeff = 1/2 peak
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FIG. 11. Spectral function of Ba2IrO4. (a) Comparison between DFT and DMFT density of states as well as the orbital-resolved spectral
function of the latter in the jeff basis (b) and in the t2g basis (c). The total k-resolved spectral function is shown in (d), its jeff = 1/2 component
in (e). The DFT band structure of the jeff bands is shown in white lines; orange and blue points correspond to intensity maxima of energy
distribution curves extracted from the ARPES measurements of Ref. [27]. All DMFT calculations were done for �U = 0.2 eV at β = 80 eV−1.

at M, and shift the peak at X to smaller binding energy.
Including nonlocal correlations in a cluster-DMFT treatment
of the paramagnetic phase might improve the agreement with
experiments as it was, for instance, shown for Sr2IrO4 [64,65].
On the other hand, the completely filled jeff = 3/2 bands are
rather insensitive to these effects.

Selected k-resolved spectra at the X and M points are
shown in Fig. 12, where we also plot ARPES data from
Ref. [26]. Compared to the thin-film samples measured in
Ref. [27], the band structure of bulk samples from Moser
et al. [26] is shifted to larger binding energies, and the energy
difference of the features at X and M is smaller. Our difference
to experiments consists mainly of two aspects: (i) We overesti-
mate the binding energy at X . (ii) The corresponding intensity
of the two peaks is quite different, due to the broadening of
the jeff = 1/2 state. In addition to the total spectral function
of our DMFT calculations, we also show its decomposition
into jeff states. Due to the incoherent nature of the jeff = 1/2

FIG. 12. Details of the spectral function. Electron distribution
curves (EDC) of ARPES measurements from Refs. [26,27] are com-
pared to the DMFT spectral function at the high-symmetry k-points
X (a) and M (b). Dots mark maxima of the intensity; in case of the
DMFT spectra, contributions of the jeff states are shown separately.

LHB, and despite the binding energy at X having a prominent
jeff = 1/2 character, the intensity coming from the jeff = 3/2
bands dominates the total spectral intensity. Both peaks at
X and M are thus essentially of jeff = 3/2 character. For
additional plots of the spectral function that allow for a direct
comparison with Ref. [26], we refer the reader to Appendix E.

To compare our calculations in more detail with experi-
ments, we show some constant energy (CE) maps in Fig. 13.
For an energy of −0.3 eV, we only observe large spectral
weight at M, consistent with Fig. 11. In analogy with the
previous discussion, this feature is consistent with Ref. [27].
However, the peak observed in ARPES spectra at X is absent
in our calculations.

In Ref. [26], a backfolding of the bands is reported with
less intensity in the antiferromagnetic BZ. To compare with
the spectra in the antiferromagnetic phase, we have to de-
fine two different BZs depending on the magnetic state, see
Fig. 13. There, the different high-symmetry k points are in-
dicated as �∗ = {�, M}, M∗ = X in the corresponding colors
as well.

Even though our DMFT calculations are paramagnetic, we
now mimic the effect of antiferromagnetism via backfolding
of the bands into the small BZ. To reproduce an emerging
antiferromagnetic ordering, we show in Figs. 13(b) and 13(c)
spectra with 25% spectral weight of backfolded and 75%
original bands. With respect to ARPES spectra in Ref. [26],
our calculation still misses the peak at X (M∗) for low-energy
states, but increasing the binding energy of the energy cuts
leads to better agreement. In the total spectral function, how-
ever, the features stemming from the jeff = 1/2 band are
heavily suppressed. This is due to the large incoherence of
the jeff = 1/2 LHB, causing a large difference in intensity
with respect to contributions from the jeff = 3/2 bands. We
therefore show in Fig. 13(d) the projection on the jeff = 1

2
band separately. Substantiating the previous discussion, spec-
tral weight is visible in a square around X for the CE map at
E = −0.7 eV.
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FIG. 13. Isoenergy maps of the spectral function. (a) Color plot
of A(k, E = −0.3 eV) in the large BZ indicated in blue. In violet,
we indicate the small BZ relevant for the antiferromagnetic phase.
(b), (c) CE map with backfolding into the small BZ at E = −0.3 eV
and −0.7 eV, respectively. (d) Focus on the jeff = 1

2 projection for
E = −0.7 eV. To mimic an emerging antiferromagnetic order, (b)–
(d) show the spectral weight of 25% of the folded bands and 75% of
the unfolded ones.

VI. CONCLUSIONS

In this paper, we simulated the electronic structure of
Ba2IrO4 by performing realistic DMFT calculations based on
models derived from ab initio DFT and cRPA simulations.
In particular, we presented two models of Ba2IrO4 including
Ir-t2g and Ir-5d Wannier functions, respectively. We solved
both models within the DFT+DMFT scheme, using a full
Coulomb tensor U evaluated from cRPA. To the best of our
knowledge, the five-band Ir-5d calculation is the first pre-
sented in literature for compounds with strong SOC. Within
this framework, we found a good agreement between the two
DMFT solutions, validating the use of the simpler t2g model
that fully retains the low-energy physics of the system.

Limitations of the Ir-t2g model must be searched in the
empty part of the spectrum, populated by the upper jeff =
1/2 Hubbard band only. According to our five-band model,
the Ir-d̃x2−y2 band is situated close in energy, which limits
the predictive power of the Ir-t2g model when it comes to
the description of spectroscopies that probe the hole sector
of the spectrum. This might be the case for optical con-
ductivity measurements at energies in the ∼eV range [25],
time-resolved ARPES experiments [66], or for probing in-
elastic excitations, for instance via resonant inelastic x-ray
spectroscopy [49].

Using the Ir-t2g model, we studied the interplay between
SOC, Coulomb interaction, and Hund’s exchange, showing
how SOC influences the physics of compounds with a 5d5

configuration and the ligand-field of Ba2IrO4. To that aim,

we varied the isotropic (F0 monopole) term of the ab ini-
tio Coulomb tensor U , the SOC strength λ, and the Hund’s
exchange J . The resulting phase diagram is remarkably rich.
Three different regions were identified: In the weak SOC
regime, for 0 � λ < 0.1 eV, the t2g physics dominates and
small variations of λ imply large changes of the critical in-
teraction strength of the MIT, Uc. In contrast, in the large
SOC regime, i.e., for λ > 0.6 eV, an effective single-band
jeff = 1/2 model is realized even with no interactions, and the
critical interaction strength Uc(λ) for the Mott transition stays
nearly constant. The Mott transition is thereby U driven. At
intermediate SOC, i.e., 0.1 eV � λ � 0.6 eV, a finite value of
U with the resulting Hartree shifts is needed to yield an effec-
tive single-band jeff = 1/2 picture. Furthermore, λ plays an
important topological role: We identified two distinct regions
in the metallic regime, characterized by a SOC-induced topo-
logical (Lifshitz) transition. Overall, the transition towards the
insulating phase can therefore be referred to as spin-orbit Mott
transition.

Ba2IrO4 is located in the intermediate SOC region with
λ = 0.31 eV. This proximity to both the MIT and phases with
different band topologies is intriguing and could guide mate-
rial design in the future. Even though, in practice, changing
the SOC constant λ via chemical substitution goes in hand
with modifications of the electronic structure and Coulomb
interaction as well, we note that reducing λ would drive the
system to such an interesting point of phase competition.
This could be, in principle, realized by substituting Ir by
4d transition metal atoms like Ru (λRu ≈ 0.1 eV [67]). In
Sr2IrO4, however, it is still debated whether a Ru substitution
can be interpreted via a reduction in the effective SOC of the
material [68,69].

At low temperature, we find an insulating state matching
with experiment for U = UcRPA + 0.2 eV. Investigating the
Mott transition of Ba2IrO4 at higher temperature, we obtain
a crossover resembling the one above the second-order end
point of the Mott transition in the single-band Hubbard model.
We expect the corresponding first order Mott transition to
appear for T � 150 K.

Nevertheless, a treatment within a three-orbital framework
is essential to properly describe the spectroscopic properties
of the system. This is rooted in the nonnegligible orbital
mixing within the TB model and the proximity of jeff = 3/2
bands to the Fermi level, consistent with the strong inter-
twining of the jeff = 1/2 and jeff = 3/2 manifolds observed
in optical conductivity measurements [25]. Similar to recent
studies for Sr2IrO4 [21,70], this, in particular, casts doubts on
the validity of the single-band jeff = 1/2 picture upon doping.
Coming back to the parallel of Ba2IrO4 with cuprates, we
note that the general question on the validity of an effective
one-band model upon doping has been intensely discussed for
these systems, e.g., in the context of the Zaanen-Sawatzky-
Allen diagram [30] and the Zhang-Rice band [31,71,72].
Even though these models rather address the question of the
hybridization with oxygen orbitals and the resulting charge
transfer, the hierarchy of different ab initio multiband models
with respect to the energy scales that can be correctly captured
is similar [32,73,74].

Comparing the spectral function with existing ARPES ex-
periments, our DMFT solution shows good agreement within
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the jeff = 3/2 bands. On the other hand, our results do
not perfectly match the experimental characterization of the
jeff = 1/2 band. Especially at the X point of the BZ, the
calculated binding energy is overestimated by ∼0.5 eV. We
interpret this difference as a consequence of the absence
of nonlocal correlations and antiferromagnetic fluctuations,
which could be included, for instance, via cluster extensions
of DMFT. We also envision the effective three- and five-band
models developed in this paper to be important for investigat-
ing the change of the Ba2IrO4 spectral function upon doping.
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APPENDIX A: COMPUTATIONAL DETAILS

The DFT calculations were performed with QUANTUM

ESPRESSO v6.8 [75,76] using a 8×8×8 Monkhorst-Pack k-
point grid centered at � and a 90 Ry energy cutoff for the
wave-function expansion with the PBE functional [38] for
Ba2IrO4. We used Optimized Norm Conserving Vanderbilt
pseudopotentials [77] from the PseudoDojo database [78]
with (fully relativistic) scalar relativistic corrections for the
(non-)spin-orbit calculations.

To determine the optimal value of λ using a local SOC
term, we used a fitting procedure based on DFT calculations
with and without SOC. We followed the procedure described
in Ref. [36], which consists of the following steps:

(1) Build a TB Hamiltonian for a non-SOC DFT calcula-
tion using MLWFs.

(2) Compute the spin-orbit coupled band structure within
DFT (DFT+SOC).

(3) Find the optimal value for the SOC parameter, where
the spin-orbit coupling is a local term added to the TB Hamil-
tonian: Minimize the difference between the energies of the
model Hamiltonian with local SOC term and the DFT+SOC
band structure.

In Fig. 14, we show the band structure of the resulting
no-interacting model as compared to the DFT+SOC band
structure.

FIG. 14. Fit of the Wannier functions with a local spin-orbit
coupling Hamiltonian compared to the DFT+SOC band structure.
(a) Three-band model. (b) Five-band model.

The cRPA calculations were performed using RESPACK
V20200103 [79]. The Wannier functions were obtained for
the t2g subspace with a 0.8 coefficient on the initial guess
Gaussians. The disentanglement was constrained within the
t2g band energy range and a frozen window spanning from
10.40 eV to 12.55 eV was chosen. The polarization function
was computed using a cutoff of 3.6 Ry and 100 bands. The
imaginary broadening of the Green’s functions was set to
0.1 eV for the cRPA calculations.

The DMFT calculations were performed using TRIQS
software [46], in particular, the DFTTools package [48] for the
k-point summations and the CT-HYB impurity solver [47].
The calculations of the five-band model in Sec. III were
converged using 28×106 measurements and 86×106 mea-
surements were performed at the last iterations. For the
three-band model in Secs. III, IV, and V we sampled with
72×106 counts over the DMFT loop and we converged the
last iterations with 96×106 measurements. The k-point sum-
mations were performed using the Wannier Hamiltonian on
the same 8×8×8 Monkhorst-Pack grid as the DFT calcula-
tions. In our paper, we investigated a temperature range from
T ≈ 115 K to 290 K. For the insulating phase, especially
within the transition region, convergence has been achieved
for 30 − 40 iterations. To cope with the sign problem, first the
calculations were converged at a higher temperature, ensuring
an average sign greater than 0.5. Then, the temperature was
lowered, carefully monitoring that the average sign stayed
above 0.2.

The analytic continuations were performed using the max-
imum quantum entropy method [80] with a smearing factor
between 5×10−3 eV and 1×10−2 eV.

APPENDIX B: OPTIMIZED ATOMIC COORDINATES

In the following, we list the atomic positions within the
experimental primitive unit cell, which were optimized using
the PBE functional; see Table IV.

APPENDIX C: INTERPOLATION DETAILS
FOR THE PHASE DIAGRAMS

In Sec. IV, we used an interpolation scheme to obtain
the two phase diagrams shown. To that aim, we started from
A0(λ,�U ) on a finite grid (λ,�U ), which contains points at
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TABLE IV. Crystal structure of Ba2IrO4. Unit cell vectors (in Å)
from Ref. [14] and optimized atomic positions in reduced coordi-
nates.

Unit cell vectors x y z

v1 −2.015 2.015 6.667
v2 2.015 −2.015 6.667
v3 2.015 2.015 −6.667

Atom v1 v2 v3

Ba 0.6456 0.6456 0.0000
Ba 0.3544 0.3544 0.0000
Ir 0.0000 0.0000 0.0000
O 0.1553 0.1553 0.0000
O 0.8447 0.8447 0.0000
O 0.5000 0.0000 0.5000
O 0.0000 0.5000 0.5000

the edges of the diagrams and across the transition line. Then,
for each λ, we fitted the profile of A as

A0(λ,�U ) = a(λ̄)

1 + eb(λ̄)(�U−�Um (λ̄))
. (C1)

Then, by fitting the parameter a(λ), b(λ) and �Um(λ) on
a denser grid of λ, we reconstructed the corresponding Fermi
function for each value of a, b and �Um on the denser grid.
We stress that by construction �Um is exactly the inflection
point of the Fermi function. Critical isovalue lines are found
for a given threshold value by false position method.

APPENDIX D: DMFT SPECTRAL FUNCTION
PROJECTED ON t2g STATES

Figure 15 displays the k-resolved spectral function for
�U = 0.2 eV projected onto the t2g basis. To highlight the

FIG. 15. Spectral function in the t2g basis. We plot the k-resolved
spectral function shown in Fig. 11 of the main text, projected onto the
t2g orbitals. Experimental data points from ARPES measurements of
Ref. [27] corresponding to the jeff = 1/2 contribution to the spec-
trum are shown by orange dots.

FIG. 16. Additional plots of the spectral function of Ba2IrO4.
(a) Sketch of the different BZ for the paramagnetic (blue) and anti-
ferromagnetic structure (violet). (b)–(e) k-resolved spectral function
along different high-symmetry paths, allowing a direct comparison
with the spectra published in Ref. [26].

contribution of the orbital basis with respect to the jeff = 1/2
band, we also report data extracted from Ref. [27]. We note
strong hybridization between the t2g states, especially between
dxz and dyz, which is expected from SOC, see Eq. (5). Here, we
can see that at X (Y), the main contribution to the jeff = 1/2
state comes from the dxz (dyz) orbital. In analogy with Fig. 4,
the contribution from the dxz (dyz) orbital is only relevant in
the path X-M-X (Y-�-Y) and vanishes otherwise.

APPENDIX E: ADDITIONAL PLOTS OF THE
k-RESOLVED SPECTRAL FUNCTION A(k, ω)

In this Appendix, we report the k-resolved spectral func-
tion along additional high-symmetry paths of the BZ, in anal-
ogy to the ones reported in Ref. [26]. We performed backfold-
ing to simulate the effect of antiferromagnetic order and mim-
icked an emerging magnetic order by mixing the intensities of
unfolded and backfolded spectra in analogy with Sec. V.

Figure 16(a) shows the two BZs corresponding to the para-
magnetic BZ (blue line) antiferrmomagnetic BZ (in violet).
We folded the bands in the smaller BZ and mixed 25% of
the backfolded bands to 75% of the unfolded ones in analogy
with Sec. V. Comparing directly to the experimental data
of Ref. [26], we obtain very good agreement concerning the
jeff = 3/2 bands, but the peak at X (M∗) stemming from the
jeff = 1/2 band is both underestimated in spectral weight and
shifted to too high binding energy. As discussed in the main
text, we attribute this to the absence of antiferromagnetic
fluctuations in our DMFT calculations.
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