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Two-channel Kondo problem in coupled interacting helical liquids
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We study the two-channel Kondo problem in the context of two interacting helical liquids coupled to a spin- 1
2

magnetic impurity. We show that the interactions between the two helical liquids significantly affect the phase
diagram and other observable properties. Using a multichannel Luttinger liquid formalism, we analyze both the
Toulouse limit, where an exact solution is available, and the weak coupling limit, which can be studied via a
perturbative renormalization group (RG) approach. We recover the results for the decoupled limit (interactions
between the helical liquids switched off) and point out deviations from the known results due to this coupling.
The model under study is mapped to a model of two effectively decoupled helical liquids coupled to an
impurity. The perturbative RG study shows that each of these channels can flow to either a ferromagnetic or
an antierromagnetic fixed point. We obtain the phase diagram of the coupled system as a function of the system
parameters. The observable consequences of the interaction between the two channels are captured using linear
response theory. We compute the negative correction to the conductance due to the Kondo scattering processes
and show how it scales with the temperature as a function of interchannel interaction.
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I. INTRODUCTION

Topological systems have been at the center of research in
condensed matter physics due to their exotic properties, one
of them being the existence of topologically protected bound-
ary modes [1–3]. In the case of two-dimensional topological
systems, these modes are robust one-dimensional channels.
The quantum spin Hall insulators, for example, host helical
channels at the edge of the sample by virtue of time-reversal
symmetry of the bulk Hamiltonian [4–6]. For the purpose of
our paper, we specifically focus on one-dimensional helical
channels present in two-dimensional topological systems. We
emphasize that the low-energy regime of these systems is
spanned by the states representing helical channels of one-
dimensional nature.

A peculiarity of one dimension is that, in spite of the
presence of Coulomb interaction, the system remains exactly
solvable, under certain conditions. It is well understood that
the interacting physics of these edge modes is described
by the Luttinger liquid (LL) theory [7–9]. The applicability
of the LL formalism can be attributed to the linear dispersion
of the edge states at low energies and to the topological pro-
tection against various back-scattering processes. However,
such systems may not be exactly solvable in the presence
of impurities. Here we are interested in studying the effect
of a single magnetic impurity on the one-dimensional helical
channels formed at the boundary of two-dimensional topolog-
ical systems, taking Coulomb interaction into account. The
LL formed by the helical channel in the presence of Coulomb
interaction is termed helical liquid (HL).

It is well-known that the Kondo effect describes the inter-
action between conduction electrons and a localized magnetic
moment [10–15]. This phenomenon can also be investigated

when Coulomb interaction is present in the conduction chan-
nel [16,17]. So far, there have been studies addressing the
problem of a spin- 1

2 magnetic impurity coupled to a single
HL [18–25], as well as to two HLs [26–29]. In particular,
Posske et al. [27] studied the problem of two HLs decoupled
from each other and coupled to a magnetic impurity. They
considered the Toulouse limit, where the model is exactly
solvable, and analyzed the behavior of the Kondo screening
cloud.

Here, we study a model of two interacting HLs coupled to
a spin- 1

2 magnetic impurity, allowing for forward scattering
processes between the two HLs which preserve the symme-
tries of the bare Hamiltonian. We show that the inclusion of all
forward scattering processes allowed by symmetry modifies
the properties of the system and has observable consequences.
The model can be mapped to a model of two decoupled
channels interacting with the impurity. For a specific set of pa-
rameter values (the so-called Toulouse point), the mapping is
essentially an Emery-Kivelson [30] mapping, which reduces
the interacting system to an exactly solvable two-channel
resonant-level model [30–32]. Away from the Toulouse point,
the mapping still works, but the model is no longer solv-
able. We then use perturbative renormalization group (RG)
techniques to study the effects of the Kondo interaction. Per-
turbative RG techniques have been very instrumental in the
study of Kondo effects [7,10,11]. One can use this technique
to study the fixed points (FPs) of the model, even though the
model is not exactly solvable. One can further look into how
these FPs are modified as a function of system parameters. We
note that, previously, the effect of scalar disorder was studied
in the context of a two channel LL setup [33,34] using the
multichannel Luttinger liquid (MLL) formalism. Our analysis
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FIG. 1. Schematic picture of the system under study. Two HLs,
labeled by the index j = 1, 2, propagate along the translational in-
variant direction x̂. The right-moving fermions carry a spin-up (↑)
index and the left-moving fermions a spin-down (↓) index. The two
HLs are in close proximity to each other and are coupled to a spin- 1

2
impurity, located at x = 0.

extends the study of impurities in a MLL setup to magnetic
impurities as well.

The rest of the paper is as follows. In Sec. II, we introduce
the model of two interacting HLs coupled to a spin- 1

2 impurity.
We diagonalize the interaction terms (without the impurity)
and, by using unitary transformations, recast the coupling to
the Kondo impurity into a simpler form. In Sec. III, we focus
on the Toulouse point, where the model can be reduced to
an exactly solvable one, and compute the impurity spectral
function. In Sec. IV, we move away from the exactly solvable
point and use the perturbative RG method to obtain the Kondo
temperatures for both channels and to study the FPs as a
function of the system parameters. In Sec. V, we present the
explicit form of the correction to the conductance of the cou-
pled HLs, arising due to the Kondo effect, as a function of the
temperature. Finally, in Sec. VI, we present our conclusions
and provide an outlook. Throughout this paper, we set h̄ = 1.

II. MODEL

We consider a system of two interacting HLs coupled to a
magnetic impurity expressed by the model Hamiltonian H =
HLL + HK, where HLL describes the bulk of the HLs and HK

represents a magnetic impurity coupled to the HLs. The bulk
Hamiltonian takes the well-known form HLL = H0 + Hint,
where H0 is the bare part and Hint accounts for the Coulomb
interaction present in the HLs. There have been several pro-
posals for platforms where one can study the physics of two
interacting HLs brought close to each other [9,27–29]. In
particular, we mention the work by Tanaka and Nagaosa [9],
where the authors studied different arrangements of two in-
teracting HLs. Motivated by their proposal, one can think of
placing the edges of two-dimensional samples side by side or
on top of each other for studying a coupled system of HLs (see
Fig. 1).

We begin by writing the bare part of the model
as [4,5,7–9]

H0 = −i
∑

j,s

sv j

∫
dx�†

j,s∂x� j,s, (1)

where � js are the field operators for the jth channel, with
j ∈ {1, 2}, and v j are the Fermi velocities. We assume that the
right-moving modes, denoted by s = +, carry spin up and the
left-moving modes, denoted by s = −, carry spin down.

Next, we write the interacting part of the model arising
from the (screened) Coulomb interaction. We allow forward

scattering processes between the two channels, which we
write as

Hint =
∫

dx
[
g(1)

4

(
ρ2

1R+ ρ2
1L

)+ 2g(1)
2 ρ1Rρ1L + g(2)

4

(
ρ2

2R + ρ2
2L

)
+ 2g(2)

2 ρ2Rρ2L + 2g(12)
4 (ρ1Rρ2R + ρ1Lρ2L )

+ 2g(12)
2 (ρ1Rρ2L + ρ1Lρ2R)

]
, (2)

where ρ j,s = �
†
j,s� j,s is the fermionic density operator. Here

gζ
2, gζ

4 follow the standard g-ology convention with gζ
2 denot-

ing forward scattering processes involving density operators
of movers in opposite directions and gζ

4 denoting pro-
cesses with movers in the same direction. The superscript
ζ = 1, 2 denotes scattering within individual channels j =
1, 2, whereas ζ = 12 denotes scattering involving both
channels. Equation (2) includes two types of processes: in-
trachannel and interchannel. In Appendix A, we study their
relative strengths. We estimate the interaction strengths from
the electrostatic Coulomb energy [35–37]. The estimation
gives the magnitude of the interchannel interaction strength
relative to the intrachannel interaction, which is known from
a single-channel analysis. It shows that, in an experimentally
relevant parameter range, the former is smaller than the latter
but remains of the same order.

These interacting liquids are coupled to a spin- 1
2 impurity,

with the Kondo Hamiltonian given by

HK =
∑

j,s

Jz, j s�
†
j,s(0)� j,s(0)σ z

+
∑
j=1,2

J⊥, j (�
†
j,+(0)� j,−(0)σ− + H.c.), (3)

where Jz, j and J⊥, j are the Kondo couplings for the jth chan-
nel and σ z, σ± = σ x ± iσ y are the spin- 1

2 operators for the
impurity located at x = 0.

To proceed further, we employ the bosonization tech-
nique [38–40]. Since an HL has the same number of degrees
of freedom as a spinless LL [18], two bosonic fields φ j, θ j are
sufficient to bosonize the Hamiltonian H . We bosonize the
fermion operator using the identity [38–40]

� j,s = (2πξ j )
−1/2e−i

√
π (θ j−sφ j ), (4)

where ξ j is a microscopic cutoff length for channel j. The
Klein factors have been neglected since they always appear
in pairs in the quantities of interest we compute. We note
that ρ j,s = 1

2
√

π
∂x(φ j − sθ j ) and � j = ∂xθ j . By combining

the bosonized H0 and Hint, we arrive at the MLL Hamiltonian

HLL = H0 + Hint = 1

2

∫
dx(∂x�

T Mφ∂x� + ∂x
T Mθ ∂x),

(5)

where we have used the notation � = (φ1 φ2)T ,  =
(θ1 θ2)T , and

Mi j
φ =

(
vi + g(i)

4 + g(i)
2

π

)
δi j + g(12)

4 + g(12)
2

π
(1 − δi j ), (6)

Mi j
θ =

(
vi + g(i)

4 − g(i)
2

π

)
δi j + g(12)

4 − g(12)
2

π
(1 − δi j ). (7)
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We can now diagonalize HLL using standard methods (see,
e.g., Refs. [41,42]). We assume that HLL is diagonal in ̃ and
�̃ fields, where �̃ = (φ̃1 φ̃2)T , ̃ = (θ̃1 θ̃2)T and �̃ j = ∂x θ̃ j .
These fields are related to the � and  fields via linear trans-
formations � = Vφ�̃ and  = Vθ ̃ such that ̃T �̃ = T �.
This condition guarantees that the transformations preserve
the canonical commutation relation between the fields. The
explicit forms of Vφ and Vθ are found to be

Vφ = U T
φ D

− 1
2

φ UTD 1
4 , (8)

Vθ = U T
φ D

1
2
φUTD− 1

4 , (9)

where Uφ is a matrix that diagonalizes Mφ of Eq. (6) and Dφ is
a diagonal matrix with the eigenvalues of Mφ as its diagonal
entries. The orthogonal matrix U and the diagonal matrix D
are obtained from the product of matrices D

1
2
φUφMθU T

φ D
1
2
φ by

diagonalizing as D
1
2
φUφMθU T

φ D
1
2
φ = UTDU . This procedure

enables us to write the two-channel LL Hamiltonian HLL =
H0 + Hint as

HLL =
∑
j=1,2

u j

2

∫
dx[(∂x θ̃ j )

2 + (∂xφ̃ j )
2], (10)

where the renormalized velocities u j are the diagonal entries
of D 1

2 . The Kondo Hamiltonian, in terms of the new fields,
takes the form

HK =
∑
j=1,2

[
− J̃z, j√

π
�̃ j (0)σ z

+ J⊥, j

2πξ j

(
ei2

√
π[V j1

φ φ̃1(0)+V j2
φ φ̃2(0)]σ+ + H.c.

)]
, (11)

where

J̃z, j =
∑

k=1,2

Jz,kV
k j
θ . (12)

At this point, we make a short digression to understand the
decoupled limit from the calculations done so far. We notice
that if we neglect the interchannel interactions, g(12)

2,4 = 0, then
Mφ,θ are diagonal. Hence Vφ and Vθ are also diagonal and
given by V i j

φ = √
Kjδi j and V i j

θ = δi j/
√

Kj , where

Kj =
√

1 + g( j)
4 − g( j)

2

πv j

/√
1 + g( j)

4 + g( j)
2

πv j

is the usual LL parameter for channel j. Therefore, φ̃ j =
φ j/

√
Kj , �̃ j = √

Kj� j , u j = v j/Kj , and J̃z, j = Jz, j/
√

Kj ,
and we recover the Hamiltonian considered in Refs. [27,28].

The Hamiltonian (10) describes two effectively decoupled
HLs obtained by the diagonalization procedure when g(12)

2,4 �=
0. The new decoupled fields φ̃ j have been used to rewrite
the Kondo Hamiltonian. We observe from Eq. (11) that both
fields φ̃1 and φ̃2 appear in each of the exponential terms of
HK. This is a manifestation of the finite interchannel scattering
processes g(12)

2,4 . Hence, even if HLL can be cast into a diagonal
form, the Kondo Hamiltonian still couples the two fields. We
proceed further to reduce the full Hamiltonian H to a Hamilto-
nian describing two decoupled interacting channels coupled to

a single Kondo impurity, by devising a unitary transformation
Ud = ei2

√
π (λ1φ̃1(0)+λ2φ̃2(0))σ z

and choosing λ1,2 appropriately to
arrive at H̃ ≡ UdHU †

d given by

H̃ =
∑
j=1,2

[
u j

2

∫
dx

[
�̃2

j + (∂xφ̃ j )
2
]

− J̃ ′
z, j√
π

�̃ j (0)σ z + J⊥, j

2πξ j

(
ei2

√
πκ j φ̃ j (0)σ+ + H.c.

)]
, (13)

where

κ j = V j j
φ − V j̄ j

φ and J̃ ′
z, j = J̃z, j − 2πu jV

j̄ j
φ . (14)

Here, j̄ = 2, 1 for j = 1, 2. We refer to Appendix B for the
details of the derivation. We use this Hamiltonian in Sec. IV
to derive the RG flow of the Kondo couplings.

Alternatively, we can use the unitary transformation to can-

cel the J̃z, j terms. This is accomplished by setting λ j = − J̃z, j

2πu j
,

as shown in Appendix B. We then arrive at

H̃ =
∑
j=1,2

[
u j

2

∫
dx

[
�̃2

j + (∂xφ̃ j )
2
]

+ J⊥, j

2πξ j

(
ei2

√
π

∑
k κ jk φ̃k (0)σ+ + H.c.

)]
, (15)

where we have defined

κ jk = V jk
φ − J̃z,k

2πuk
. (16)

This Hamiltonian is the starting point for the calculation of
observables. In the next section, we study a particular limit in
which H = HLL + HK is exactly solvable, and in Sec. IV we
use the perturbative RG approach to study the weak coupling
limit beyond the solvable point.

Before moving on, we briefly comment on the nonlinear
terms that have been omitted in the interacting Hamiltonian.
In general, the inclusion of interaction-induced backscatter-
ing operators can open a gap and render the gapless LL
physics invalid. However, a HL is topologically protected
against intrachannel backscattering terms. We consider here
a regime in which also the interchannel backscattering terms
are negligible [9]. Furthermore, we assume that the system
is away from half filling and neglect all Umklapp scattering
processes, including both the intrachannel as well as the in-
terchannel processes [9], as further discussed in Appendix C.
In the same Appendix, we also show that the Kondo spin-flip
scattering involving two different channels becomes irrelevant
under certain conditions on the system parameters. In this
paper, we only take into account the intrachannel Kondo spin-
flip scatterings, assuming that the aforementioned irrelevance
conditions are satisfied. All these considerations are based on
the scaling dimensions of various operators, as is standard in
studies of LLs [7,9,18,19,23,25,27].

III. EXACTLY SOLVABLE POINT

In this section, we show that for special values of the sys-
tem parameters, the model admits an exact solution [30,43].
In fact, for the Hamiltonian (15), there are two possible sets

155119-3



BISWAS, DE MARTINO, RAO, AND KUNDU PHYSICAL REVIEW B 109, 155119 (2024)

TABLE I. Values of the system parameters used in Fig. 2. The
blank boxes with dots stand for the parameters which are varied in
the plots.

v2/v1 g(1)
2 /v1 g(2)

2 /v1 g(1)
4 /v1 g(2)

4 /v1 g(12)
2 /v1 g(12)

4 /v1

A1 1.5 2.0 π 2.4 π 2.2π 2.5π . . . . . .

A2 0.5 1.25π 1.4π 1.4π 1.5π . . . . . .

A3 0.4 1.2π 1.4π 1.6π 1.5π . . . . . .

B1 . . . 1.45π 1.475π 1.6π 1.6π 0.35 . . .

B2 . . . 1.45π 1.475π 1.5π 1.5π 0.5 . . .

B3 . . . 1.45π 1.65π 1.6π 1.75π 0.75 . . .

of conditions under which the mapping can be achieved. The
first set of conditions is

κ11 = κ22 = 0, κ2
12 = κ2

21 = 1
2 . (17)

The first condition ensures that the two channels decouple,
i.e., only one field appears in each exponential operator in
the Kondo interaction. The second ensures that the Kondo
interaction has the scaling dimension of a fermionic field.
Using Eq. (16), this set of conditions can be written in terms
of Vφ and J̃z, j as

J̃z,1 = 2πu1V
11
φ , J̃z,2 = 2πu2V

22
φ , (18)(

V 11
φ − V 21

φ

)2 = (
V 22

φ − V 12
φ

)2 = 1
2 . (19)

These conditions can only be satisfied when Vφ is a nondi-
agonal matrix. When these conditions hold, the two-channel
Kondo problem can be mapped to a resonant-level prob-
lem [30–32]. We can find out the solution in terms of the
system parameters, using the definition of Vφ .

Note that the alternative choice

κ12 = κ21 = 0, κ2
11 = κ2

22 = 1
2 (20)

becomes

J̃z,1 = 2πu1V
21
φ , J̃z,2 = 2πu2V

12
φ , (21)(

V 11
φ − V 21

φ

)2 = (
V 22

φ − V 12
φ

)2 = 1
2 . (22)

We see that Eq. (22) is precisely the same as Eq. (19). Both
choices lead to the reduction of Eq. (15) to a resonant-level
model with two noninteracting channels coupled to a sin-
gle magnetic impurity. Since the exact solution depends on
relationships between different parameters of the model, it
is clear that as the parameter values change; it is only for
certain values that we will get an exact solution. In Fig. 2,
we plot the two conditions (V 11

φ − V 21
φ )2 − 1

2 ≡ V 1
sol = 0 and

(V 22
φ − V 12

φ )2 − 1
2 ≡ V 2

sol = 0 as a function of two parameters
at a time (the other parameters have been fixed at the values
given in Table I). Then, the intersections of the curves V 1

sol = 0
and V 2

sol = 0 give the points where an exact solution is possi-
ble. As discussed in the previous section, one has to choose the
parameters in a way such that Eq. (15) is sufficient to describe
all possible scattering processes. Following the analysis done
in Appendix C, we make the choice of the parameters in a way
such that

1

4

∑
j=1,2

(
V 1 j

θ − V 2 j
θ

)2 + 1

4

∑
j=1,2

(
V 1 j

φ ∓ V 2 j
φ

)2
> 1. (23)

FIG. 2. Two lines given by V 1
sol = 0 and V 2

sol = 0 are plotted as a
function of system parameters. The intersection of these two lines
denotes an exactly solvable point, where the model can be trans-
formed into a model of two noninteracting channels coupled to a
single impurity. These intersections are denoted by separate symbols
A j and B j . Changing the system parameters shifts the exact solution.
In (a), we have varied g(12)

2 and g(12)
4 . The origin corresponds to the

decoupled limit of the problem. In (b), v2 and g(12)
4 are varied. All the

parameters are scaled by v1. The other parameters which are required
to generate this plot are listed in Table I.

The choice of the parameters for the mapping to the
resonant-level model has been made in a way such that
the vertex operator,ei2

√
π

∑
k κ jk φ̃k (0) can be refermionized us-

ing the same bosonization identity that we used earlier so
the model reduces to that of free fermions. We can write
the nonchiral boson fields used for describing the HL as
φ̃ j = (φ̃ j,L + φ̃ j,R) and θ̃ j = (φ̃ j,L − φ̃ j,R), where R and L de-
note the right and left movers. To cast the Hamiltonian as
an exactly solvable noninteracting fermion model, we first
focus on the LL defined on the positive and negative x axis
separately. The system on the right- and left-half lines is
unfolded [30,38,44] so the Hamiltonian is presented in a chiral
form. We follow the convention of writing φ̃ j,R(x) and φ̃ j,L(x)
fields defined on the positive x axis in terms of φ̃e

j,R(x) and
φ̃e

j,R(−x) fields defined on the full x axis. This is done as
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follows: φ̃e
j,R(x) = φ̃ j,R(x) and φ̃e

j,R(−x) = φ̃ j,L(x). One can
obtain two chiral liquids in the bulk of the channel using
these identities. Then, one must identify the chiral boson
fields to be equal at x = 0, i.e., φ̃e

j,L(0) = φ̃e
j,R(0). We notice

that the Kondo scattering term is defined only at x = 0. We
choose one chiral field out of φ̃e

j,R(0) and φ̃e
j,L(0) to write the

vertex operator of the Kondo interaction term. After doing
so, the Hamiltonian can again be written on the full line in
terms of chiral fields only. However, depending on the choice
of the chiral field used to write the vertex operator in the
Kondo scattering term, one chiral field remains decoupled
from the impurity and can be discarded from the resonant-
level model. In what follows, we use the right-moving bosonic
field to write the exact solution. The bosonization identity
� j = (2πξ j )−1/2ei2

√
πφ̃e

j,R can be used to write the model in
terms of fermions. In this limit, Eq. (15) can be expressed in
terms of chiral spinless fermions � j (x) [19] as

HT =
∑

j

[
− iu j

∫
dx�†

j (x)∂x� j (x) + εd d†d

+ J⊥, j√
2πξ j

(
d†� j (0) + �

†
j (0)d

)]
, (24)

where the impurity spin residing at x = 0 has been modeled
by a discrete level, such that σz = d†d − 1/2. The operator
d† creates a spinless fermion in the discrete level and εd is the
chemical potential at the site of the discrete level. We refer to
Appendix D for the details of the exact solution. At the exactly
solvable point, one can self-consistently compute the energy
spectrum and the impurity spectral function [45]. In our case,
the spectral function turns out to be a Lorentzian with a level

width � = ∑
j

J2
⊥, j

4πξ j u j
. We see that the two contributions com-

ing from the two independent channels add up directly.
In the decoupled limit (which can be obtained by switch-

ing off the interchannel forward scattering processes g(12)
2,4 ),

our result matches with one of the exactly solvable points
derived in Ref. [27]. In this limit, Mφ,θ are diagonal and
Kj = κ2

j = (V j j
φ )2. We have chosen κ j = 1/

√
2 and, as a re-

sult, K1 + K2 = 1. We note that our exact solution does not
require the channels to have equal velocities. In fact, due to
the presence of off-diagonal terms in Mφ,θ , the renormalized
velocities of the diagonalized Hamiltonian are not equal in
our case. At the exactly solvable point, choosing Kj = 1 leads
to an effectively no-interacting fermionic model coupled to
magnetic impurity if interchannel processes are switched off.
This particular limit is not of our interest. However, we note
this would lead to another exactly solvable limit derived in
Ref. [27].

IV. BEYOND THE EXACTLY SOLVABLE LIMIT

In this section, we use the perturbative RG technique to
analyze the flow of the Kondo couplings [46,47]. By using the
effectively decoupled Hamiltonian in Eq. (13), we find that
for each channel j the RG equations (up to second order in

the couplings) are given by

dJ̃ ′
z, j

dl
= ν jκ

3
j J2

⊥, j, (25)

dJ⊥, j

dl
= (

1 − κ2
j

)
J⊥, j + ν jκ j J̃

′
z, jJ⊥, j, (26)

where ν j ≡ 1
πu j

[48]. We emphasize that the MLL formalism
is instrumental in mapping the results to a form similar to
the known one-channel counterpart [7,18,46]. The details of
the derivation are provided in Appendix E. Equations (25)
and (26) can be put in a more compact form by defining
ν j J̄z, j = ν jκ j J̃ ′

z, j + 1 − κ2
j as

dJ̄z, j

dl
= ν jκ

4
j J2

⊥, j, (27)

dJ⊥, j

dl
= ν j J̄z, jJ⊥, j . (28)

The trajectories of the flow equations are given by (κ2
j J⊥, j )2 −

(J̄z, j )2 = c, where c is a constant. It is known that a single
channel either flows to an antiferromagnetic (AFM) or a fer-
romagnetic (FM) FP [10,18]. Earlier works have shown that
the RG flow in such a system depends on the Luttinger pa-
rameter [7,18]. In our case, each of the effectively decoupled
channels behaves as a one-channel LL and can flow to either
the FM or the AFM FP separately. However, the inclusion
of interchannel interactions in Eq. (2) modifies the range of
parameters of the system for which the couplings flow either
to the FM or the AFM FP. Here, we follow the terminology
previously used by Wu et al. [7] in the one-channel case,
where the terms AFM and FM only refer to the bound state
which forms (or not) between the impurity and the conduction
electrons.

We plot a schematic flow diagram pertaining to the above
RG equations in Fig. 3. If the Kondo couplings of channel
j of Eq. (13) flow to infinity, then the impurity is strongly
coupled to channel j. On the other hand, if J⊥, j renormalizes
to zero, then the impurity is weakly coupled with channel j.
The transition point Cj separates the J̃ ′

z, j axis into two portions
having opposite flows. To study different FPs, we choose
J⊥, j = 0 of Fig. 3 as the initial condition. On this line, whether
the system flows to FM or AFM FP is decided by the position
of Cj .

In Fig. 3, the position of the transition point Cj on J̃ ′
z, j

axis depends on the solution of ν jκ j J̃ ′
z, j + 1 − κ2

j = 0. We

know from Eq. (14) that κ j = V j j
φ − V j̄ j

φ . Hence, we see that
interchannel interactions shift the position of the transition
point on J̃ ′

z, j axis. As long as κ j �= 1, the transition point does
not lie at J̃ ′

z, j = 0, which we denote by O.
Next, we look into the RG flow of each of the effectively

decoupled channels of Eq. (13). It is easy to identify, from
Fig. 3(b), that for κ2 > κ−1

2 there is a region on the positive
J̃ ′

z,2 axis between C2 and O, where even if the Kondo coupling
is positive, i.e., AFM-like, the system flows to an FM FP. We
denote these FPs by F. By the same token, a channel can flow
to an AFM FP despite being expected to flow to an FM FP.
Such FPs are denoted by A. For example, in Fig. 3(a), the
transition point C1 lies to the left of O and FPs of type A
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FIG. 3. Schematic representation of the RG flow in Eqs. (27)
and (28). In panel (a) and (b) we show two sets of flow trajectories
pertaining to the two different channels. The symbol O denotes
the point (J⊥, j, J̃ ′

z, j ) = (0, 0). The position of the starting point
of the trajectory relative to Cj (rather than to O) determines whether
the system flows to a FM or an AFM fixed point.

are obtained for the choice κ1 < κ−1
1 . We can combine these

FPs of both channels and name them P jP j′ , where P j denotes
the FP of channel j and can be either A or, F. Once we have
identified the FPs, we can study their dependence on different
parameters, as shown in Fig. 4. The phase diagrams in Fig. 4
are representations of the parameter space of the Hamiltonian,
where different FPs are reached in different segments of the
parameter space. These parameters have to be chosen in a way
such that the conditions in Eq. (23) are satisfied. We note that a
similar analysis can also be done for different choices of J⊥, j ,
as an initial condition.

The characteristic feature of an FM FP is the renormal-
ization of J⊥, j to zero. We note that the spin-flip scattering
processes are governed by this coupling and, as a result, in
an FM FP, no strongly coupled bound-state formation takes
place between the conduction electrons and the impurity spin.
Another way to understand this is that, if J⊥, j flows to zero,
then the conduction electrons of channel j do not take part in
spin-flip Kondo scattering processes. However, if J⊥, j flows
to infinity, then the electrons of the effectively decoupled
channel j participate in spin-flip scattering processes leading
to the formation of a bound state between the electron of
channel j and the impurity spin. This is a feature of AFM FP.
Thus, in either the AF or FA phase, there is only one channel
that contributes to bound-state formation. This bound state is a
spin singlet and, in these two phases, the impurity is screened.
In the FF phase, none of the channels are strongly coupled
with the impurity and hence there is no screening. In the
AA phase, both channels try to couple antiferromagnetically
and, as a consequence, overscreening of the impurity can
take place. One should keep in mind that the phenomenon
of overscreening is extremely sensitive to the anisotropy of

FIG. 4. The above diagrams show the different FPs to which the
two channels flow, as a function of the system parameters. We refer
to these diagrams of the parameter space as phase diagrams. Each of
the effectively decoupled channels can flow to either the A or the F
fixed point, starting from J⊥, j = 0, (see the discussion in the main
text). In (a), we set v2/v1 = 0.75, g(1)

2 /v1 = 0.65π , g(2)
2 /v1 = 0.7π ,

g(1)
4 /v1 = 1.275π , g(2)

4 /v1 = 1.5π . In (b), we set g(1)
2 /v1 = 0.5π ,

g(2)
2 /v1 = 0.6π , g(1)

4 /v1 = 1.2π , g(2)
4 /v1 = 1.4π , g(12)

2 /v1 = 0.175.

the Kondo coupling and is only expected to be observed for
isotropic coupling [12]. For an anisotropic case, the channel
with the larger value of Kondo coupling would win over the
other channel and form a singlet.

From Eqs. (25) and (26), we can calculate the
Kondo temperature for the two channels. We define α j =√

(J̃ ′
z, j,0)2/(J⊥, j,0)2 − 1, where J̃ ′

z, j,0, J⊥, j,0 are the bare values
of the J̃ ′

z, j, J⊥, j couplings. With � being the bandwidth of the

original system, the Kondo temperature T j
K for channel j is

given by

T j
K = � exp

(
− sinh−1(α j )

α jν jJ⊥, j,0

)
. (29)

We note that T j
K is the characteristic energy scale of the Kondo

effect pertaining to each of these channels.

V. KONDO CORRECTION TO CONDUCTANCE

In this section, we study the effect of the presence of a
magnetic impurity on the conductance of the coupled HL
setup. Unlike Refs. [23,24], our study is restricted to the case
of a single impurity. There is a plethora of investigations
concerning transport phenomena in similar situations [49–54].
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TWO-CHANNEL KONDO PROBLEM IN COUPLED … PHYSICAL REVIEW B 109, 155119 (2024)

We focus particularly on the physics of the Kondo effect
giving rise to a negative correction, δG(ω), to the conductance
of the HLs, originating from spin-flip scattering processes
mediated by the magnetic impurity [18,19]. This correction
vanishes for HLs as temperature T → 0 and also in the dc
limit as frequency ω → 0. However, the signature of Kondo
scattering can still be captured by computing the correction at
nonzero T and ω.

To study the scaling of the correction to the conductance,
one can compute δG(ω) by incorporating a difference of
chemical potential between the right and left movers, re-
spectively. This is equivalent to computing δG(ω) from the
spin-flip current obtained by introducing an effective magnetic

field which creates an energy difference between the spin-
up and the spin-down components of the impurity [19,21].
We assume weak backscattering by the impurity such that
δG(ω) � e2, where e is the electron charge.

Following Ref. [19], we attach HV = −eVσ z to the
Hamiltonian of Eq. (15) and compute transport properties
in response to the spin-flip current using HV . One can
use the Kubo formula [19,21,45] to compute this correc-
tion. The details of the calculation, including the general
form of the correction, are given in Appendix F. One can
write the exact expressions for the conductance correction in
the limit J2

⊥, j � ω � T . The temperature scaling of δG is
given by

δG = L1T 2
(
κ2

11+κ2
12

)
−2 + L2T 2

(
κ2

21+κ2
22

)
−2 + L3T 2(κ11κ12+κ22κ21 )−2, (30)

where

L1 = −e2

4

(
J⊥,1

2πξ1

)2(2π

�

)2κ2
11
(

2π

�

)2κ2
12
(

1

π

)2 π�
(
κ2

11 + κ2
12

)2

�
(
2
(
κ2

11 + κ2
12

)) , (31)

L2 = −e2

4

(
J⊥,2

2πξ2

)2(2π

�

)2κ2
21
(

2π

�

)2κ2
22
(

1

π

)2 π�
(
κ2

21 + κ2
22

)2

�
(
2
(
κ2

21 + κ2
22

)) , (32)

L3 = −e2

2

J⊥,1J⊥,2

(2π )2ξ1ξ2

(
2π

�

)2(κ11κ12 )(2π

�

)2κ22κ21
(

1

π

)2
π�(κ11κ12 + κ22κ21)2

�(2(κ11κ12 + κ22κ21))
. (33)

The result takes a form similar to the known case of one HL
coupled to a Kondo impurity [18,19]. We notice that at the
exactly solvable point the integral from which L3 is obtained
goes to zero, as discussed in Appendix F, and one is left with
L1 and L2. The assumed limit for the above expression is
important, as we see that at high temperature (i.e., T  ω 
J2
⊥, j) the Kondo scattering gives rise to a negative correction,

implying a deviation from the scaling of the conductance in
HLs in the absence of Kondo impurity. We also see that in this
limit the correction is independent of ω.

To illustrate the results in Eq. (30), we show in Fig. 5 the
temperature dependence of the Kondo correction for different
values of the interchannel interaction strength. We express the
conductance correction in units of e2/h, δG̃ = δG/(e2/h), and
the temperature T in units of the bandwidth �, T̃ = T/�. (We
set h̄ = kB = 1.) Moreover, we relate the interchannel interac-
tions to the intrachannel interactions through the parameter η:
g(12)

4 = η(g(1)
4 + g(2)

4 )/2, g(12)
2 = η(g(1)

2 + g(2)
2 )/2. We use this

parameter to vary the ratio of interchannel to intrachannel
interaction strengths and show how the correction varies. It
turns out that stronger interchannel coupling implies a more
pronounced correction.

We emphasize that the results here are applicable in a
finite frequency regime. The Kondo correction arises from the
backscattering current and the backscattering of the electron
is accompanied by a spin flip of the impurity [19]. In the dc
limit, there is no effect of backscattering, as argued by Tanaka
et al. [19] in the single-channel case. We further observe
that while our computation of the correction extends the one-
channel case to a two-channel situation, where the HLs are
coupled, the underlying physical picture remains unchanged.

As a result, the Kondo correction is expected to vanish in
the dc limit also in this scenario. Moreover, the correction
naturally captures the behavior of the two-channel setup of
the present problem. This can be understood from the mixing

FIG. 5. Temperature dependence of the Kondo correction to
the conductance (in units of the conductance quantum e2/h) for
different values of the interchannel scattering strength. A larger
value of η corresponds to stronger interchannel interactions rel-
ative to intrachannel interactions. We have used the following
parameter values: v2/v1 = 1.25, g(1)

2 /v1 = 0.75π , g(2)
2 /v1 = 0.75π ,

g(1)
4 /v1 = 1.25π , g(2)

4 /v1 = 1.25π , g(12)
4 = η(g(1)

4 + g(2)
4 )2, g(12)

2 =
η(g(1)

2 + g(2)
2 )/2, Jz,1/v1 = Jz,2/v1 = 0.75, J⊥,1/v1 = 0.25, J⊥,2/v1 =

0.2.
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of interaction parameters present in the temperature scaling of
the correction, as shown in Eq. (30).

VI. CONCLUSION

In this paper, we have presented a general framework for
studying two interacting HLs coupled to a Kondo impurity,
including both intrachannel as well as interchannel interac-
tions.

We have derived the conditions under which an exact
solution of the model can be obtained with the addi-
tional restriction of κ j = 1/

√
2, where κ j is defined in

Eq. (14). This solvable point has been calculated using an
Emery-Kivelson type of transformation. We have included
interchannel forward scattering processes yielding exact solu-
tions to the problem examined beyond the scenarios captured
by Refs. [27,30,43]. In Sec. III, we have shown how the
exact solutions of the decoupled limit (obtained by switching
off g(12)

2,4 ) can be derived from our calculation. At the solv-
able point, we have calculated the spectral function. We have
shown that the level width is the sum of contributions coming
from each channel. The spectral function has experimental
significance in many systems; for example, quantum dots
show the Kondo effect where the hallmark of Kondo physics
is the differential conductance which is proportional to the
spectral function [55–58].

We have studied the model away from the exactly solv-
able point by mapping it to a pair of effectively decoupled
HLs interacting with a single magnetic impurity, as derived
in Eq. (13). By using a perturbative RG approach, we have
shown that these two renormalized channels can separately
flow to either the FM or the AFM FP. Here, the AFM FP in-
dicates the formation of a bound state between the conduction
electron and impurity spin, whereas the FM FP means the
absence of same, although a finite residual coupling can be
present in the FM case. In Fig. 3, we show a schematic flow
diagram pertaining to the RG equations derived in Sec. IV.
The phase diagrams obtained from our RG analysis are shown
in Fig. 4. As noted earlier, these phase diagrams represent
the parameter space of the Hamiltonian where the effectively
decoupled HLs reach different FPs in different segments of
the diagram. In Sec. IV, we have also discussed the nature of
the impurity screening at different FPs. In the FF phase, there
is no singlet formation due to the absence of screening. In
the FA and AF phases, the impurity is screened and in the
AA phase, the impurity is either screened or overscreened
depending on anisotropy in Kondo couplings. In Sec. V, we
have presented a study of the linear response of the system in
the weak coupling limit. We have shown that the Kondo effect
gives rise to a negative correction to the conductance of the
coupled HLs. The temperature scaling of this correction as a
function of system parameters has been shown explicitly.

In terms of experimental realizations, quantum spin Hall
insulators are excellent platforms for realizing the physics of
HLs. The tremendous progress made in experimental tech-
niques and engineering has resulted in the realization of a
variety of tunable topological phases of matter [36,37,59–
63]. In particular, InAs/GaSb [59] and different WTe2-based
structures [60–62] are known to host helical edge states.
Over the past years, experimentalists have further studied the

physics of LLs in topologically protected helical channels.
The edge states of Bismuthene [36] and 1T’-WTe2 mono-
layer [37] have shown experimental signatures of HLs. Apart
from this, corner junctions have also been suggested for the
study of helical edges [64]. Exotic helical edge states have
been investigated in the context of higher-order topological
systems as well [63,65]. Further, it has also been suggested
that an array of QDs can host the physics of two helical
channels [66–68]. In this context, Osváth et al. [69] recently
studied coupled helical channels in an electronic ladder, which
might be another system for the realization of the physics
discussed in our paper.
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APPENDIX A: ESTIMATION OF INTERACTION
STRENGTHS

We present here an estimation of the interchannel interac-
tion strength relative to the intrachannel interaction strength,
which is experimentally fairly well understood [35–37].
We assume a charge distribution localized near the interface
between two systems hosting helical channels similar to the
interface between the colored regions shown in Fig. 1. The
charge distributions can be modeled by

ρ j (x, y, z) = e

wξ jL
e
− |y−y0

j |
ξ j (L/2− | x |)(w/2− | z |).

(A1)

In the above expression, we consider a charge distribution for
channel j = 1, 2, corresponding to a HL centered around y0

j
in the y direction with localization length ξ j . The distribution
is uniform in the x direction and extends over a finite region
of length L. We consider a realistic situation where the 2D
sample is placed on a substrate [37] and the whole setup has a
finite width along the z direction given by w. The substrate has
relative permittivity εr , such that Ar = (εr − 1)/(εr + 1). Fol-
lowing Refs. [35–37], we compute the interaction strengths
from the electrostatic Coulomb energy VC :

VC = e2

4πε0

1

w2ξ1ξ2L

∫
dx′dxdy′dydz′dz e− |y−y0

1 |
ξ1 e− |y′−y0

2 |
ξ2

×
[

1√
(x − x′)2 + (y − y′)2 + (z − z′)2

− Ar√
(x − x′)2 + (y − y′)2 + (z + z′)2

]
. (A2)

The interchannel interaction strength gC is defined as gC =
VC

e2/4πε0
. For y0

1 = y0
2 and ξ1 = ξ2, this expression gives the
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FIG. 6. Ratio between the interchannel and intrachannel inter-
action strengths gC and g0

C as a function of the spatial separation
between channels �y0 (expressed in units of ξ1). As an experi-
mentally relevant scenario, we consider the parameter values for a
1T’-WTe2 monolayer system [37]. We choose ξ1 = ξ2 = 2.0 nm,
w = 0.7 nm, L = 100 nm, and εr = 10.

intrachannel interaction strength, which we denote g0
C . We

compare the interaction strengths in Fig. 6, where we plot
the ratio gC/g0

C as a function of the spatial separation
�y0 between the channels. We have used the values of
the system parameters from a recent experimental work
based on a 1T’-WTe2 monolayer system [37] to have a
physically relevant scenario. In the plot, we fix y0

1 at 4
and vary y0

2 (in units of localization length ξ1 = ξ2). We
observe that, as expected, gC decreases for increasing sepa-
ration between the channels but remains of the same order
of g0

C .

APPENDIX B: UNITARY TRANSFORMATIONS

Under the action of the unitary transformation

U = ei2
√

π (λ1φ̃1(0)+λ2φ̃2(0))σ z
, (B1)

the LL Hamiltonian HLL transforms as

HLL → H̃LL = UHLLU †

=
∑
j=1,2

[
u j

2

∫
dx

[
�̃2

j + (∂xφ̃ j )
2
]

−2
√

πλ ju j�̃ j (0)σ z

]
, (B2)

while the Kondo Hamiltonian HK transforms as

HK → H̃K = UHKU †

=
∑
j=1,2

[
− J̃z, j√

π
�̃ j (0)σ z + J⊥, j

2πξ j

× (
ei2

√
π

[(
V j1

φ +λ1

)
φ̃1(0)+

(
V j2

φ +λ2

)
φ̃2(0)

]
σ+ + H.c.

)]
.

(B3)

(We have omitted an unimportant constant.) We then arrive
at a decoupled-channel Hamiltonian with either of the two
following choices:

λ j = −V j j
φ or λ j = −V j̄ j

φ . (B4)

(We use the notation j̄ = 2, 1 for j = 1, 2.) We select the
second option, and collecting H̃LL and H̃K, we arrive at the
Hamiltonian

H̃ =
∑
j=1,2

[
u j

2

∫
dx

[
�̃2

j + (∂xφ̃ j )
2
]

− J̃ ′
z, j√
π

�̃ j (0)σ z + J⊥, j

2πξ j

(
ei2

√
πκ j φ̃ j (0)σ+ + H.c.

)]
, (B5)

where we have defined

J̃ ′
z, j = J̃z, j − 2πu jV

j̄ j
φ , κ j = V j j

φ − V j̄ j
φ . (B6)

We use this Hamiltonian for the calculation of the RG flow of
the Kondo couplings in Sec. IV and Appendix E.

Alternatively, in the unitary transformation (B1) we can set

λ j = − J̃z, j

2πu j
and we obtain

H̃ =
∑
j=1,2

[
u j

2

∫
dx

[
�̃2

j + (∂xφ̃ j )
2
]

+ J⊥, j

2πξ j

(
ei2

√
π

∑
k κ jk φ̃k (0)σ+ + H.c.

)]
, (B7)

where we have defined

κ jk = V jk
φ − J̃z,k

2πuk
. (B8)

We employ this form of the Hamiltonian in the discussion of
the solvable point in Sec. III and for the perturbative calcula-
tion of the correction to the conductance in Sec. V.

APPENDIX C: INTERACTION HAMILTONIAN

In this Appendix, we establish the conditions under which
it is justified to retain only the interaction terms included in
Eq. (2). Following Ref. [9], the interaction Hamiltonian for
a two-channel HL, in general, comprises terms that lead to
nonlinearities in the bosonized theory. These terms include the
Umklapp scattering processes:

�
†
j↑(x)�†

j↑(x + a)� j↓(x + a)� j↓(x)e−i4kF x + H.c.,

j = 1, 2. (C1)

155119-9



BISWAS, DE MARTINO, RAO, AND KUNDU PHYSICAL REVIEW B 109, 155119 (2024)

We omit these processes on account of the fact that we con-
sider the generic incommensurate situation, i.e., 4kF different
from a reciprocal lattice vector. Following the same logic,
one can also neglect the interchannel Umklapp scattering pro-
cesses [9].

Next, let us consider Kondo scatterings between different
channels. They are described by the following operators:

�
†
1,↑�2,↑ − �

†
1,↓�2,↓

∼ ei
√

π ((V 11
θ −V 21

θ )θ̃1+(V 12
θ −V 22

θ )θ̃2 ) sin(
√

π ((V 11
φ − V 21

φ )φ̃1

+ (V 12
φ − V 22

φ )φ̃2)), (C2)

�
†
1,↑�2,↓ ∼ ei

√
π ((V 11

θ −V 21
θ )θ̃1+(V 12

θ −V 22
θ )θ̃2 )

× e−i
√

π ((V 11
φ +V 21

φ )φ̃1+(V 12
φ +V 22

φ )φ̃2 ). (C3)

Calculating their scaling dimensions, we find that these terms
are irrelevant (and can thus be omitted) if the following two
conditions hold:

1

4

∑
j=1,2

(
V 1 j

θ − V 2 j
θ

)2 + 1

4

∑
j=1,2

(
V 1 j

φ ∓ V 2 j
φ

)2
> 1. (C4)

APPENDIX D: TWO-CHANNEL RESONANT-LEVEL MODEL

In this Appendix, we briefly discuss the solution of Eq. (24). We Fourier transform the Hamiltonian in this equation to cast it
into a resonant-level model consisting of two noninteracting channels coupled to a discrete level modeled by d operators. The
Hamiltonian becomes

HT =
∑
k, j

εk, jc
†
k, jck, j + εd d†d +

∑
k,J

t j[c
†
k, jd + ck, jd

†]. (D1)

Here, t j = J⊥, j√
4π2ξ j

and εk, j = u jk. We look for new fermionic operators f †
n = ∑

k, j M j
n,kc†

k, j + Lnd† such that HT =∑
n En f †

n fn + const. We then have [HT, f †
n ] = En f †

n , and from Eq. (D1):

[HT, f †
n ] =

∑
k, j

[
M j

n,kεk, jc
†
k, j + t jM

j
n,kd† + t jLnc†

k, j

] + εd Lnd†. (D2)

We have used [ab, c] = a{b, c} − {a, c}b. Hence

En f †
n =

∑
k, j

[
M j

n,kεk, jc
†
k, j + t jM

j
n,kd† + t jLnc†

k, j

] + εd Lnd†,

En

[ ∑
k, j

M j
n,kc†

k, j + Lnd†

]
=

∑
k, j

[
M j

n,kεk, jc
†
k, j + t jLnc†

k, j

] +
[ ∑

k, j

t jM
j
n,kd† + εd Lnd†

]
. (D3)

If we introduce a resonant level coupled to a two independent channel setup, then

EnM j
n,k = M j

n,kεk, j + t jLn, EnLn =
∑

j

t j

∑
k

M j
n,k + εd Ln. (D4)

One would get

En =
∑

j

t2
j

∑
k

1

En − εk, j
+ εd . (D5)

The above equation can be graphically solved for a finite system [45]. We use the following relation [45] to evaluate the sum
over k:

∞∑
n=−∞

1

En − πn
= cot(En). (D6)

For εd = 0,

En =
∑

j

πt2
j

u j
cot

(
Enπ

u j

)
. (D7)

One can solve the above equation numerically to obtain the energy En. We can further derive the spectral function from the
impurity Green’s function. We note that in path integral formalism,

Z =
∫

D[d, c j]e
−S =

∫
D[d]e−Sd

∫
D[c]e−Sc , Sd =

∫ β

0
dτ [d̄ (∂τ + εd )d],
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Sc =
∑

j

∫ β

0
dτ

[ ∑
k

c̄k, j (∂τ + εk, j )ck, j +
∑

k

(t j c̄k, jd + ck, j d̄ )

]
. (D8)

From the above expressions, we can write

Z =
∫

Dde− ∫ β

0 dτ

[
d̄ (∂τ +εd )d

] ∫
D[c1]e− ∫ β

0 dτ

[∑
k c̄k,1(∂τ +εk,1 )ck,1+

∑
k (tα c̄k,1d+ck,1d̄ )

]

×
∫

D[c2]e− ∫ β

0 dτ

[∑
k c̄k,2(∂τ +εk,2 )ck,2+

∑
k (tα c̄k,2d+ck,2 d̄ )

]
. (D9)

One can integrate out ck, j’s to obtain

Z ∼
∫

Dd exp

[
−

∫ β

0
dτ d̄ (∂τ + εd −

∑
j

t2
j

∂τ + εk, j
)d

]
. (D10)

Here we are showing the relevant term which depends on d operators. We next perform Fourier transformation d (τ ) =
β−1/2 ∑

n dne−iωnτ , where ωn is the nth Matsubara frequency and β is inverse temperature. This enables us to replace ∂τ by
−iωn:

Z ∼
∫

Dd exp

[
−

∑
iωn

d̄n(−iωn + εd −
∑

j

t2
j

−iωn + εk, j
)dn

]
. (D11)

Hence, the impurity Green’s function can be written as

Gd (iωn) = 1

iωn − εd + i�sgn(ωn)
, (D12)

and the spectral function, defined as − 1
π

Im(Gd ), becomes a Lorentzian with width

� =
∑

j

� j =
∑

j

π
t2

j

u j
. (D13)

APPENDIX E: RG ANALYSIS

For completeness, in this Appendix we provide the derivation of the flow equations for the Kondo couplings in the model (13)
using the perturbative RG approach. (See, e.g., Ref. [46].) The (Euclidean) action for the Kondo problem corresponding to the
Hamiltonian (13) is S = S0 + SK, where

S0 =
∑
j=1,2

∫
dω

2π
|ω||ϕ j (ω)|2, (E1)

SK =
∑
j=1,2

∫
dτ

[−iJ̃ ′
z, j√

πu j
∂τϕ j σ

z + J⊥, j

2πξ j

(
ei2

√
πκ jϕ j σ+ + e−i2

√
πκ jϕ j σ−)]

. (E2)

Here we use the notation ϕ j (τ ) ≡ φ̃ j (0, τ ), and τ denotes imaginary time. Following Ref. [46], S0 is obtained by integrating out
ϕ j (x �= 0, τ ). The action S contains a large frequency cutoff �, i.e., |ω| < � in all frequency integrations, where we identify
� = u j

ξ j
.

The RG approach proceeds as follows [46,47]. We introduce a rescaled cutoff �′ = �/b, where b = el > 1 is a scaling
factor, with � � 1. We separate the field into slow and fast components, ϕ j = ϕ<

j + ϕ>
j , where the first contains only frequency

components smaller than �′, and the latter contains frequency components between �′ and �. We perform the same separation
on �σ as we do for the ϕ j fields. We are using time-ordered bosonic correlation, hence for consistency of the calculation one has
to use the time-ordered product of impurity spin as well. This is given by T [σ±

< (τ )σ∓
< (τ ′)] = 1

2 + σ z
<sgn (τ − τ ′) [46]. We then

integrate over the fast component and obtain an effective action for the slow component, which has the same form as the original
action, but with renormalized coefficients, from which we can read the RG equations.

After integrating out the fast modes, the effective action for the slow modes up to second order in the Kondo couplings takes
the following expression:

Seff [ϕ
<] = S0[ϕ<] + 〈SK[ϕ]〉> − 1

2

(〈S2
K[ϕ]〉> − 〈SK[ϕ]〉2

>

)
, (E3)

where 〈. . . 〉> denotes the integration over the fast modes, i.e., using the action S0[ϕ>]. Let us begin with the calculation of the
first-order correction. Here, we have used 〈∂τϕ j〉> = ∂τϕ

<
j and 〈(ϕ>

j )2〉> = 1
2π

ln b. We now need to restore the cutoff to its

155119-11



BISWAS, DE MARTINO, RAO, AND KUNDU PHYSICAL REVIEW B 109, 155119 (2024)

original value �, which can be accomplished by rescaling the time τ → bτ and redefining the field ϕ<
j (τ ) → ϕ<

j (bτ ) ≡ ϕ̄(τ ).
Then we get

〈SK[ϕ]〉> =
∑

j

∫
dτ

[−iJ̃ ′
z, j√

πu j
∂τ ϕ̄ j σ

z + J⊥, jb
1−κ2

j

2πξ j

(
ei2

√
πκ j ϕ̄ j σ+ + e−i2

√
πκ j ϕ̄ j σ−)]

. (E4)

This result implies that J̃ ′
z, j is not renormalized at first order, while for J⊥, j we find

dJ⊥, j

d�
= (1 − κ2

j )J⊥, j .

At the second order, we find

〈S2
K[ϕ]〉> =

∑
j1, j2

∫
dτ dτ ′

〈[−iJ̃ ′
z, j1√

πu j1

∂τϕ j1 (τ )σ z + J⊥, j1

2πξ j1

(
ei2

√
πκ j1 ϕ j1 (τ )σ+ + e−i2

√
πκ j1 ϕ j1 (τ )σ−)]

×
[−iJ̃ ′

z, j2√
πu j2

∂τ ′ϕ j1 (τ ′)σ z + J⊥, j2

2πξ j2

(
ei2

√
πκ j2 ϕ j2 (τ ′ )σ+ + e−i2

√
πκ j2 ϕ j2 (τ ′ )σ−)]〉

>

. (E5)

We calculate only the quantity of interest:

〈
ei2s

√
πκ jϕ j (τ )∂τ ′ϕ>

j (τ ′)
〉
>

= −2s
√

π

ibκ j
ei2s

√
πκ jϕ

<
j (τ )κ j∂τ ′ 〈ϕ>

j (τ )ϕ>
j (τ ′)〉>. (E6)

Next, we make the change of variables t = τ − τ ′ and T = τ+τ ′
2 , and Taylor expand the fields around t = 0, so they are only

functions of the center of mass coordinate T . The t integral is performed using a cutoff 1/�. Collecting together the dominant
terms, we obtain

〈SK〉> =
∫

dT

[−iJ̃ ′
z, j√

πu j
∂T ϕ̄ j (T )σ z + J⊥, j

2πξ

(
1 + (κ2

j − 1)
δ�

�

)(
ei2

√
πκ j ϕ̄ j (T )σ+ + e−i2

√
πκ j ϕ̄ j (T )σ−)]

,

−1

2

(〈
S2

K

〉
>

− 〈
SK

〉2
>

) =
2∑

j=1

κ j

∫
dT

J⊥, j J̃ ′
z, j

2π2ξ ju j
ln b

[
ei2

√
πκ jϕ

<
j (T )σ+ + e−i2

√
πκ jϕ

<
j (T )σ−]

−
2∑

j=1

(J⊥, j )2

(2π )2ξ 2
j

4
√

πκ3
j iσ z

∫
dT ∂T ϕ<

j (T )
1

�2
dl. (E7)

We then arrive at the effective action with rescaled couplings

Seff [ϕ̄] = S0[ϕ̄] +
∫

dT

[−iJ̃ ′
z, j (l )√
πu j

∂T ϕ̄ j (T )σ z + J⊥, j (l )

2πξ j

(
ei2

√
πκ j ϕ̄ j (T )σ+ + e−i2

√
πκ j ϕ̄ j (T )σ−)]

, (E8)

where the couplings satisfy the following RG equations:

dJ̃ ′
z, j

dl
= κ3

j

πu j
(J⊥, j )

2, (E9)

dJ⊥, j

dl
= (1 − κ2

j )J⊥, j + κ j

πu j
J̃ ′

z, jJ⊥, j . (E10)

In terms of the unshifted couplings J̃z, j , we find

dJ̃z, j

dl
= κ3

j

πu j
(J⊥, j )

2, (E11)

dJ⊥, j

dl
= (

1 − κ2
j − 2κ jV

j̄ j
φ

)
J⊥, j + κ j

πu j
J̃z, jJ⊥, j, = (

1 − (
V j j

φ

)2 − (V j̄ j
φ

)2)
J⊥, j + κ j

πu j
J̃z, jJ⊥, j . (E12)

The first term in the last line can be easily understood: it is the scaling dimension of the J⊥ operator in Eq. (11), after the
diagonalization of the bulk Hamiltonian, but before any unitary transformation. In the limit of decoupled channels,

V i j
φ = √

Kjδi j, V i j
θ = δi j/

√
Kj, J̃ ′

z, j = Jz, j/
√

Kj, κ j = √
Kj,
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and we find

dJz, j

dl
= K2

j

πu j
(J⊥, j )

2, (E13)

dJ⊥, j

dl
= (1 − Kj )J⊥, j + 1

πu j
Jz, jJ⊥, j . (E14)

The equations differ from those in Ref. [18], which read

dJz, j

dl
= 1

πu j
(J⊥, j )

2, (E15)

dJ⊥, j

dl
= (1 − Kj )J⊥, j + 1

πu j
Jz, jJ⊥, j . (E16)

This can be understood as being due to the fact that the equations in Ref. [18] are only meant to be valid for weak e-e interactions,
i.e., Kj ≈ 1 (see comment in Ref. [46]).

We notice that the equation for J⊥, j ca Ref.n be easily obtained by using the Hamiltonian (15). Indeed, in this case we just
need the scaling dimension of the J⊥ operator:

dJ⊥, j

d�
=

(
1 −

∑
k

κ2
jk

)
J⊥, j . (E17)

We observe that

∑
k

κ2
jk =

∑
k

(
V jk

φ − J̃z,k

2πuk

)2

=
∑

k

(
V jk

φ − J̃ ′
z,k

2πuk
− V k̄k

φ

)2

, (E18)

≈ (
V j j

φ − V j̄ j
φ

)2 − (
V j j

φ − V j̄ j
φ

)2 J̃ ′
z, j

πu j
= κ2

j − κ j

πu j
J̃ ′

z, j . (E19)

In the last line, we used the definition of J̃ ′
z, j in Eq. (14) and we omitted terms of order J̃ ′2

z . Inserting this expression in Eq. (E17),
we recover Eq. (E10).

APPENDIX F: CONDUCTANCE FOR WEAK COUPLING

In this Appendix, we give some details of the calculation of the correction to the conductance at finite temperature and
frequency. We start with the Hamiltonian H̃ in Eq. (15), which we rewrite here for convenience:

H̃ =
∑
j=1,2

[
u j

2

∫
dx

[
�̃2

j + (∂xφ̃ j )
2
] + J⊥, j

2πξ j

(
ei2

√
π

∑
k κ jk φ̃k (0)σ+ + H.c.

)]
. (F1)

The spin flip current is given by δI = −e∂tσ
z [19]. In our case, this expression turns out to be

δI = ie
∑
j=1,2

J⊥, j

2πξ j

[
ei2

√
π

∑
k κ jk φ̃k σ+ − e−i2

√
π

∑
k κ jk φ̃k σ−]

. (F2)

The correction to the conductance δG(ω) can be computed using the Kubo formula [21,45], which amounts to calculating
the current-current correlator from Eq. (F2) [19,21]. For these calculations, one needs to use the finite temperature bosonic
correlators defined as [38,39]

〈T [φ̃ j (τ ) − φ̃ j (0)]2〉 = 1

2π
ln

[(
βu j

πξ j

)2

sin2

(
π

β
τ

) ]
, (F3)

where τ is imaginary time, β = 1/T , and ξ j = u j/�. We then obtain δG(ω) = I1 + I2 + I3, where

I1 = −2e2

(
J⊥,1

2πξ1

)2(
πξ1

βu1

)2κ2
11
(

πξ2

βu2

)2κ2
12

sin
(
π

(
κ2

11 + κ2
12

)) ∫ ∞

0
dt

(eiωt − 1)/iω∣∣ sinh
(

π
β

t
)∣∣2(κ2

11+κ2
12 )

,

I2 = −2e2

(
J⊥,2

2πξ2

)2(
πξ1

βu1

)2κ2
21
(

πξ2

βu2

)2κ2
22

sin
(
π

(
κ2

21 + κ2
22

)) ∫ ∞

0
dt

(eiωt − 1)/iω∣∣ sinh
(

π
β

t
)∣∣2(κ2

21+κ2
22 )

,
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I3 = −4e2 J⊥,1J⊥,2

(2π )2ξ1ξ2

(
πξ1

βu1

)2(κ11κ12 )(
πξ2

βu2

)2κ22κ21

sin (π (κ11κ12 + κ22κ21))
∫ ∞

0
dt

(eiωt − 1)/iω∣∣ sinh
(

π
β

t
)∣∣2(κ11κ12+κ22κ21 ) . (F4)

In the limit J2
⊥, j � ω � T , we can simplify the above expressions as follows:

I1 = −e2

4

(
J⊥,1

2πξ1

)2(2πT

�

)2κ2
11
(

2πT

�

)2κ2
12
(

1

πT

)2 π�
(
κ2

11 + κ2
12

)2

�
(
2
(
κ2

11 + κ2
12

)) ,

I2 = −e2

4

(
J⊥,2

2πξ2

)2(2πT

�

)2κ2
21
(

2πT

�

)2κ2
22
(

1

πT

)2 π�
(
κ2

21 + κ2
22

)2

�
(
2(κ2

21 + κ2
22

)) ,

I3 = −e2

2

J⊥,1J⊥,2

(2π )2ξ1ξ2

(
2πT

�

)2(κ11κ12 )(2πT

�

)2κ22κ21
(

1

πT

)2
π�(κ11κ12 + κ22κ21)2

�(2(κ11κ12 + κ22κ21))
. (F5)

The reduction of each of the integrals in Eq. (F4) to the three corresponding expressions in Eq. (F5) also depends on the fact that
the terms κ2

11 + κ2
12, κ

2
21 + κ2

22, κ11κ12 + κ22κ21 are nonzero. One can observe from Eq. (F4) that these three terms correspond to
I1, I2, and I3, respectively. If any of these three quantities becomes zero, the corresponding integral goes to zero. We extend this
argument to see from Eq. (F4) that I3 vanishes in the exactly solvable limit. This shows that in this limit the correction takes the
form of a sum of two contributions coming from two effectively independent channels, as in the case of the level width of the
spectral function in Sec. III.
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