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The existence of bound states induced by local impurities coupled to an insulating host depends decisively
on the global topological properties of the host’s electronic structure. In this context, we consider magnetic
impurities modeled as classical unit-length spins that are exchange coupled to the spinful Haldane model on
the honeycomb lattice. We investigate the spectral flow of bound states with the coupling strength J in both the
topologically trivial and Chern-insulating phases. In addition to conventional k-space topology, an additional,
spatially local topological feature is available, based on the space of impurity-spin configurations forming, in
case of R impurities, an R-fold direct product of two-dimensional spheres. Global k-space and local S-space
topology are represented by different topological invariants, the first (k-space) Chern number and the Rth
(S-space) spin-Chern number. We demonstrate that there is a local S-space topological transition as a function of
J associated with a change in the spin-Chern number and work out the implications of this for the J-dependent
local electronic structure close to the impurities and, in particular, for in-gap bound states. The critical exchange
couplings’ dependence on the parameters of the Haldane model, and thus on the k-space topological state, is
obtained numerically to construct local topological phase diagrams for systems with R = 1 and 2 impurity spins.
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I. INTRODUCTION

One of the central concepts in the theory of topologi-
cal insulators [1–7] is the bulk-boundary correspondence. A
topologically nontrivial bulk phase enforces the presence of
gapless boundary states, which are protected against weak
symmetry-preserving perturbations or disorder. The existence
and the number of these boundary modes is determined by
topological invariants, and they are of great importance for the
experimental identification of nontrivial topology. An impor-
tant question is whether or not there are also local signatures
of the topology of band insulators, i.e., whether an unambigu-
ous diagnosis of nontrivial topology is possible by observing
the change of the local electronic structure due to a zero-
dimensional point defect.

The extension of the 10-fold classification [3,8,9] to defects
of different codimensions [4] leads to a general bulk-defect
correspondence [10,11], which guarantees zero-energy exci-
tations bound to a defect depending on the bulk topology. An
example, relevant for this study, is a zero-dimensional point
defect in a two-dimensional Chern insulator (codimension 2),
which is topologically classified as trivial [10,11]. Thus, for
the topologically nontrivial bulk state there is no reason to
expect a topologically protected mode at zero energy localized
around the defect.

However, this does not rule out the possibility of a close
relation between the presence or absence of localized impurity
modes and the topological properties of the bulk. In this con-
text, a number of theoretical studies [12–21] have addressed
the electronic structure in the vicinity of different types of
impurities, including other zero-dimensional defects, and of

impurity lattices for gapped, noninteracting systems in vari-
ous Altland-Zirnbauer symmetry classes to study the general
conditions under which the eigenenergies of the Hamiltonian
undergo a robust zero-energy crossing or cross the band gap
as a function of external parameters.

For a time-reversal-symmetric Z2 quantum-spin-Hall insu-
lator, as described by the Kane-Mele model [2], the reaction to
a time-reversal-symmetric point impurity in the bulk has been
found as to be completely different in the two topologically
distinct phases [12]. In-gap impurity states appear only in
the nontrivial quantum spin Hall but not in the trivial phase.
Similarly, for the time-reversal-symmetric Bernevig-Hughes-
Zhang (BHZ) model [22] the electronic structure close to
generic nonmagnetic codimension-2 defects has been inves-
tigated [17]. It was suggested that impurity bound states quite
generally can serve as a local signature of the bulk topological
phase.

The spectral response to either a site or a bond impurity
in different two-dimensional lattice models of spinless elec-
trons has been studied in Ref. [21]. For the Haldane model
[23], in particular, in-gap states occur for a strong impurity
potential, if and only if the bulk system is in a topologically
nontrivial state, while for the trivial case there are no in-gap
bound states in the strong-coupling limit. Importantly, this
is not generic, as demonstrated with several models, where
the impurity response cannot distinguish between topological
trivial and nontrivial phases.

In this study we consider a magnetic impurity, modeled by
a classical spin S of unit length. This is coupled via a local
exchange interaction Jsi0 S with exchange coupling strength J
to the local quantum spin si0 at a distinguished impurity site
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i0 of a two-dimensional lattice electron model. The latter is
chosen as the Haldane model, which is trivially made spinful.
For a fixed orientation of the classical spin, say, along the
z axis, we would just have two independent copies of the
nonmagnetic impurity problem, one in the (quantum) spin-↑
and one in the spin-↓ sector. However, the entire space of
classical-spin configurations is given by a 2-sphere S2, i.e.,
a closed manifold. For any Hamiltonian H = H (S), which
smoothly depends on S and which has nondegenerate, gapped
ground states on the S2 parameter manifold, one can define a
first Chern number that topologically characterizes the cor-
responding U(1) ground-state bundle over S2 [24,25]. This
is referred to as the first spin-Chern number C(S)

1 . The spin-
Chern number is quantized with possible values in Z, which
can only change in case of a gap closure, i.e., if a ground-state
degeneracy develops on a submanifold of the classical-spin
space at a critical set of model parameters.

One major goal is to exploit this topological “S-space”
characterization in addition to the conventional “k-space”
characterization that relies on the wave vectors k in the Bril-
louin zone forming a 2-torus (T 2) manifold and that gives
rise to the first (k-space) Chern number C(k)

1 . S-space and
k-space topology provide rather complementary, namely, spa-
tially local vs nonlocal points of view, which should be
helpful in case of an impurity in an otherwise translation-
ally invariant and infinitely extended system. At least in the
strong exchange-coupling limit, we expect a nontrivial S-
space topology since for J → ∞ the local physics should be
governed by the magnetic-monopole model [26–28] in the
form Ĥmono = Jsi0 S, where the spin-Chern number is C(S)

1 =
1, i.e., nonzero. As we will demonstrate for the full model
at finite J , there is a spatially local and nontrivial topological
(S-space) phase diagram with the critical interaction Jcrit de-
pending on the parameters of the Haldane model in a way that
indeed reflects the (k-space) topology. Furthermore, one can
understand that the J-spectral flow of the in-gap states bound
to the impurity must be gapless. We will argue that the S-space
topology also has implications for nonmagnetic local potential
impurities.

The spin-Chern number can be obtained by integrating the
corresponding spin-Berry curvature over S2. The spin-Berry
curvature also relates to the Berry phase accumulated by the
ground state of the electron system during a closed loop in
S2 traversed adiabatically [27]. At the same time it also pro-
vides a feedback on the slow dynamics of the classical spin
[29], which has recently been studied in case of the Haldane
model [25].

We extend our study to the case of several impurity
spins S0, . . . , SR−1, i.e., to a multi-impurity Kondo-Haldane
model with localized quantum spins replaced by classical
spins. With this we focus on a regime where quantum-spin
fluctuations or Kondo-screening effects can be disregarded.
For the case of R impurity spins coupled to R different sites
of the lattice, the spin-configuration space is an R-fold direct
product S2 × · · · × S2. To indicate topologically different
phases for a 2R-dimensional base manifold, one can invoke
the Rth spin-Chern number C(S)

R . At J = 0, we trivially
have C(S)

R = 0, while C(S)
R = 1 for J → ∞. We find that the

corresponding topological phases are separated by a finite-J
range, Jcrit,1 < J < Jcrit,2, where the system is locally gapless.

The critical interactions Jcrit,1, Jcrit,2 strongly depend on the
Haldane-model parameters and are found to be roughly an
order of magnitude larger in the (k-space) topologically
nontrivial compared to the trivial phase. Systems with R = 2
and 3 are studied numerically.

The paper is organized as follows. Sections II and III
introduce the concept of the spin-Chern number for systems
with several classical spins in general, and for spins coupled
to the Haldane model in particular. Section IV presents our
results for the low-energy electronic structure in case of a
single spin. The spin-Chern number in the strong-J limit is
discussed in Sec. V and the local topological transition with
a change of C(S)

1 at a critical coupling in Sec. VI. Section VII
provides a discussion how the S-space topological transition
is affected by k-space topology. Our results for two impurity
spins in the k-space trivial and nontrivial phases are pre-
sented in Secs. VIII and IX, respectively. An example of a
three-impurity-spin system is discussed in Sec. X. In Sec. XI
we give a summary with an extended overall discussion and
an outlook.

II. MULTI-IMPURITY KONDO MODEL WITH CLASSICAL
SPINS AND SPIN-CHERN NUMBER

We consider a system consisting of R classical spins
S0, . . . , SR−1 of fixed length |Sm| = 1, which interact via a
local exchange coupling

Ĥint(S0, . . . , SR−1) = J
R−1∑
m=0

Smsim , (1)

with the local spins sim at sites im of a noninteracting system of
itinerant electrons specified by a Hamiltonian Ĥel. With J > 0
we choose an antiferromagnetic coupling. Ĥel is constructed
with the help of creation and annihilation operators c†

iσ and
ciσ , where i refers to a site of the given lattice and σ =↑,↓
to the electron spin projection. The orthonormal states |i, σ 〉
span the one-particle Hilbert space. The local spin at a site i
is given by si = 1

2

∑
σσ ′ c†

iσ τσσ ′ciσ ′ , where τ = (τx, τy, τz )T is
the vector of Pauli matrices.

The total Hamiltonian

Ĥ (S0, . . . , SR−1) = Ĥel + Ĥint(S0, . . . , SR−1) (2)

represents the R-impurity Kondo model with localized
quantum spins replaced by classical spins Sm. It is a quantum-
classical hybrid with an intrinsic classical parameter manifold
S = S2 × · · · × S2, given by the R-fold direct product of 2-
spheres S2 ∼= {S ∈ R3 | |S| = 1}, i.e., S is the space of all
classical spin configurations, (S0, . . . , SR−1) ∈ S and a sim-
ply connected and closed 2R-dimensional manifold.

Let us assume that the many-electron ground state
|�0(S0, . . . , SR−1)〉 of Ĥ (S0, . . . , SR−1) smoothly depends on
(S0, . . . , SR−1) and is nondegenerate and gapped on the entire
parameter set S . In this case, the Rth spin-Chern number
C(S)

R (see below) of the ground-state bundle over S is well
defined and must take an integer value C(S)

R ∈ Z [24,25]. C(S)
R

is a topological invariant, i.e., it is invariant under continuous
deformations of the electronic Hamiltonian Ĥel + Ĥint(S), as
long as there is no gap closure for any spin configuration in S .
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FIG. 1. Left: Haldane model. A sites on the honeycomb lattice are represented by blue dots, on-ite potential: +M. B sites: red dots,
potential −M. Nearest-neighbor hopping t1: black lines. Next-nearest-neighbor hopping t2 with additional Peierls factor e−iξ (eiξ ) for hopping
in clockwise (light purple) or counterclockwise direction (light blue arrows). Right: Phase diagram in the M/t2-ξ plane with trivial (C (k)

1 = 0,
gray) and nontrivial topological phases with k-space Chern numbers (C (k)

1 = ±1, light green and light orange) (see Ref. [23]).

The spin-Chern number is given as

C(S)
R = iR

(2π )R

1

R!

∮
S

tr �R , (3)

where � = dA is the spin-Berry-curvature two-form derived
from the one-form A, the spin-Berry connection of the ground-
state bundle. Choosing a parametrization for a spin configura-
tion (S0(λ), . . . , SR−1(λ)) ∈ S in terms of polar and azimuthal
angles λ = (λ0, . . . , λ2R−1) ≡ (ϑ0, ϕ0, . . . , ϑR−1, ϕR−1), we
have

C(S)
R = iR

(2π )R

1

R!

∑
π

signπ

∫
dλ0 . . . dλ2R−1

× ∂〈�0|
∂λπ (0)

∂|�0〉
∂λπ (1)

. . .
∂〈�0|

∂λπ (2R−2)

∂|�0〉
∂λπ (2R−1)

, (4)

where the sum runs over all permutations π . A few more
details are presented in the Appendix.

III. HALDANE MODEL AND COUPLING
TO IMPURITY SPINS

For the tight-binding electron system we choose the (spin-
ful) Haldane model [7,23]. At half-filling this is a prototypical
(k-space) Chern insulator with a k-space Chern number that
can be zero or finite, i.e., C(k)

1 = 0,±1 (per spin projection),
depending on the model parameters. Choosing the Haldane
model allows us to study the impact of a nontrivial (k-space)
topological electronic structure on the S-space topology. Fur-
thermore, this complements a previous study [25] of the
weak-J regime of the Haldane model coupled to R = 1 and
2 impurity spins, where the spin-Berry curvature has been
shown to play a decisive role in the close-to-adiabatic real-
time dynamics.

The Haldane Hamiltonian is given by

Ĥel = M
∑

iσ

zic
†
iσ ciσ − t1

∑
〈ii′〉,σ

c†
iσ ci′σ − t2

∑
〈〈ii′〉〉,σ

eiξii′ c†
iσ ci′σ

(5)

(see Fig. 1). Here, i, i′ run over the L sites of the two-
dimensional bipartite honeycomb lattice. M is the strength of
a staggered onsite potential, where the sign factor zi = +1 for
a site i in the A sublattice and zi = −1 for i in the B sub-
lattice. For M �= 0 the onsite potential term induces different
occupations on A and B sites. This Semenoff term breaks
inversion symmetry [30]. Further, t1 denotes the hopping am-
plitude between nearest neighbors 〈ii′〉 and sets the energy
scale, i.e., we choose t1 = 1. The next-nearest-neighbor hop-
ping eiξii′ t2 with real hopping amplitude t2 includes a phase
factor, where ξii′ = −ξ for hopping from i′ to i in clockwise
direction and where ξii′ = ξ for counterclockwise direction.
This term, for t2 �= 0 and ξ �= 0,±π , breaks time-reversal
symmetry and thus allows for a nonzero (k-space) Chern
number (see the Haldane phase diagram [23] in Fig. 1).
The total flux of the corresponding orbital magnetic field
through a unit cell vanishes. We set t2 = 0.1 throughout
the paper.

Adding the interaction term Ĥint (S0, . . . , SR−1) implies that
translational symmetries are broken so that for J �= 0 the k-
space Chern number is no longer well defined. Furthermore,
via Ĥint (S0, . . . , SR−1) the classical spins act as local magnetic
fields, and thus time-reversal symmetry is broken for J �= 0
even if t2 = 0. A finite t2 also breaks particle-hole symmetry
of the model (except for ξ = ±π/2). We note that Eq. (5)
is the Hamiltonian of a spinful Haldane model consisting of
two identical copies, one for spin projection σ =↑ and one
for σ =↓, respectively. Spin projections are mixed via the
interaction term.

We also add a chemical-potential term −μN̂ to the Hamil-
tonian, Eq. (5), where N̂ is the total-particle number. Any
value of the chemical potential μ inside the bulk band gap
ensures a half-filled system. Its exact position within the gap,
however, is relevant for the occupation of in-gap impurity
states induced by the exchange interaction with the classical
spins. As the impurity concentration R/L (here R � 3) is ther-
modynamically irrelevant, we set μ to its zero-temperature
bulk value, i.e., μ lies exactly in the center of the bulk band
gap. A different choice of μ will not qualitatively change the
phase diagrams discussed below.
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FIG. 2. One-electron energies as a function of J , as obtained by diagonalization of the effective hopping matrix, Eq. (7), for a lattice with
periodic boundaries consisting of 39×39 unit cells, each containing an A and a B site. A single impurity spin S (R = 1) is coupled to an A
orbital at site i0. Calculations for various mass parameters M/Mcrit of the Haldane model as indicated (Mcrit = 3

√
3t2 sin ξ ). M = ±0.5Mcrit :

(k-space) topologically nontrivial state; M = 1.5Mcrit : trivial state. Further parameters: ξ = π/4, t2 = 0.1, t1 = 1. The chemical potential
μ ≈ −0.21 is located in the middle of the bulk band gap (thin black line). Note that only the low-energy electronic structure is displayed
with occupied (red) and unoccupied states (blue). In-gap bound states are labeled by letters (a)–(e). For each of the three considered mass
parameters, there is a spatially local (S-space) topological transition at a critical interaction strength Jcrit , at which an in-gap state, i.e., in-gap
state (b), (c), or (e), respectively, crosses the chemical potential (color change from red to blue or vice versa).

The total Hamiltonian, Eq. (2), can be cast into the form

Ĥ (S0, . . . , SR−1) =
∑
ii′σσ ′

tii′σσ ′ (S0, . . . , SR−1)c†
iσ ci′σ ′ , (6)

where

tii′σσ ′ (S0, . . . , SR−1) = tii′δσσ ′ + 1

2
δii′J

R−1∑
m=0

τσσ ′Sm (7)

are the elements of the effective hopping matrix
t (S0, . . . , SR−1). Here, tii′ are the elements of the hopping
matrix of the Haldane model, and τ is the vector of Pauli
matrices. The one-particle energies εn(S0, . . . , SR−1) are
obtained by numerical diagonalization of t (S0, . . . , SR−1) for
arbitrary spin configurations. Note that due to the explicit
breaking of translational symmetries, the eigenenergies εn

cannot be classified according to the wave vector k.

IV. LOW-ENERGY ELECTRONIC STRUCTURE
FOR A SINGLE IMPURITY SPIN

We start the discussion with a single impurity spin (R = 1),
and use the notation S ≡ S0 for simplicity. The low-energy
electronic structure of the model as a function of the local
exchange-coupling strength J is obtained by diagonalization
of t (S) [see Eq. (7)]. Calculations have been performed for
a system where the impurity spin is coupled to an A site i0
of the hexagonal lattice. Due to periodic boundary conditions,
results do not depend on the choice of the unit cell but will be
different in general for impurity spins coupled to A or B sites.
However, the roles of A and B sites are interchanged under
a sign change, M → −M, ξ → −ξ , of both the staggered
potential and the phase, respectively.

Figure 2 displays the energies εn for generic parameters
ξ = π/4, t2 = 0.1 (in units of t1 ≡ 1) in a small energy
window around μ ≈ −0.21, while the widths of the valence
band Wval ≈ 2.2 and of the conduction band Wcond ≈ 3.5 are
much larger. The total width of the bulk electronic structure,
including the band gap � ≈ 0.37, is given by W ≈ 6.1. Apart

from the (J-independent) bulk band gap,

� = 2|M − 3
√

3t2 sin ξ | = 2|M − Mcrit| (8)

(for M, t2 > 0 and 0 < ξ < π), and small gaps originating
from the finite system size (L = 2×392 = 3042 sites), we
mainly see the J dependence of various in-gap states.

We have picked three different mass parameters M to
demonstrate that the in-gap states strongly depend on the
underlying model for the electron system. The bulk band gap
� is the same in all cases. In particular, for M = −0.5Mcrit

and +0.5Mcrit (left and middle panels), we have systems with
different local occupations of the A-impurity site,

ni0 =
∑

σ=↑,↓
c†

i0σ
ci0σ , (9)

namely, 〈ni0〉 > 1 and 〈ni0〉 < 1, respectively. The systems
with M = ±0.5Mcrit and 1.5Mcrit (left, middle, and right pan-
els) are in a nontrivial and trivial k-space topological state,
respectively, as characterized by the respective k-space Chern
numbers C(k)

1 = +1 and C(k)
1 = 0 (see also Fig. 1).

We have computed the spin-Chern number numerically
[see Eqs. (3) and (4) and the Appendix]. At J = 0, the first
spin-Chern number vanishes in all cases, C(S)

1 = 0. This is
trivial since the spin manifold S is completely disconnected
from the electron degrees of freedom in this case, and since the
half-filled Haldane model has a nondegenerate ground state.

As J is increased, we furthermore find that the system
undergoes a spatially local topological transition, indicated
by a sudden jump of the spin-Chern number to C(S)

1 = 1
at a finite critical exchange coupling Jcrit , and stays in this
phase all the way to the strong-coupling limit J → ∞. In fact,
Jcrit is given as the coupling strength, where an in-gap state
crosses the chemical potential, i.e., at a gap closure, where
the many-electron ground-state energy becomes degenerate.
Exactly at J = Jcrit and for a given S, there are two orthog-
onal many-electron ground states of the same energy. Since
Ĥel + Ĥint(S) does not contain two-electron interaction terms,
these are antisymmetrized product states, which differ in the
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occupation of the in-gap one-particle state by ±1. Note that
for a different choice of μ, the value of Jcrit would change as
well.

The quantum-classical Hamiltonian in Eq. (2) is SO(3)
symmetric. It is invariant under a global simultaneous rota-
tion of the classical spins and of the quantum spin degrees
of freedom around an arbitrary axis given by a unit vector
n and a rotation angle ϕ. In the classical sector and for a
single spin (R = 1), the rotation is represented by the SO(3)
matrix On(ϕ) = exp(Tnϕ) acting in the spin-configuration
space S . Here, T are real and skew-symmetric 3×3 matrices
generating the so(3) with [Tα, Tβ ] = ∑

γ=x,y,z εαβγ Tγ . In the
quantum sector, the rotation is represented by the unitary
operator Un(ϕ) = exp(−istotnϕ) with the total electron spin
stot = ∑

i si. An immediate consequence of the invariance
Un(ϕ)Ĥ [On(ϕ)S]U †

n (ϕ) = Ĥ (S) is the SO(3)-induced degen-
eracy of the eigenenergies: εn(S) = εn, i.e., the one-particle
energies and thus the N-electron ground-state energy are
independent of S.

In particular, the one-electron energy of an in-gap state
actually represents the energy of all rotated one-particle states
on the whole S2 manifold. Hence, one can assign a (single-
electron) spin-Chern number c(S)

1 to each in-gap state. As
the model (2) is noninteracting, single-electron spin-Chern
numbers are additive, and there is a nonzero change of the
(total) spin-Chern number C(S)

1 at Jcrit , when the in-gap state
crossing the chemical potential carries a finite c(S)

1 �= 0.
For increasing J , the change is �C(S)

1 = −c(S)
1 (�C(S)

1 =
+c(S)

1 ), if the in-gap state crosses μ from below (from above),
since the occupation of the state changes from 1 to 0 (from 0
to 1). For the different in-gap states in Fig. 2 (see the labels at
the in-gap states) c(S)

1 = +1 for state (a), c(S)
1 = −1 for state

(b), c(S)
1 = +1 for state (c), c(S)

1 = −1 for state (d), and c(S)
1 =

+1 for state (e). In all cases this results in �C(S)
1 = +1. An

exception, where there is no crossing at all, is discussed later.
Note that a different choice of μ would not change �C(S)

1 : For
a sufficiently lower μ, for example, state (d) with c(S)

1 = −1
(middle panel) would cross μ from below, while state (c) with
c(S)

1 = +1 would remain unoccupied rather than crossing μ

from above, such that still �C(S)
1 = +1.

V. STRONG-J LIMIT AND MAGNETIC
MONOPOLE MODEL

With increasing J , there is a local spin moment 〈s2
i0〉

forming in the electron system at site i0. This more and
more becomes the moment of a rigid quantum spin- 1

2 , i.e.,
〈s2

i0〉 → 3
4 , and, at the same time, gets more and more polar-

ized. As a consequence, the occupation ni0 = ∑
σ=↑,↓ c†

i0σ
ci0σ

of the A site i0 must approach half-filling, ni0 → 1, in the
strong-J limit.

Right below the respective critical coupling, J → Jcrit ,
J < Jcrit , we find 〈si0z〉 = −0.46 and 〈ni0〉 = 0.99 for M =
−0.5Mcrit (Fig. 2, left panel, Jcrit ≈ 12.9), 〈si0z〉 = −0.50
and 〈ni0〉 = 1.00 for M = 0.5Mcrit (middle, Jcrit ≈ 94.8),
and 〈si0z〉 = −0.40 and 〈ni0〉 = 0.92 for M = 1.5Mcrit (right,
Jcrit ≈ 8.2). In all three cases, this is already close to the
J → ∞ saturation values.

In the extreme limit J → ∞, hopping of electrons from
and to the site i0 is dynamically suppressed, and the lo-
cal physics at i0 is perfectly described by the effective
Hamiltonian

Ĥmono = JSsi0 (10)

with a rigid quantum spin si0 with spin quantum number s =
1
2 . This model, a spin 1

2 in an external field (here given by JS),
is well known and has served as a paradigmatic model of a
magnetic monopole [26–28]. The spin-Berry curvature of the
monopole model is computed easily [27].

In this context, we would like to emphasize a helpful
analogy with magnetostatics [27,28]: We note that for R = 1
the spin-Berry curvature can be seen as a three-component
vector field which is obtained as the curl of the spin-Berry
connection. The latter takes the form of the vector poten-
tial A(r) of a magnetic point charge qmag located at the
origin r = 0,

ρmag(r) = qmagδ(r) , (11)

and the Berry curvature takes the form of the magnetic field
B(r) induced by that point charge. This analogy to mag-
netostatics with hypothetical magnetic charges or magnetic
charge densities ρmag(r) but without currents, i.e., divB(r) =
μ0ρmag(r) and curl B(r) = 0, can be strengthened by using the
notation

r ≡ JS, (12)

with r ∈ R3, such that Ĥmono = Ĥmono(r) = si0 r.
With this, the spin-Berry curvature B is a vector field on r

space and, for r �= 0, is obtained via

B(r) = ∇r × A(r) (13)

from the spin-Berry connection A(r) = i〈�(r)|∇r|�(r)〉 of
the U(1) bundle of ground states |�(r)〉 of the monopole
model, and one finds

B(r) = μ0

4π
qmag

r
|r|3 . (14)

The spin-Chern number is obtained as the total magnetic flux
through a two-dimensional surface in r space enclosing the
magnetic charge, e.g., through a sphere of radius r0. We get

C(S)
1 = 1

2π

∮
|r|=r0

B(r)r2 dr̂ = 1, (15)

if we set qmag = 2π/μ0. The analogy with magnetostatics will
be helpful below. Note that we also get C(S)

1 = 1 from Eq. (3)
numerically.

In the J → ∞ limit, the rest of the system, i.e., the Hal-
dane model without a single site i0, does not couple to the
impurity-spin manifold S at all and thus has spin-Chern num-
ber C(S)

1,rest = 0. We conclude that the spin-Chern number of the
full model, Eq. (2), can be computed analytically for a single
impurity spin in the limit J → ∞. The magnetic-monopole
model, Eq. (10), applies, and yields C(S)

1 = 1. Together with
the fact that C(S)

1 = 0 at J = 0 in the full model, this explains
the necessity of a spatially local topological transition and thus
of a gap closure at some intermediate J = Jcrit , which must be
realized by an in-gap state crossing μ.
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VI. TOPOLOGICAL TRANSITION AT Jcrit

The simple monopole model, Eq. (10), predicts C(S)
1 = 1

for all J > 0 and an undefined spin-Chern number at J = 0
due to the twofold-degenerate ground state of Ĥmono. In the
full model, however, the gap closure at the topological transi-
tion takes place at a finite critical exchange coupling Jcrit > 0.
Furthermore, at J = Jcrit the gap does not close at a single
point in r space but actually simultaneously on the whole sur-
face |r| = SJcrit . This infinite degeneracy of the ground-state
energy at Jcrit is caused by the SO(3) rotation symmetry of
the total Hamiltonian, Eq. (2), and the resulting degeneracy of
the eigenenergies εn(S) = εn, and thus of the many-electron
ground-state energy. For J = Jcrit and at each fixed S ∈ S2,
there is a twofold degeneracy of the ground-state energies in
the N and the N + 1 (or N − 1) sectors of the Fock space. This
degeneracy is also protected by particle-number conservation.

For the magnetostatics analogy [27,28] this implies that
the magnetic charge qmag is uniformly distributed over the
2-sphere in r space with radius JcritS, i.e.,

ρmag(r) = σmagδ(r − JcritS) (16)

with the magnetic surface charge density

σmag = qmag

4πJ2
critS

2
. (17)

Solving divB(r) = μ0ρmag(r) with the help of the divergence
theorem and the SO(3) symmetry, yields the Berry curvature

B(r) = μ0

4π
qmag

r
|r|3 �(r − JcritS), (18)

where � is the Heaviside step function. Since r = JS, we have
�(r − JcritS) = �(J − Jcrit ). Hence, the field B(r) vanishes in
the interior of the critical sphere J < Jcrit , while it takes the
same value as for a magnetic point charge, if J > Jcrit , i.e.,
outside the critical sphere.

The magnetic flux through the sphere with radius JS, di-
vided by 2π , is the spin-Chern number:

C(S)
1 = 1

2π

∮
|r|=JS

B(r)r2 dr̂ = �(J − Jcrit ). (19)

It jumps from C(S)
1 = 0 for J < Jcrit to C(S)

1 = 1 for J > Jcrit .
The explicit expression for the Berry connection corre-

sponding to the curvature, Eq. (18), is given by [26]

A(r) = 1

2r2

e × r
1 + er/r

, (20)

for J > Jcrit , and A(r) = 0 for J < Jcrit . One easily veri-
fies B(r) = curl A(r) = 1

2 r/r3. The unit vector e is arbitrary.
There is a Dirac string singularity at r = −re, i.e., on
the negative e axis for |z| > JcritS, which can be moved
(but not removed) by gauge transformations A(r) �→ A(r) +
grad �(r) with an arbitrary scalar field �. Inside the critical
sphere we have curl A(r) = 0, and thus there is a gauge such
that A(r) = 0. The connection is discontinuous on the critical
sphere and along the Dirac string stretching from a point on
the critical sphere to infinity.

VII. RELATION TO k-SPACE TOPOLOGY

The transition is driven by the local electronic structure
in the vicinity of the impurity spin. The latter acts like a
local magnetic field JS, which locally spin polarizes the elec-
tron system. This local Zeeman effect lifts the degeneracy of
the total-spin multiplets present in the spin-SU(2)-symmetric
model at J = 0.

As a result, two states with high excitation energies are
formed: Irrespective of the parameters of the electronic sys-
tem, a spin-↓ state, moving down in energy with increasing J ,
splits off from the lower edge of the valence band at a coupling
strength that is roughly given by the valence band width Wval.
Vice versa, a spin-↑ state, moving up in energy, splits off from
the upper edge of the conduction band for J ∼ Wcond. Here, we
have assumed that the impurity spin is oriented in +z direc-
tion. Note that these two states are not visible in Fig. 2, where
only the low-energy electronic structure is shown. Both high-
energy states are bound states and exponentially localized in
the vicinity of i0. They get fully localized at the site i0 only in
the J → ∞ limit and then constitute the magnetic-monopole
model, Eq. (10).

The physical cause of the low-energy localized states
within the bulk band gap is more intricate. We find that
these very much depend on the k-space topological phase of
the electron system characterized by the first k-space Chern
number C(k)

1 . In case of a topologically nontrivial electron
system with C(k)

1 = ±1, we always find two in-gap states for
sufficiently strong J [see the states (a), (b) and (c), (d) in
Fig. 2]. They do not merge with the bulk continuum and stay
within the gap. Ultimately, for J → ∞, their energies become
degenerate.

For C(k)
1 = 0, on the other hand, there is a single in-gap

state, which fully crosses the gap as function of J . This merges
with the conduction or valence-band bulk continuum at a finite
J , such that there is no in-gap state left in the J → ∞ limit.
State (e) in the right panel of Fig. 2 (M/Mcrit = 1.5) provides
an example.

For infinite J , an impurity spin coupled to i0 induces
a hard zero-dimensional defect in both the spin-↑ and the
spin-↓ copies of Haldane model. According to the 10-fold
way classification, a codimension-2 defect in a (spatially)
two-dimensional model in Altland-Zirnbauer class A is topo-
logically classified as trivial [10,11]. Hence, with reference to
the bulk-defect correspondence, there is no reason to expect
a topologically protected defect mode localized around i0 for
the C(k)

1 = ±1 nontrivial phase.
On the other hand, for a soft defect with finite impurity

strength, it is well known that impurity bound states can serve
as a local signature of the bulk topological phase. This has
been demonstrated explicitly, e.g., for codimension-2 defects
in two-dimensional Z2 insulators [12,17].

For the present case of a magnetic point impurity in a
Chern insulator, one may anticipate a close relation between
the bulk Chern number and the existence of in-gap impu-
rity bound states as well. Indeed, such states were observed
for the Haldane model with various types of spinless lo-
cal impurity potentials [21], and their existence or absence
was found to be related to the k-space topology of the bulk
system.
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Here, we provide numerical evidence and a quite intuitive
understanding that in the strong-J limit there must be a spin-↑
and a spin-↓ in-gap state localized around the impurity, pre-
dominantly on the nearest-neighbor sites of i0, if and only if
the bulk electronic structure is topologically nontrivial.

To start the discussion, we note that in the infinite-J limit,
the low-energy electronic structure on the energy scale set by
t1 and t2 is exactly given by the (spinful) Haldane model with a
hole at i0. Let us now consider a hole with a macroscopically
large radius rh (see also Ref. [15]). Its edge is one dimen-
sional and, according to the bulk-boundary correspondence,
necessarily carrying a single dispersive chiral mode (per spin
projection), which bridges the bulk band gap, if C(k)

1 = ±1.
Due to its dispersion, the number of in-gap states qNedge,
localized in the vicinity of the edge of the hole and forming the
mode, is given by a finite fraction q of the total number of edge
sites Nedge ∝ 2πrh. Shrinking the hole to a single lattice site
essentially means increasing discretization of the edge in real
space and, consequently, increasing thinning of the dispersive
edge-mode spectrum until ultimately only a single impurity
bound state (per spin projection) remains.

At infinite J , the spin-↑ and the spin-↓ bound states have
the same energy, as the classical spin only couples to the
system at i0, i.e., “inside the hole,” such that there cannot be
any spin splitting in the rest of the system. At finite but strong
J , one may invoke a perturbative argument: The correction
of the bound-state energies via second-order virtual-hopping
processes onto the impurity site i0 and back is of the order
of t2

1 /J . In fact, the energies of the in-gap states (a), (b) and
of (c), (d) in Fig. 2 are nearly proportional to 1/J for strong
J , and the correction is negative (positive) for spin-↑ (spin-↓)
states.

The thinning of the dispersive edge-mode spectrum is
demonstrated with Fig. 3. We have performed calculations
for the Haldane model, where the sites within a small cluster
centered around i0 have been removed. The cluster includes
the site i0 and all sites linked to i0 by r or less nearest-neighbor
hops on the honeycomb lattice, such that r, with respect to the
honeycomb metric, is the radius of the hole.

The low-energy electronic structure of the Haldane model
with a hole is identical with the low-energy electronic struc-
ture of the Haldane model with classical spins coupled to each
of the hole sites with an infinitely strong local exchange inter-
action J → ∞. The hole degrees of freedom are dynamically
decoupled from the low-energy sector.

For the largest considered hole radius r = 9 (last panel),
the inside of the hole consists of 136 (removed) sites (green
circles) while the first outer shell (violet circles) at distance
r = 10 from i0 is formed by 3r = 30 sites, all belonging to
sublattice A (full circles). We see that for any mass parameter
with −Mcrit < M < Mcrit (light orange in Fig. 3), i.e., in the
nontrivial phase, there are states inside the M-dependent band
gap at almost equidistant energies. The equidistance corre-
sponds to the fact that the boundary mode in the Haldane
model has a nearly linear dispersion. In the r → ∞ limit,
the states would densely fill the band gap. For smaller r,
e.g., for r = 2 (second last panel), there is no qualitative
change of the spectral flow with M, except for the fact that the
number of in-gap states is reduced with the lesser number of
edge sites.

FIG. 3. One-particle energies as function of the mass parameter
M (left panels) for the Haldane model with a “hole” centered around
site i0 with radius r = 0, 1, 2, 9 (panels from top to bottom). See
text for precise definition of r. The hole (right panels) is generated
by cutting the hopping to and removing “hole sites” (green). Violet
sites: the first shell outside the hole. Full (pale) circles: A (B) sites.
Parameters as in Fig. 2. Straight red and blue lines indicate the
M-dependent bulk band gap. Note that energies εn are twofold spin
degenerate.

The overwhelming weight of an in-gap state is right on
the edge, i.e., on the first outer shell (violet sites), while the
rest of the weight is small and further decreases exponentially
with increasing r. Due to the bipartiteness of the honeycomb
lattice, the edge consists only of A (B) sites for even (odd) r.
This implies that the in-gap state energies must almost linearly
increase (decrease) with M for even (odd) r. As is seen in the
figure, this is nicely verified by the calculations.

Shrinking the hole, we finally get a single (spin-
degenerate) impurity mode mainly localized on the three
nearest neighbors of i0 (see top panel of Fig. 3). This is
the in-gap mode that is seen in Fig. 2 (left and middle) for
strong J , where it is slightly spin-split [see states (a), (b) and
states (c), (d)]. As described, it is the remnant of the topolog-
ically protected chiral mode localized on the one-dimensional
boundary of a hypothetical defect, the big hole with infinite
r. It is thus rooted in the topological state of the bulk system,
and in the bulk-boundary correspondence for a codimension-1
defect.

On the other hand, it cannot be understood within the
10-fold way classification as the topologically protected de-
fect mode localized at the real zero-dimensional defect, the
small hole at i0 of radius r = 0. The latter interpretation
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FIG. 4. Critical interaction Jcrit (color code) for the spatially local
topological transition from the C (S)

1 = 0 phase at weak J to the
C (S)

1 = 1 phase at strong J , depending on M and ξ . Results for a
single classical spin (R = 1). Further parameters as in Fig. 2.

would necessarily imply that the mode resides at μ. As is
seen in Fig. 3 (top), however, its energy changes with M.
This is consistent with the bulk-defect correspondence [10,11]
for codimension-2 defects, i.e., with the absence of such a
topological mode.

Finally, we briefly discuss the topologically trivial case
C(k)

1 = 0. Here, no in-gap state centered around i0 is found for
strong J (see the ranges M < −Mcrit and M > Mcrit in Fig. 3).
This corresponds to the absence of a dispersive edge mode
at the one-dimensional boundary of a Chern insulator. The
necessary change of the spin-Chern number from C(S)

1 = 1 at
J = ∞ to C(S)

1 = 0 at J = 0, however, enforces the existence
of an in-gap state in some intermediate coupling-strength
range with an energy bridging the band gap as function of
J [see state (e) in Fig. 2, right]. This state is localized in the
vicinity of i0 but has much less weight right at i0 as compared
to the high-energy bound states. The critical interaction Jcrit , at
which the spin-Chern number jumps from C(S)

1 = 0 to C(S)
1 =

1, i.e., from its weak- to its strong-J value, is determined
by the in-gap states and their J dependence and thus by the
details of the bulk electronic structure of the host system.
We have numerically determined C(S)

1 as a function of J on
a fine grid in the ξ -M space of model parameters, keeping the
next-nearest-neighbor hopping fixed at t2 = 0.1. The critical
coupling Jcrit is displayed in Fig. 4 (see the color code).

The asymmetry of the phase diagram with respect to M
solely stems from the positioning of the impurity. If the im-
purity spin were coupled to a B site, the same phase diagram
would result, but mirrored on the M = 0 axis.

Generally, the local topological transition to a finite spin-
Chern number requires a strong exchange coupling, roughly
of the order of the bandwidth or stronger. From the preceding
discussion, however, one would expect that Jcrit is typically
stronger if the host system is in a (k-space) topologically
nontrivial phase since the presence of the spin-split in-gap
states is understood within a strong-coupling picture opposed
to the in-gap state present in the (k-space) topologically
trivial phase, which typically bridges the bulk gap in some
intermediate-J regime. This expectation is in fact supported
by the results shown in Fig. 4, where the k-space topological
phase-transition line of the pure Haldane model is indicated by
the thick gray lines (see also Fig. 1). In fact, Jcrit is typically

about an order of magnitude larger in the Chern insulating
phase.

For certain parameters, Jcrit even becomes infinite (see the
one-dimensional curve of white pixels in the ξ -M plane in
Fig. 4). On this curve, the Zeeman pair of spin-↑ and spin-↓
in-gap states that appears for strong J in the (k-space) topo-
logical phase is symmetrically located around the chemical
potential, such that both in-gap states do not cross μ as a
function of J . At the point ξ = π/2 and M = 0, for example,
this can be easily seen: Here, particle-hole symmetry requires
μ = 0 and a symmetric spin splitting of the in-gap states
around μ, which implies Jcrit = ∞. For ξ �= π/2, there is a
unique finite M such that the in-gap states do not cross μ.

VIII. TWO IMPURITY SPINS AND (k-SPACE)
TRIVIAL PHASE

For R = 2 classical spins the parameter manifold S =
S2×S2 is four dimensional. We use a parametrization of S
with two pairs of polar and azimuthal angles specifying the
positions of the two impurity spins S0 and S1 on the respec-
tive 2-spheres. The second spin-Chern number C(S)

2 is then
obtained from Eq. (3) (see also the Appendix).

C(S)
2 must vanish for J = 0 since the manifold of spin

configurations S is completely decoupled from the electron
degrees of freedom. For J → ∞, on the other hand, the local
physics at the two sites i0 and i1, where S0 and S1 are coupled
to, is captured by

Ĥ2-mono = JS0si0 + JS1si1 . (21)

The rest of the system, a Haldane model with two holes
at i0 and i1, does not connect to S , and hence C(S)

2,rest = 0.
The second spin-Chern number of the two isolated magnetic
monopoles, Eq. (21), is easily computed and is seen to fac-
torize into the product of the two respective first spin-Chern
numbers associated with the isolated monopoles. Hence,
for J → ∞

C(S)
2 = (

C(S)
1

)2 = 1 (22)

is the second spin-Chern number of the entire system. We con-
clude that there must be a transition between two topologically
different local phases as a function of J . We also note that
the same factorization takes place at finite J in the infinite-
distance limit, where the two-impurity problem decouples into
two single-impurity problems.

For the numerical calculations, parameters are chosen as
in the single-spin (R = 1) case (see Fig. 2). For i0 and i1
we choose two second-nearest-neighbor sites, both on the A
sublattice. The resulting low-energy spectrum of one-particle
energies εn around μ ≈ −0.21 as a function of J is shown in
Fig. 5 for two different mass parameters M. For M = 1.5Mcrit

(top panels), results for two different spin configurations with
ϑ = 0 (left) and ϑ = 3π/4 (right) are displayed, while ϑ = 0
(left) and ϑ = π/4 (right) are considered for M = 0.5Mcrit

(bottom). Here, ϑ is the angle enclosed by S0 and S1. Due
to the SO(3) symmetry of the Hamiltonian, the energies are
invariant under independent rotations of S0 and S1, which
leave S0S1 = cos ϑ constant, i.e., εn(S0, S1) = εn(ϑ ). This
invariance can also be exploited for a simplified evaluation
of the integration in Eq. (A11) of the Appendix.
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FIG. 5. Low-energy spectrum of one-electron energies as a function of J as in Fig. 2 but for two impurity spins S0 and S1 coupled to
next-nearest-neighbor sites on the honeycomb lattice (both A sites). Calculations for various mass parameters and angles ϑ enclosed by S0 and
S1 as indicated. Further parameters: ξ = π/4, t2 = 0.1, t1 = 1, 39×39 unit cells, μ ≈ −0.21 (thin black line). In-gap bound states are labeled
by letters (a)–(e). State (f) belongs to the bulk continuum. In the k-space trivial phase, states (a) and (b) fully cross the gap within a finite-J
range. Their energy splitting shrinks with increasing ϑ and vanishes for ϑ = π . In the k-space nontrivial phase, states (c) and (d) as well as
states (e) and (f) form Zeeman-split pairs with degenerate energies for J → ∞.

We first discuss the (k-space) trivial phase of the host sys-
tem C(k)

1 = 0 (see the upper panels of Fig. 5 for M = 1.5Mcrit).
Opposed to the case of a single impurity spin, we now find
two in-gap states, which as function of J fully bridge the
bulk band gap [see states (a) and (b) in Fig. 5]. For ϑ = 0,
these states cross the chemical potential at critical couplings
J1(ϑ = 0) ≈ 6.0 and J2(ϑ = 0) ≈ 12.3, respectively. With in-
creasing ϑ (see the upper right panel in Fig. 5 for ϑ = 3π/4),
the critical coupling J1(ϑ ) increases while J2(ϑ ) decreases,
until at ϑ = π they coincide, J1(π ) = J2(π ).

The latter observation can be understood as follows: For
ϑ = π the impurity spins are collinear. Hence, the z compo-
nent of the total electron spin stot,z is conserved, and the two
impurity bound states have well-defined and in fact opposite
spin-projection quantum numbers. This prevents hybridiza-
tion of the bound states, and since the states can be mapped
onto each other by a symmetry transformation of the system,
namely, the combination of spin flip ↑↔↓ and mirroring at an
axis perpendicular to and in the middle of the connecting line
between the impurities, their energies must be degenerate for
any J , which implies that they cross μ at the same critical J .
For smaller ϑ , the hybridization is nonzero and the strongest
for ϑ = 0, where the difference between J2 and J1 is the
largest.

The ϑ dependence of the critical couplings is displayed
in the upper panel of Fig. 6. We see that within that critical
range Jcrit,1 < J < Jcrit,2, given by Jcrit,1 = J1(ϑ = 0) ≈ 6.0
and Jcrit,2 = J2(ϑ = 0) ≈ 12.3, the system is gapless and that
the second spin-Chern number remains undefined. This gap-
less phase separates the trivial phase at J < Jcrit,1 ≈ 6.0 with
C(S)

2 = 0 and the nontrivial phase at J > Jcrit,2 ≈ 12.3 with
C(S)

2 = 1.

The gapless phase is located on the J axis around the
critical coupling Jcrit of the R = 1 single-impurity system,
as is obvious by comparing the upper panels in Fig. 5 with
the right panel of Fig. 2. This is easily understood as a con-
sequence of the infinite-distance limit of the R = 2 system:
With increasing distance between the sites i0 and i1, the local
electronic structure around the two impurities disentangles
at any J , the J-dependent energies of the two in-gap states
become degenerate, and the gap-closure position becomes
independent of ϑ .

IX. TWO IMPURITY SPINS, k-SPACE
NONTRIVIAL PHASE

Let us now turn to the (k-space) topologically nontriv-
ial case. In the infinite-distance limit, there are four in-gap
states in the strong-J regime, i.e., two slightly spin-split states
localized around i0 and two localized around i1. Both spin
pairs represent the remnants of topologically protected chi-
ral modes localized at the boundaries of two big holes, as
discussed above. The energies of the in-gap states localized
around different positions i0 and i1 are degenerate in this limit.

With decreasing distance and increasing overlap between
the in-gap states, this degeneracy is lifted by forming bonding
and antibonding linear combinations, such that two spin pairs
of in-gap states at different energies reside in the bulk gap
at strong J . When i0 and i1 are nearest neighbors on the
honeycomb lattice, they are rather forming a single two-site
hole. As can be seen from Fig. 3, there is a single in-gap state
in case for a four-site hole (r = 1) at M/Mcrit = 0.5. Hence,
in case of a nearest-neighbor two-site hole, one would also
expect a single pair of in-gap states. This implies that upon
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FIG. 6. Boundaries between colored areas: critical exchange
couplings J1(ϑ ) and J2(ϑ ), at which the two in-gap states cross
μ, as function of the angle ϑ enclosed by S0 and S1. Upper
panel: M/Mcrit = 1.5 (trivial k-space topology). C (S)

2 = 0 for J <

Jcrit,1 ≈ 6.0 (green line), C (S)
2 = 1 for J > Jcrit,2 ≈ 12.3 (red line).

Lower panel: M/Mcrit = 0.5 (nontrivial). C (S)
2 = 0 for J < Jcrit,1 ≈

14.2 (green line), C (S)
2 = 1 for J > Jcrit,2 ≈ 20.3 (red line).

decreasing the distance, one pair must have merged with the
continuum of delocalized bulk states.

The case of next-nearest neighbors is on the brink. As is
seen in the lower panels of Fig. 5, one can identify three in-
gap states for large but finite J: For both spin configurations,
ϑ = 0 and ϑ = π/4 (lower left and right), states (c), (d) form
a Zeeman-split pair, and their energies stay in the gap and
become degenerate for J → ∞. On the other hand, state (e)
lies inside the gap but approaches its partner state (f) in the
bulk continuum for J → ∞. For weaker couplings J � 30
and for ϑ = 0, only the spin-↑ state (d) and the spin-↓ state (e)
of the first and of the second pair remain in the gap and with
decreasing J move down and up in energy, respectively. For
collinear (noncollinear) spin configuration with ϑ = 0 (ϑ =
π/4), we observe a crossing (avoided crossing) as function of
J around J ≈ 16 (left and right lower panels).

As in the (k-space) topologically trivial case, there must be
a gap closure in a critical-J range on the spin-configuration
manifold S to realize the transition from the phase with spin-
Chern number C(S)

2 = 1 at J → ∞ to the one with C(S)
2 = 0

at J = 0. As is shown in Fig. 6 (lower panel), there is a
gap closure for J = Jcrit,2 = J2(ϑ = 0) ≈ 20.3. Decreasing J
further, the gap closes at J2(ϑ ) < J2(0) for increasing angle

FIG. 7. Lower critical interaction Jcrit,1 (color code) for the spa-
tially local topological transition from the trivial C (S)

2 = 0 phase at
weak J to the gapless phase with undefined spin-Chern number
at intermediate J . Calculation on a ξ -M grid for a smaller system
consisting of 9×9 unit cells. R = 2.

ϑ = arccos(S0S1) until the angle reaches ϑ ≈ 0.11π . For still
smaller J , as described by the function J1(ϑ ), the gap closure
on S moves back to ϑ = 0 at J = Jcrit,1 = J1(ϑ = 0) ≈ 14.2.
Note that due to the SO(3) symmetry and for a coupling J in
the range between Jcrit,1 and Jcrit,2, a gap closure takes place on
the whole three-dimensional submanifold of S = S2×S2 de-
termined by a (J-dependent) critical ϑ . Summarizing, within
the critical range Jcrit,1 < J < Jcrit,2, given by Jcrit,1 = J1(ϑ =
0) ≈ 14.2 and Jcrit,2 = J2(ϑ = 0) ≈ 20.3, the system is gap-
less. The nontrivial phase is found for J > Jcrit,2, while the
trivial one is realized for J < Jcrit,1.

The dependencies of the critical couplings Jcrit,1 and Jcrit,2

on the Haldane model parameters ξ and M are displayed
in Figs. 7 and 8, respectively. Calculations have been done
for a smaller lattice with 9×9 unit cells. Similarly to the
single-impurity case, for the (k-space) topologically nontrivial
case, the topological transition characterized by the second
spin-Chern number typically takes place at stronger exchange
couplings J .

FIG. 8. Upper critical interaction Jcrit,2 (color code) for the
spatially local topological transition from the gapless phase at in-
termediate J to the nontrivial C (S)

2 = 1 phase at strong J . Calculation
for 9×9 unit cells as in Fig. 7 but using a different color code. R = 2.
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X. THREE IMPURITY SPINS

The discussion of the system with R = 3 impurity spins
very much follows along the lines of the R = 2 case. The third
spin-Chern number in the strong-J limit factorizes C(S)

3 =
(C(S)

1 )3. Since the magnetic monopole model. Eq. (10), ap-
plies to the individual impurity spins in that limit and yields
C(S)

1 = 1, we get C(S)
3 = 1 for J → ∞. For J = 0, on the other

hand, C(S)
3 = 0 and, hence, there must be a local topological

phase transition as a function of J .
The base manifold S = S2×S2×S2 is six dimensional. Due

to the SO(3) symmetry of the model, there is an SO(3)-
induced degeneracy of the one-particle energies. Concretely,
this means εn(S0, S1, S2) = εn for all spin configurations that
can be mapped onto each other via global SO(3) rotations
of all three spins. They form a class of “equivalent” spin
configurations. If there is a gap closure, it must take place on
the entire three-dimensional submanifold of S consisting of
equivalent configurations. Within a class, one can choose the
configuration, where the spin S0 points into the +z direction
and where the spin S1 lies in the y-z plane, and take this as a
representative of the class. Representative spin configurations
from different classes differ by the angle ϑ enclosed by S0 and
S1, or by the polar or the azimuthal angles ϑ ′ and ϕ′ fixing the
position of S2 relative to S0 and S1.

As an example, we consider a model where the three classi-
cal spins are coupled to the A sites of a single hexagon of the
honeycomb lattice. Furthermore, we focus on the (k-space)
topologically trivial case. Very similar to the case of two im-
purity spins, the gapped weak- and the strong-coupling phases
are separated on the J axis by a gapless phase with undefined
spin-Chern number.

This is demonstrated with Fig. 9 for Haldane model pa-
rameters in the k-space trivial phase (ξ = π/4, M = 1.5Mcrit).
We find C(S)

3 = 1 for J > Jcrit,2 ≈ 24.5, and C(S)
3 = 0 for J <

Jcrit,1 ≈ 5.5. In the range Jcrit,1 < J < Jcrit,2, the third spin-
Chern number is undefined since the system is gapless. For
any fixed J in that range, represented in Fig. 9 by a set of
panels arranged horizontally, one can find at least one angle ϑ

(on the big horizontal axis), for which there is a color change
in the corresponding panel (ϑ, J ), i.e., where there is at least a
single point on the 2-sphere (ϕ′, ϑ ′), at which the gap closes.
Note that for J = 12, in particular, there is a gap closure at
ϑ = 2π/3 (last panel in the row), which is hardly visible in
the figure.

Another observation that can be made for the k-space triv-
ial phase from Fig. 9 is that for any fixed spin configuration
(ϑ, ϑ ′, ϕ′) there are exactly three modes crossing the chemical
potential as a function of J , i.e., along an arbitrary set of
panels arranged vertically, where for all panels the same but
arbitrary point (ϕ′, ϑ ′) is considered, there are exactly three
color changes.

Again this is in line the the corresponding observations for
R = 1, where a single mode must cross μ as function of J (see
Fig. 2, right panel), and for R = 2, where two modes are found
(Fig. 5, lower panels). The appearance of three modes crossing
the band gap can be understood by starting from the infinite
distance limit, where each mode is bound to its respective
impurity site. Upon decreasing the distance the degeneracy is
lifted due to increasing overlap between the in-gap states.

FIG. 9. Boundaries between colored areas: exchange couplings
J1(ϑ, ϑ ′, ϕ′) (blue → light purple) and J2(ϑ, ϑ ′, ϕ′) (light purple →
ocher) and J3(ϑ, ϑ ′, ϕ′) (ocher → yellow), at which in-gap states
cross μ. Calculation for a system with R = 3 impurity spins on the
A sites of a hexagon of the hexagonal lattice with 27×27 unit cells.
Calculation for ξ = π/4, M = 1.5Mcrit (k-space trivial phase). Each
panel in the two-dimensional array refers to a pair (ϑ, J ), where ϑ

is the angle enclosed by S0 and S1 and runs from ϑ = 0 to π . In
each individual panel, the horizontal axis refers to ϕ′ and the vertical
one to ϑ ′, where ϕ′ ∈ [0, 2π ] and ϑ ′ ∈ [0, π ] are the azimuthal and
polar angles fixing the position of S2 relative to S0 and S1 (see text).
Above the red line (J > Jcrit,2 ≈ 24.5): C (S)

3 = 1. Below the green
line (J < Jcrit,1 ≈ 5.5): C (S)

3 = 0. C (S)
3 is undefined in between.

XI. SUMMARIZING DISCUSSION

Our study has confirmed essential conclusions of earlier
work for a single impurity in spinless models [12,17,18,21].
As proposed by Slager et al. [17], the spectral response to
a local impurity and the appearance of in-gap states, in par-
ticular, can serve as diagnostic for the topological state of
the bulk system. Similar to their results for the nontrivial Z2

insulating phase of the BHZ model, we find for the nontrivial
Z Chern-insulating phase of the (spinful) Haldane model that
a (magnetic) impurity induces an in-gap state, whenever the
impurity potential is sufficiently strong. With decreasing im-
purity strength, it exists down to a weak but finite value where
it merges with the bulk continuum. For the magnetic impurity
considered here, the in-gap state is generally spin split, except
in the J → ∞ limit.

On the other hand, for the topologically trivial bulk phase
of the BHZ [17] and of the Haldane model, an impurity state
is observed in a finite range of the impurity strengths only and
fully bridges the band gap. It is absent, in particular, in the
J → ∞ limit. For the spinful model considered here, the state
has a well-defined spin projection. Our results for a magnetic
impurity coupling to a single orbital in the unit cell are also in
line with those obtained for a (spinless) impurity coupling to
both orbitals in the unit cell of the (spinless) Haldane model
[21], inasmuch as the gap is fully bridged within a finite-J
range.

It has been proposed [17] that the impurity potential can
be controlled experimentally by locally applying a tunable
gate voltage and that the presence or absence of in-gap states,
and thereby the bulk topology, can be probed via scanning
tunneling spectroscopy. This applies to spin-resolved STM
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techniques as well [31]. Other experimental ways to realize
and to control local impurities have been discussed in in
Ref. [21].

We note that the in-gap impurity mode appearing in the
topologically nontrivial phase of the Haldane model at strong
J carries a chiral current flowing around the impurity site.
Chiral currents have been studied in Ref. [18] for bound
states of a long-range 1/r Coulomb-potential impurity in the
Haldane model. The current is due to the explicit breaking of
time-reversal symmetry via the orbital magnetic field in the
Haldane model. Its very presence is thus not indicative of any
topological properties. However, it was found that the current
response due to the impurity has a qualitatively different r
dependence, depending on the bulk topology.

Diop et al. [21] pointed out that, strictly speaking, an
unambiguous detection of global topological properties using
local probes is actually not possible for fundamental reasons.
In fact, they could demonstrate that for bulk Hamiltonians
breaking lattice symmetries via anisotropic or modulated hop-
ping, the proposed diagnostic delivers false-positive results.
The great practical interest to develop local indicators for
topological states of matter, however, calls for further case
studies.

For the case of magnetic impurities in the spinful Haldane
model considered here, there are quite a few important results,
which can be summarized as follows:

As the configuration space of a single magnetic impurity
forms a 2-sphere, robust results emerge as a consequence
of the existence of an additional topological invariant, the
first spin-Chern number C(S)

1 ∈ Z. Opposed to the first k-
space Chern number that is related to global bulk topology,
the spin-Chern number addresses (spatially) local topological
properties.

We have shown that there must be a spatially local topo-
logical transition as a function of the exchange coupling J
since C(S)

1 = 0 at J = 0 and C(S)
1 = 1 for J → ∞. With slight

complications, this also holds for the case of R > 1 impurities,
when replacing the first by the Rth spin-Chern number C(S)

R .
The latter is obtained by integrating over the 2R-dimensional
manifold given by the R-fold direct product S = S2× · · · ×S2.

For a single impurity, the immediate consequence of the
topological transition is that there must be a single-electron
in-gap state with energy εloc crossing the chemical potential
μ located in the bulk band gap. In terms of many-electron
states this implies a gap closure between an N- and an (N ±
1)-electron state at a critical coupling strength Jcrit . As the
Hamiltonian is invariant under simultaneous SO(3) rotations
of the classical impurity spin S and of the quantum-spin de-
grees of freedom, the related “magnetic charge” inducing the
spin-Berry curvature is distributed uniformly on the 2-sphere
with radius Jcrit|S| embedded in the space R3 � JS.

The necessary presence of an in-gap state with energy
εloc = μ for some critical coupling Jcrit holds for both the
(k-space) topologically trivial and nontrivial phase, as it is
a consequence of the local S2-based topology. Note that this
also holds for any choice of μ within the band gap with a gen-
erally μ-dependent critical coupling Jcrit = Jcrit (μ). Hence,
J �→ μcrit (J ) maps onto the full range of in-gap energies
Emin < μ < Emax, where Emin (Emax) is the J-independent
valence-band maximum (the conduction-band minimum).

This implies that the in-gap state energy εloc = εloc(J ) must
fully bridge the band gap for 0 < J < ∞ or within a finite-J
range. Figure 2 (right) gives an example for the (k-space)
topologically trivial phase. For the (k-space) topologically
nontrivial phase, Fig. 2 (left, middle) demonstrates another
possibility. Here, a pair of two in-gap states εloc,↑(J ) and
εloc,↓(J ) fully bridges the gap.

The main impact of k-space topology on the in-gap states
shows up in the strong-coupling limit. For J → ∞, we could
numerically verify an intuitive though not strict argument
based on k-space topology: Replacing the single local im-
purity by a macroscopically extended impurity potential of
infinite strength within an approximately circular region or
radius r, for example, generates a hole such that the remaining
truncated Haldane model has a one-dimensional boundary.
The bulk-boundary correspondence then enforces the pres-
ence of a spin-degenerate boundary mode bridging the bulk
gap in case of a nontrivial k-space topology. Shrinking the
hole to a single lattice site essentially means an increasing
thinning of the dispersive edge-mode spectrum until ulti-
mately only a single spin-degenerate impurity state remains.
For the trivial case, on the other hand, the Haldane model
features no boundary mode (even though this absence is not
topologically enforced).

With this additional argument one can conclude for the k-
space topologically trivial case that the in-gap state must fully
bridge the gap and is absent for J → ∞. On the contrary, in
the nontrivial case there must be an in-gap state in the strong-J
limit representing the remnant of the topologically protected
chiral mode of a hypothetical codimension-1 defect.

For the SO(3)-symmetric Hamiltonian, the J-spectral flow
of the single-electron energies εn(J ) must be SO(3) invariant
as well, i.e., it is S independent. Hence, at Jcrit the spectral flow
is necessarily gapless for a fixed S pointing, say, in z direc-
tion. This implies a gapless spectral flow for, e.g., the spin-↑
copy of the Haldane model in the full range −∞ < J < ∞,
which translates into a gapless J-spectral flow for the spinless
Haldane model with a spinless potential impurity of strength
J . It is remarkable that in the spinless case a gap closure for
some critical impurity strength is topologically enforced due
to a change of the spin-Chern number referring to a virtual S2

base manifold.
For the case of R = 2 and 3 impurity spins, we find quali-

tatively similar results. The (k-space) topologically nontrivial
case is distinguished by the presence of at least a single or
more spin pairs of in-gap states in the strong-J limit. These
are slightly spin split, become spin degenerate in the J → ∞
limit, and are understood as remnants of topologically pro-
tected chiral modes of hypothetical codimension-1 defects.
Generally, the number of Zeeman pairs depends on details of
the electronic structure, if the sites to which the impurity spins
couple are close. Only at larger distances there are exactly R
pairs, and in the infinite-distance limit, as their hybridization
vanishes, these become degenerate.

For the trivial phase, we find R in-gap modes fully bridging
the bulk band gap in some intermediate-J range. Again, this is
enforced by S-space topology since the Rth spin-Chern num-
ber must change from C(S)

R = 0 at J = 0 to C(S)
R = 1 because

we trivially have C(S)
R = (C(S)

1 )R = 1 in the J → ∞ limit. To
see this, suppose that, starting from J = 0, we first crank up
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the exchange coupling J (0) of the first impurity spin from
J (0) = 0 to J (0) = ∞ while keeping J (1) = · · · = J (R−1) = 0
fixed, thereby producing a magnetic monopole at i0. The cor-
responding first spin-Chern number changes from zero to one,
and a single in-gap state fully crosses the band gap. Subse-
quently, we crank up the second coupling J (1), etc., until fi-
nally the Rth coupling is sent to infinity. In total, R monopoles
are created, the R corresponding first spin-Chern numbers all
change from zero to one, and thus the whole adiabatic process
generates exactly R in-gap states crossing the gap.

Phase diagrams for the local topological transition from
C(S)

R = 0 to C(S)
R = 1 have been computed numerically for a

chemical potential in the middle of the bulk band gap and for
R = 1 and 2 impurity spins. For the (k-space) topologically
trivial case, we find that the transition roughly takes place
at a critical coupling J = Jcrit (with J = J (0) = · · · = J (R)) of
the order of the bandwidth. For the nontrivial case, Jcrit is
typically stronger since the presence of the in-gap states is
understood within a strong-coupling picture. In an exceptional
case, namely, if the spin-split in-gap states are located exactly
at μ for J → ∞, there is no transition at all, i.e., Jcrit = ∞.
This scenario, however, requires fine tuning of parameters.

Opposed to R = 1, for R � 2 the transition generically
takes place in a finite range of couplings Jcrit,1 < J < Jcrit,2.
In this J range the system is gapless on some (J-dependent)
manifold of spin configuration in S . The nontrivial phase
is found for J > Jcrit,2, while the trivial one is realized for
J < Jcrit,1. In the transition range, the Rth spin-Chern number
remains undefined. We also note that the gap closures at Jcrit,1

and Jcrit,2 take place for high-symmetry ferromagnetic and
antiferromagnetic spin configurations.

There are various open problems and directions worth pur-
suing in future studies: We have seen that (k-space) topology
of the bulk system has a decisive effect on the local (S-space)
topological phase diagram. This suggests to consider systems
with a bulk topology characterized by higher Chern numbers
|C(k)

1 | > 1 as well as Z2 topological insulators and topological
superconductors. Systems with a large number R � 1 of clas-
sical impurity spins and finally Kondo-lattice-type systems
(R ∼ L) are interesting as well. These pose the question of
the significance of topological states characterized by high-
order spin-Chern numbers C(S)

R and practical means for their
computation. Even for a few classical-spin impurities or for
a single one, there are interesting variations worth studying,
such as impurities with spin-anisotropic coupling reducing
the symmetry of the gap-closure submanifold of S . Higher
spin-Chern numbers C(S)

R > 1 could be realized via impu-
rity spins with short-range but nonlocal exchange couplings.
Finally, methodical developments are necessary to address
bound states induced by quantum-spin impurities or impuri-
ties in correlated systems, including interacting topological
insulators [32,33].
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APPENDIX: SPIN-CHERN NUMBER

For a unique and gapped ground state |�0〉 ≡
|�0(S0, . . . , SR−1)〉, the (Abelian) Berry connection and
curvature are given by

A = 〈�0| d|�0〉 =
∑

μ

Aμ dSμ (A1)

and

� = dA =
∑
μ<ν

�μ,ν dSμ ∧ dSν, (A2)

respectively, where

�μ,ν = ∂Aν

∂Sμ

− ∂Aμ

∂Sν

. (A3)

For R impurity spins, μ and ν run over the 3R components
of (S0, . . . , SR−1). Following Ref. [27], we rewrite �μ,ν in a
Lehmann-type representation:

�μ,ν = 2i Im
∑
m �=0

〈�0| ∂Ĥ
∂Sμ

|�m〉〈�m| ∂Ĥ
∂Sν

|�0〉
(Em − E0)2

, (A4)

where |�m〉 ≡ |�m(S0, . . . , SR−1)〉 denotes the mth excited
eigenstate of the Hamiltonian, Eq. (2). With Eq. (1), we im-
meditately have ∂Ĥ/∂Sμ = Jsμ.

The 2R-dimensional manifold of spin configurations S =
S2× · · · ×S2 can be parametrized, for example, by a set of po-
lar and azimuthal angles λ ≡ (ϑ0, ϕ0, . . . , ϑR−1, ϕR−1) ∈ �,
i.e., we have a single map,

M : � ⊂ R2R → S, λ �→ M(λ), (A5)

that covers S once, so that∫
S

�R =
∫

�

M∗�R, (A6)

where �R = � ∧ · · · ∧ �, and where M∗ is the pushforward
of M. To evaluate

M∗� =
∑
μ<ν

(�μ,ν ◦ M)(λ) dMμ ∧ dMν (A7)

we identify for the coefficients

�μ,ν ◦ M = ∂Aν

∂Mμ

− ∂Aμ

∂Mν

=
∑
j1, j2

∂λ j1

∂Mμ

∂λ j2

∂Mν

(
∂Aj2

∂λ j1

− ∂Aj1

∂λ j2

)
. (A8)

Then Eq. (A7) can be rewritten as

M∗� =
∑
ν,μ
j1, j2
i1i2

∂λ j1

∂Mμ

∂λ j2

∂Mν

∂Mμ

∂λi1

∂Mν

∂λi2

∂Aλ j2

∂λ j1

dλi1 ∧ dλi2

=
∑
i1,i2

∂Aλi2

∂λi1

dλi1 ∧ dλi2 =
∑
i1<i2

�i1,i2 dλi1 ∧ dλi2 .

(A9)
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With the relation f ∗(ξ ∧ ω) = ( f ∗ξ ) ∧ ( f ∗ω) for pushfor-
wards and since �i1,i2 = −�i2,i1 , one finds for the Rth power
of M∗�,

1

R!
M∗�R = Pf(�) dλ1 ∧ · · · ∧ dλ2R = Pf(�) dV, (A10)

where Pf denotes the Pfaffian. Finally, this leads to the defini-
tion of the Rth Chern number, by which we denote the integral
of the Rth Chern character:

C(S)
R = 1

R!

(
i

2π

)R ∫
S

�R = 1

R!

(
i

2π

)R ∫
�

M∗�R

=
(

i

2π

)R ∫
�

Pf(�) dV. (A11)

For the numerical evaluation of Eq. (A11), we diago-
nalize the effective hopping matrix, Eq. (7), to obtain the
one-electron energies and the one-electron states and thus
the N-electron states in the Lehmann-type representation,
Eq. (A4). Note that there is also a direct representation of
�μ,ν in terms of one-particle quantities (see Ref. [25]). Fi-
nally, for the numerical integration necessary to compute
C(S)

R via Eq. (A11), the Pfaffian Pf(�) is expressed as a
function of polar and azimuthal angles λ = (ϑ0, ϕ0, . . . ,

ϑR−1, ϕR−1).
We note that for Chern characters a tensor-product bun-

dle E ⊗ F , with fibers E and F over some base manifold
factorizes: ch(E ⊗ F ) = ch(E ) ∧ ch(F ). As a consequence,
Eq. (22) trivially follows.
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