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Layer Hall counterflow as a model probe of magic-angle twisted bilayer graphene
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The recent constructions of flat moiré minibands in specifically twisted multilayer graphene and twisted
transition metal dichalcogenides (TMDs) have facilitated the observation of strong correlations with convenient
tunability. These correlations in flat bands result in band dispersion heavily influenced by carrier densities,
leading to filling-dependent quasiparticle band renormalizations. Particularly, in magic-angle twisted bilayer
graphene (MATBG), the band structure—including the quasiparticle energy and wave function—is crucial
in understanding the correlated properties. Previous theoretical studies have demonstrated the presence of a
time-reversal-even charge Hall counterflow in response to a direct current (DC) electric field in twisted bilayers
as chiral structures. In this study, we show that such layer Hall counterflow can serve as a sensitive probe for
MATBG model parameters, which are currently ambiguous as a result of unavoidable structural relaxation and
twist-angle disorder. We present the layer Hall counterflow and the associated in-plane magnetization for three
different MATBG continuum models, based on which many-body interacting models have been widely applied
to study strong correlations in MATBG. At the single-particle level, our findings indicate notable differences in
layer-projected Hall conductivity, both in magnitude and sign, between different MATBG continuum models.
Furthermore, our self-consistent Hartree calculations, performed on each of these single-particle continuum
models, reveal renormalized layer-projected Hall conductivity by the self-consistent Hartree field.
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I. INTRODUCTION

Recent advances in the construction of vertically stacked
van der Waals (vdW) heterostructures have illuminated the
peculiar properties of these materials when twisted. A cen-
tral attraction of this research frontier is the complex moiré
superlattice structure, an outcome of such a twist. A notable
manifestation of this is the appearance of flat electronic bands
in the moiré superlattices of, for example, graphene [1–3] and
TMDs [4–7]. These flat bands provide a platform for various
interaction-driven quantum phenomena [8–14]. Moreover, the
structural chirality inherent in twisted vdW heterostructures
has enabled the exploration of various chiral effects. This is
epitomized by the observation of strong circular dichroism
(CD) in chirally twisted graphene stacks [15], attributed to the
emergence of an in-plane magnetic dipole moment m‖ in the
chiral stacks accompanying the longitudinal current induced
by the electric field of light.

The observation of CD in chiral graphene stacks has stim-
ulated many theoretical studies on the chiral optical responses
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of twisted bilayers [16–27]. The optical conductivity tensor
σ (ω) for a chiral bilayer has been established using a modi-
fied Kubo formula [16]. A key discovery in this context has
been the identification of the off-diagonal component, σxy(ω),
which is responsible for the emergence of CD. It describes
a Hall-drag-like process, i.e., the transverse current response
in one of the layers induced by the electric field in the other
layer. As explicitly formulated in Ref. [17], the transverse
currents dictated by σxy(ω) in the two layers flow in opposite
directions, offering an intuitive understanding of the emer-
gence of a longitudinal in-plane magnetic dipole moment,
m‖ = d0ẑ × ( j1

⊥ − j2
⊥)/2 (d0 is the interlayer distance, and

the superscript denotes the layer).
The optical responses of a chiral bilayer have also been

formulated in terms of electromagnetic coupling [17,18,24],
which extended the study of the optical properties of twisted
bilayer graphene (TBG) beyond CD. Chiral plasmon modes
characterized by a m‖ accompanying the longitudinal current
have been proposed [17]. Furthermore, an in-plane magnetic
field can provoke a m‖ via the counterflow conductivity σcf(ω)
[1,17,18], or a longitudinal current via the chiral conduc-
tivity σxy(ω) [17,18,20]. These responses have been studied
at the zero-frequency limit, characterized by Drude weights
Di = limω→0 ω Im{σi(ω)}, and the chiral Drude weight Dxy in
the context of TBG was first evaluated for large twist angles
[17,18] and around the magic angle [20].
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A finite chiral Drude weight implies the presence of op-
posite DC electric Hall transport in the two layers. It is noted
that the emergence of a linear Hall current under time-reversal
(TR) symmetry in each individual layer, being nonisolated,
shall not be viewed as a violation of the Onsager reciprocity
relation [28]. The existence of linear Hall counterflow in a
TR invariant bilayer has been substantiated by its prediction
with significant magnitudes over a broad range of twist angles
in TBG and twisted homobilayer TMDs [28]. The effect is
rooted in a band geometric quantity: the k-space layer current
vorticity wl

n(k) ∝ ∂k × vl
n(k), where n and l are the band

and layer index, respectively, and vl
n is the band velocity

projected to layer l (see Sec. II). This geometric quantity is
a characteristic of chiral structures and its weight below the
Fermi energy EF yields the Hall conductivity in layer l , i.e.,
σ l

H ∝ τ
∑

εnk<EF
wl

n(k), where τ is the relaxation time. The
geometric origin of this Hall conductivity is reminiscent of the
k-space Berry curvature contribution to the anomalous Hall
conductivity [29].

We note that the chiral Drude weight has been given in
terms of a Fermi surface expression involving the layer current
in Ref. [20]: Dxy = (2A)−1 ∑

n,k ẑ · ( j1
nk × j2

nk)δ(εnk − EF ), to
characterize the electronic chirality. The exemplary effect
discussed therein is the longitudinal current response to an
adiabatically applied in-plane magnetic field in TBG. Via inte-
gration by parts, one identifies that it is equivalent to σ l

H up to a
factor that is the relaxation time [28]. It is interesting to notice
that different electromagnetic responses in chiral bilayers can
be characterized by the same response coefficient, which is
not unusual within the linear response framework.

So far, most of the existing literature on chiral responses
in twisted bilayers has predominantly utilized single-particle
approximations. For TBG, the Bistritzer-MacDonald (BM)
model [1] is a commonly employed theoretical framework.
However, it is crucial to emphasize the complexity in MATBG
modeling, as subtle variances even at the single-particle level
can substantially influence the system’s properties. Specifi-
cally, the presence of sample-dependent strain and twist-angle
disorder introduces significant uncertainties in effective low-
energy Hamiltonian parameters. Such practical details have
been shown to affect the electronic structures of MATBG
dramatically, yet their influence on chiral responses has not
been considered. Another critical aspect is the dominant role
of Coulomb interactions in the flat bands of MATBG, which
lead to significant band renormalizations. Even though the
effect of interactions has been taken into account in the lon-
gitudinal optical conductivity in TBG [30,31], its impact on
chiral responses remains unexplored.

In this work, we take into account all detailed structural
relaxations and higher-order interlayer tunnelings, as well as
self-consistent Hartree (SCH) fields, in the MATBG contin-
uum model. We perform a systematic study on the layer Hall
counterflow and its associated in-plane magnetization m‖, us-
ing three different MATBG continuum models: (i) the BM
model [1], (ii) the generalized BM model with a nonlocal
interlayer tunneling [32], (iii) the comprehensive continuum
model taking into account atomic relaxations using two sets
of tight-binding model parameters [33,34]. These MATBG
continuum models are commonly used as the starting point
for studying various many-body phenomena. We find that

different terms in the MATBG continuum model can result
in distinct or even opposite effects on the layer-contrasted
Hall conductivity, among which the most important feature
is associated with the band dispersion and band velocity near
the moiré γ point that is highly sensitive to the model details.
Moreover, the SCH potentials introduce changes in several
features of the layer-contrasted Hall conductivity, the extent
of which depends on the specific continuum model used. Our
results provide valuable insights into the understanding of
different continuum models of MATBG from the perspective
of chiral responses, and the correspondingly induced large m‖
might provide insights into the occurrence of current-induced
magnetization switching in MATBG [35,36].

This paper is organized as follows. Section II provides an
overview of the layer-contrasted Hall conductivity. Section III
describes the specifics of the three MATBG continuum mod-
els, based on which the layer Hall conductivities are calculated
and presented in Sec. IV. In Sec. V, we show that the layer
Hall conductivity is significantly renormalized by the filling-
dependent SCH potentials, and the renormalization details are
model-dependent.

II. THE LAYER HALL CONDUCTIVITY

In accordance with the semiclassical theory, when employ-
ing the relaxation-time approximation, the Hall conductivity
that is projected onto layer l of a nonmagnetic (TR symmetry
preserved) chiral bilayer can be expressed as [28]

σ l
H = τe2

h̄

∑
n

∫
d2k

(2π )2
f0ω

l
n(k), (1)

where τ is the constant relaxation time, f0 ≡ f0(εnk ) is the
equilibrium Fermi-Dirac distribution function and

ωl
n(k) = 1

2

[
∂

∂k
× vl

n(k)

]
z

= h̄Re
∑
n′ �=n

[
vnn′ (k) × vl

n′n(k)
]

z

εnk − εn′k
(2)

describes the momentum-space vorticity of the layer current,
vl

n(k) = 〈unk| 1
2 {Pl , v̂}|unk〉 is the projected band velocity of

a Bloch state |unk〉 onto layer l with P1 = diag(1, 0) and
P2 = diag(0, 1). The numerator of the second line of ωl

n(k)
involves interband quantities, highlighting that nonzero σ l

H
requires layer hybridization. Integrated by parts, Eq. (1) can
be converted into a Fermi-surface form [20,28],

σ l
H = −τe2

2

∑
n

∫
d2k

(2π )2

∂ f0

∂εnk

[
vn(k) × vl

n(k)
]

z, (3)

which involves the cross product of velocities in different lay-
ers. In this form, it is explicit that the effect can only stem from
nonequilibrium kinetics of electrons around the Fermi surface
in nonmagnetic systems, and the resulting conductivity is even
under TR. Notably, the conductivity is nonzero only in a chiral
bilayer, satisfying σ 1

H = −σ 2
H �= 0, thus there are Hall currents

flowing oppositely in the two layers: j1
H = − j2

H = σ 1
Hẑ × E.

As the net Hall current vanishes, one may consider layer-
resolved measurements by taking, for example, layer 1 as the
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FIG. 1. The chiral bilayer acquires an in-plane orbital magnetic
moment m‖ (black) as a result of linear Hall counterflow (red) under
an in-plane electric field (blue).

probed layer to extract the Hall current [28]. Such a Hall coun-
terflow also contribute to a longitudinal in-plane magnetic
dipole moment, m‖ = d0ẑ × ( j1

H − j2
H)/2 = −d0σ

1
HE, where

d0 is the interlayer distance. These quantities are schemati-
cally depicted in Fig. 1. In the following calculations, we will
show that the layer Hall conductivity σ l

H could be very large in
MATBG, leading to sizable m‖ despite the interlayer distance
is small.

III. MATBG CONTINUUM MODELS

The BM model [1], established over a decade ago, has
been recognized for its practicality and accuracy, particularly
in predicting the magic-angle at which low-energy bands be-
come notably flat and strong correlations become dominant.
Subsequent STM and transport experiments have led to sev-
eral refinements to the BM model. Key modifications include:
(i) the impact of out-of-plane relaxation [37–42], separating
the low-energy flat bands from remote ones; (ii) the influence
of in-plane relaxation [33,34,43–46], which substantially de-
forms the flat bands, and (iii) the higher-order gradient terms,
which give rise to the particle-hole asymmetry [33,34,43].
Collectively, these effects are crucial for band structure renor-
malizations, stabilization of many-body ground states, and
could be instrumental in elucidating and forecasting exotic
phase transitions at fractional fillings.

In the following sections, we provide an overview of three
widely-accepted MATBG continuum models: the original BM
model [1] (including corrugation effects), the generalized BM
model with the nonlocal interlayer tunneling [32], specifically
the first-order gradient term, and a comprehensive continuum
model taking into account all relaxation up to the second-order
gradient terms [33,34]. Notably, this latter model integrates
two sets of effective parameters, which are derived from ear-
lier microscopic tight-binding models.

A. The BM model

The BM model Hamiltonian [1], widely used as a
fundamental starting point for small-angle (<10◦) TBG cal-
culations, of valley K is given by

HK =
(

hθ/2
D (k − K1) T (r)

T †(r) h−θ/2
D (k′ − K2)

)
. (4)

hθ
D(q) is the Dirac Hamiltonian twisted by θ ,

hθ
D(q) ≈ (qx + θqy)σx + (qy − θqx )σy. (5)

K1 and K2 are Dirac points of first and second layers respec-
tively in valley K . The interlayer tunneling T (r) is local and
can be expanded into Fourier components

T (r) = w0

3∑
j=1

eig̃ j ·rTj, (6)

with T1 = ασ0 + σx, T2 = ασ0 + cos φσx + sin φσy and
T3 = ασ0 + cos φσx + sin φσ ∗

y . g̃ j is related to three
nearest-neighbour interlayer momentum shifts qj by
g̃ j = q j + K1 − K2. The corrugation effects, effectively
added to the BM model by setting α < 1 [37], separate the
flat bands from remote bands. In the following calculations,
we use same parameters as in Ref. [37]:

h̄vF/a = 2135.4 meV, w0 = 79.7 meV, and α = 0.82.

(7)

B. The generalized BM model with nonlocal
interlayer tunneling

The particle-hole symmetry breaking generally observed
in experiments cannot be captured by the BM model de-
scribed in the previous subsection. One way to incorporate the
particle-hole symmetry breaking is to add the nonlocal, i.e.,
the first-order gradient, interlayer tunneling term [32] to the
BM model. Instead of the local interlayer tunneling Eq. (6),
we use

T (r, r′) = 1

A

∑
k,k′

eik·re−ik′ ·r′
Tkk′ , (8)

where

Tkk′ = 1

Auc

3∑
j=1

δk−k′,g̃ j t (k + Gj )Tj

=
3∑

j=1

δk−k′,g̃ j

[
w0 + wNL

gM
(|k + Gj | − kD)

]
Tj . (9)

Only three nearest neighbor momentum transfers for the
interlayer tunneling are included. The nonlocal interlayer tun-
neling strength is defined as

wNL = gM

Auc

dt

dk

∣∣∣
k=kD

, (10)

where gM is the length of moiré primitive reciprocal lattice
vector, Auc is the moiré unit cell area and dt/dk characterizes
the rate at which the interlayer tunneling strength t diminishes
with momentum k in the two-center approximation. wNL is a
tuning parameter in this model and in our calculations shown
in the next section we choose it to be wNL = −10 meV. The
qualitative features of this generalized BM model that we will
discuss later do not depend on the specific value of wNL.
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FIG. 2. From left to right: the MATBG (1.05◦) flat-band band structure, DOS and layer Hall conductivity σ 1
H as a function of one-flavor

filling factor ν, and vn × v1
n distribution in the first moiré Brillouin zone for valence and conduction bands. [(a)–(d)] The BM model with

local interlayer tunneling T (r). [(e)–(h)] The generalized BM model with nonlocal interlayer tunneling strength wNL = −10 meV. The band
structures are colored by the layer polarization lz. The black dashed lines in (c), (d) and (g), (h) mark the Fermi surface contours at DOS peaks
in the valence and conduction flat bands: (c) at ν ≈ −0.2, (d) at ν ≈ 0.3, (g) at ν ≈ −0.2, and (h) at ν ≈ 0.2.

C. The comprehensive continuum model with relaxations

References [33,34] constructed the effective continuum
Hamiltonian of MATBG following a systematic derivation
of the real-space continuum model, which takes into ac-
count atomic relaxations. A thorough review can be found
in Appendix A. Here, we outline its essential characteristics.
The Hamiltonian undergoes modifications through atomic
relaxations in three ways: (i) the in-plane relaxation is in-
corporated as a pseudo-gauge field, which couples different
momentum states within the same layer; (ii) both in-plane
relaxation (which shrinks AA-stacking area) and out-of-plane
relaxation (which increases the vertical atomic distance near
AA-stacking) result in larger off-diagonal elements than the
diagonal elements of the interlayer tunneling term. This cor-
rection is relevant for the band gap between the flat bands and
remote bands. (iii) The formation of the relaxed domain wall
enhances the scattering involving larger momentum states.

IV. LAYER HALL CONDUCTIVITY USING DIFFERENT
MODEL PARAMETERS

This section investigates the layer Hall conductivity of
MATBG (∼1.05◦) flat bands by referencing previously es-
tablished formula. We use different single-particle continuum
models and parameters described in the earlier Sec. III to draw
comparisons.

We initiate our discussion by analyzing the layer Hall con-
ductivity within the framework of the BM model in Sec. III A
and the generalized BM model augmented by the inclusion of
the nonlocal interlayer tunneling term in Sec. III B. In Fig. 2,
we show the flat band spectrum, density of states (DOS) and

layer Hall conductivity σ 1
H of the BM model [Figs. 2(a) and

2(b)] and of the generalized BM model with the nonlocal
interlayer tunneling strength wNL = −10 meV [Figs. 2(c) and
2(d)]. The spectra are colored by the layer polarization lz,
which is the eigenvalue of the Pauli matrix l̂z = diag(1,−1)
acting on the layer subspace. As expected, the states are
strongly layer hybridized with lz ∼ 0. When comparing the
band structures in Figs. 2(a) and 2(e), the nonlocal interlayer
tunneling has little effect on the spectrum, slightly uplifting
the γ point energies. In both cases the conductivity shows
most pronounced magnitude around regions with the largest
DOS, which is expected as σ 1

H is a Fermi surface property.
Importantly, however, the nonlocal interlayer tunneling, in the
form of Eq. (9), amplifies σ 1

H by an order of magnitude and
flips the sign of σ 1

H when the system is doped with electrons,
as shown in Fig. 2(f) when contrasting with the results of the
original BM model in Fig. 2(b). To better understand these dif-
ferences in σ 1

H due to the nonlocal interlayer tunneling, we plot
k-space distribution of vn × v1

n in Figs. 2(c) and 2(d) for the
original BM model with local T (r) and in Figs. 2(g) and 2(h)
for the generalized BM model with nonlocal T (r, r′). Even
though there is a resemblance in vn × v1

n distributions, the
Fermi surface contours at DOS peaks differ in the two models,
which are marked in black dashed lines in these figures. As σ 1

H
is an integral of vn × v1

n over states near the Fermi surface,
as shown in Eq. (3), these distinct Fermi surface contours
account for the amplified positive σ 1

H in the nonlocal tunneling
model. In particular, σ 1

H aligns more closely with DOS in this
model, as depicted in Fig. 2(f).

In another comparison, we show same figures in Fig. 3 for
the comprehensive continuum model that factors in relaxation
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FIG. 3. Same figures as in Fig. 2. [(a)–(d)] The fully relaxed model using Slater-Koster tight-binding parameters. [(e)–(h)] The fully relaxed
model using Wannier tight-binding parameters. The black dashed lines mark the Fermi surface contours near DOS peaks: (c) at ν ≈ −0.45,
(d) at ν ≈ 0.1, (g) at ν ≈ −0.5, and (h) at ν ≈ 0.2.

in Sec. III C, using the Slater-Koster tight-binding model [47]
parameters [Figs. 3(a)–3(d)] and the Wannier tight-binding
model [48] parameters ([Figs. 3(e)–3(h)]. Compared to the
BM models in Fig. 2, the inclusion of full relaxations broadens
the flat conduction band from 4 meV to 13–18 meV and
narrows the flat valence band from 4 to 1 meV. A direct conse-
quence of the narrowed valence band is that, instead of a sharp
peak in DOS in BM models, the DOS in Figs. 3(b) and 3(f)
is generally high for hole-doped fillings. Despite relaxation
effects significantly suppress the flat valence band bandwidth,
the shapes and values of σ 1

H in relation to ν [Fig. 3(b)] re-
main consistent with the BM model in Fig. 2(b). One notable
electronic feature due to relaxation is a bump near the valence
band γ point, which reverses the sign of velocity, as shown in
Figs. 3(c) and 3(g). Furthermore, with Wannier tight-binding
model parameters in Fig. 3(e), the bump at γ point becomes
the global maximum of the valence band, resulting in hole-
like states at charge neutrality. This characteristic trait in the
band structure contributes directly to the nonzero σ 1

H at charge
neutrality, as shown in Fig. 3(f), once the Fermi level aligns
with the valence band γ -point energy. This is in contrast to
the feature in Figs. 2(b), 2(f) and 3(b) that σ 1

H = 0 at ν = 0,
a result of Dirac-point physics. (Note that σ 1

H is not exactly
zero at ν = 0 in Fig. 2(f) because the Fermi level at charge
neutrality [dashed horizontal line in Fig. 2(e)] is slightly inter-
sected with the conduction band bottom.) For the conduction
band, the vn × v1

n distribution bears a resemblance to the BM
model excecpt that the distribution patterns are rotated by
180◦, as seen in Figs. 3(d), 3(h) and 2(d), 2(h). Generally, the
influences observed in the Slater-Koster and Wannier models
are qualitatively alike.

In addition to the Dirac term hD and the local interlayer
tunneling T present in the BM model in Eq. (4), the fully

relaxed continuum model introduces several other terms. We
discuss the effects of each individual term in Appendix B.

V. LAYER HALL CONDUCTIVITY OF SCH
QUASIPARTICLE BANDS

From the findings in the preceding section, the relax-
ation effects at the single-particle level, profoundly influence
MATBG flat band structures and the associated transport char-
acteristics reflected by the layer Hall conductivity. The extent
of this influence is highly sensitive to the specific MATBG
single-particle models and their parameters. This sensitivity
complicates the task of accurately modeling MATBG and
raises the question of which single-particle model should be
chosen as the starting point. Moreover, it challenges our abil-
ity to provide explanations or predictions corresponding to
related experiments.

Experimental observations, especially in systems with flat
bands, encompass all many-body effects which must be thor-
oughly considered. In MATBG, the exchange interactions
has emerged as crucial, leading to spontaneous TR-symmetry
breaking, reminiscent of the Stoner model. Spin-valley flavor
polarized insulating and metallic states have been identified
near νtot = 3 (where νtot represents the total filling factor,
accounting for four spin-valley flavors) in multiple MATBG
samples [35,36]. This reveals the symmetry breaking brought
about by exchange interactions. For other samples, however,
the spin-valley flavor symmetry remains intact within the
filling range νtot ∈ (−2, 1) [32,49,50]. At these small fillings
approaching the charge neutrality, the influence of correlation
effects intensifies, against the tendency of symmetry breaking
by exchange interactions. In MATBG, correlations could po-
tentially and almost completely negate the impact of exchange
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FIG. 4. [(a)–(d)] σ 1
H (solid lines) and DOS (dashed lines) versus the total filling factor νtot including four flavors of the SCH quasiparticle

bands calculated based on (a) the BM model, (b) the generalized BM model with nonlocal interlayer tunneling wNL = −10 meV, (c) the
fully relaxed model with SK model parameters, and (d) the fully relaxed model with Wannier model parameters. Note that we only show SCH
calculations for νtot ∈ [−1, 1], within which exchange interactions are canceled by correlations such that the TR symmetry is not spontaneously
broken. The colorbar on top of each figure illustrates the layer Hall conductivity difference between the SCH and single-particle calculations
(red/blue: increase/decrease). Four single-particle continuum models have very different SCH responses. [(e)–(h)] SCH (colored spectra) and
single-particle (dashed curves) band structures at νtot = 0.

effects for νtot ∈ (−2, 1) [51]. As a result, the electrostatic
Hartree potential ends to be the predominant factor driving
band renormalizations. In general, the repulsive Hartree inter-
action in MATBG consistently elevates the energies of κ and
κ ′ when electrons are added to the moiré unit cell one by one,
keeping the energies at γ relatively constant.

Accepting the perspective mentioned above, we posit that
the MATBG ground state exhibits flavor paramagnetism at
fillings close to the charge neutrality. This implies that all four
spin-valley flavors are populated equally. With this premise,
we investigate the layer Hall conductivity of the SCH quasi-
particle bands for νtot ∈ [−1, 1] in this section. The SCH
calculations, with detailed formulas in Appendix C, are con-
ducted based on the continuum models previously outlined in
Sec. III.

We present our main results in Figs. 4(a)–4(d), which
shows the DOS (dashed lines) and σ 1

H (solid lines) as a
function of νtot ∈ [−1, 1]. The red (black) lines represent cal-
culations using the SCH (single-particle) bands. The changes
in σ 1

H due to the SCH potential are represented by the colorbar
on top of each figure. Despite shared features, the layer Hall
responses of the SCH renormalized bands in these four models
vary significantly, which will be further elaborated below.

First we discuss the results around the charge neutrality. In
Figs. 4(e)–4(h) we show SCH-renormalized bands at νtot = 0,
where the electrostatic Hartree energy is often considered neg-
ligible due to the uniform density. As illustrated in Figs. 4(e)
and 4(g), the SCH-renormalized bands (depicted by the col-
ored spectrum) closely align with the single-particle band
structures (dashed curves) in the BM model and the fully

relaxed SK model. Accordingly, both σ 1
H and DOS maintain

behavior analogous to the single-particle model near νtot = 0,
as depicted in Figs. 4(a) and 4(c). However, in the generalized
BM model with the nonlocal interlayer tunneling and the fully
relaxed Wannier model, band structures are renormalized–
slightly in the former [Fig. 4(f)] and observably in the latter
[Fig. 4(h)]—even at charge neutrality. This band renormaliza-
tion causes σ 1

H and DOS to deviate from the single-particle
model, evident in Figs. 4(b) and 4(d). Particularly, in the fully
relaxed Wannier model [Fig. 4(d)], the SCH potential lowers
the energies at γ , eliminating the bump at γ and yielding a
zero value for both σ 1

H and DOS at charge neutrality.
At finite dopings, we emphasize the distinctions between

different models. For the BM model in Fig. 4(a), both σ 1
H

and DOS of SCH bands follow the trends of the single-
particle model for νtot ∈ (−0.5, 0.5). However, SCH effects
suppress the DOS peaks and tend to reverse the sign of σ 1

H for
|νtot| � 0.5. This can be explained by observing in Figs. 5(a)
and 5(b) that, SCH bands maintain the Dirac cone character-
istics at small |νtot|, while velocities near γ starts to reverse its
sign for |νtot| > 0.5. Unique to the BM model, σ 1

H behaves as
an odd function of νtot in Fig. 4(a).

In the generalized BM model with the nonlocal interlayer
tunneling [Fig. 4(b)], the band renormalizations by SCH po-
tential as a function of filling exhibit similarities to the BM
model, as shown in Figs. 5(c) and 5(d). Notably, σ 1

H is pos-
itive across the filling range with much larger magnitude,
which is a unique characteristic of the generalized BM model.
Furthermore, it closely aligns with DOS, emphasizing DOS’s
pivotal role in determining the layer Hall conductivity.
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FIG. 5. [(e)–(h)] SCH (colored spectra) and single-particle (dashed curves) band structures at several chosen νtot .

In the two fully relaxed models, as shown in Figs. 4(c)
and 4(d), the conductivity remains overall negative within the
considered doping range, which distinguishes them from the
two BM models. Other subtle differences can also be iden-
tified.1 For example, in contrast to the BM models [e.g.,
Figs. 5(b) and 5(d)], the velocities near conduction band γ -
point do not change sign with electron doping in the fully
relaxed models [e.g., Figs. 5(f) and 5(h)]. This results in the
increase of the layer Hall conductivity when νtot � 0.5 in
Figs. 4(a) and 4(b), while σ 1

H depicted in Figs. 4(c) and 4(d)
continues to decline as electrons are added.

The two relaxed models can be distinguished by the dis-
tinct behaviors of the layer Hall conductivity when holes are
introduced. In the relaxed SK model, the valence band energy
at γ crosses the Fermi level immediately with hole doping, as
seen in Fig. 5(e). This results in a velocity in the opposite
direction, causing a consistent decrease in σ 1

H for νtot < 0,
which can be observed in Fig. 4(c). This behavior, wherein
σ 1

H drops on both the electron and hole doping sides, accounts
for the overall negative σ 1

H seen in Fig. 4(c). Conversely, in
the fully relaxed Wannier model, a slight hole doping reduces
the γ -point energies, as illustrated in Fig. 5(g). This contrasts
with the other three models and explains why the layer Hall
conductivity for the relaxed Wannier model is negative but
less pronounced on the hole-doping side than in the SK model,
as displayed in Fig. 4(d).

1Another feature observed in the relaxed SK model is that the
SCH potential with electron doping [Fig. 5(f)] switches the layer
polarization near κ and κ ′.

VI. DISCUSSIONS

It is well-recognized that MATBG properties, including
phenomena like superconductivity and magnetism, exhibit
significant sample variability, making it challenging to ac-
curately model each MATBG sample that aligns with or
anticipates experimental results. In this paper, we provide a
comprehensive comparison of the electronic band structure
and layer Hall conductivity–which is influenced by fac-
tors like DOS and layer hybridization–across three different
MATBG continuum models. Even though commonly used
as starting frameworks for many-body interacting models,
these continuum models already exhibit distinct electronic and
transport properties even at the single-particle level.

In MATBG, electrostatic Hartree potentials are important
at small filling factors near the charge neutrality, where ex-
change interactions are largely offset by correlations. We,
therefore, further explore the impact of SCH potentials on
flat band dispersion and layer Hall conductivity. Our calcula-
tions show that SCH potentials substantially renormalize the
flat band dispersion and hence the layer Hall conductivity–
the renormalization details depend on the specific continuum
model used. The SCH-renormalized layer Hall conductivity,
calculated based on the three continuum models, show dif-
ferent characteristics which can distinguish between these
models. Given these findings, we propose that the layer Hall
conductivity can serve as a viable experimental observable for
distinguishing among these MATBG continuum models, even
when factoring in SCH band renormalizations.

Another significant discovery from our study is that
the layer Hall conductivity is particularly large in all the
models, reaching O(100)e2/h with a moderate relaxation
time of τ = 1 ps. Especially, in the generalized BM model
with nonlocal interlayer tunneling, we find σ 1

H ∼ 700e2/h as
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illustrated in Fig. 4(b), which is nearly a ten-fold increase
relative to other MATBG continuum models that we con-
sider in this paper. Large layer Hall conductivity implies a
significant in-plane magnetic moment density induced by a
DC electric field m‖ = −d0σ

1
HE (Fig. 1). For MATBG, we

estimate m‖ ≈ −0.1μB/nm2 (2μB per moiré unit cell) with
d0 = 0.335 nm, E = 104 V/m, τ = 10 ps [52], and σ 1

H =
7000e2/h, where μB = eh̄/2m is the Bohr magneton and m is
the free electron mass. Such a large in-plane magnetoelectric
response is even greater than the “giant” out-of-plane one
in strained TBG [52], and is comparable to the equilibrium
magnetization in MATBG. Previous experiments have shown
that a current can switch the direction of magnetization in
MATBG [35,36]. The induced sizable m‖ discussed in our
work can in principle provide the in-plane component that
is necessary during the magnetic switching process. Around
the magic angle, one might expect that the CD could also be
observable even though the structural chirality is weak due to
a small twist angle.

In this work, we have specifically concentrated on the
TR-even charge Hall conductivity contributed equally by the
two valleys. In SCH calculations, our focus has been on the
total filling factor range νtot ∈ [−1, 1], where the TR symme-
try is often approximately preserved in MATBG. At higher
electron or hole dopings, TR symmetry broken states can
spontaneously emerge as a result of exchange interactions,
rendering an intrinsic charge Hall current contributed by the

anomalous velocity. Note that such intrinsic charge Hall cur-
rents are distinct in the two layers of a chiral structure, leading
to an in-plane magnetic moment m‖. It would be interesting to
study such intrinsic m‖ in future studies. The CD of MATBG
in the presence of interactions is another interesting aspect to
explore, which could potentially be measured with terahertz
techniques.
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APPENDIX A: A REVIEW OF THE COMPREHENSIVE
CONTINUUM MODEL WITH RELAXATIONS

At a specific valley K , the relaxed Hamiltonian consists
of intralayer and interlayer terms, HK = Hintra + Hinter. Up
to ∼1 meV accuracy in energy compared with microscopic
tight-binding models, the intralayer (interlayer) Hamiltonian
is expanded up to the second (first) order in gradients. From
Ref. [33], the intralayer Hamiltonian is

Hintra =
∫

d2r
∑
j=t,b

∑
SS′

�
†
j,S (r)

{[
μ + β0 p2 + C0

2
(p · A(r) + A(r) · p)

]
δSS′ + vF σSS′ · [p( j) + γ A( j)(r)]

+ β1
[(

p2
x − p2

y

)
σx − 2px pyσy

]
SS′ + 1

2

∑
μ

[pμξμ,SS′ (r) + ξμ,SS′ (r)pμ]

}
� j,S′ (r), (A1)

where j is summed over top (t) and bottom (b) layers, S, S′ are summed over A and B sublattices, and μ over x and y components.
Because of the rotated Dirac points, p( j) is the operator p = −ih̄∇ = −ih̄∂/∂r rotated by ∓θ/2. For |θ | � 1,

p( j) ≈ (px + θ j py, py − θ j px ), (A2)

where top (bottom) layer is rotated anticlockwise (clockwise), θt = −θb = θ/2.
The lattice-distortion induced pseudovector fields A(r) and ξ (r) are periodic with moiré periodicity,

A(r) =
∑

g

Ageig·r, ξ (r) =
∑

g

ξgeig·r
(A3)

with Fourier components

Ag = (−2gxgy, −(
g2

x − g2
y

))
ε̃U

g , (A4)

and

ξg,x =
{
−

(
vF

2
+ 2D0

)
gxgyσx −

[(
vF

2
+ D0

)
g2

y − D0g2
x

]
σy

}
ε̃U

g ,

ξg,y =
{[(

vF

2
+ D0

)
g2

x − D0g2
y

]
σx +

(
vF

2
+ 2D0

)
gxgyσy

}
ε̃U

g . (A5)

ε̃U
g are Fourier components of the scalar field εU (r), which is the solenoidal part of the lattice relaxation δU (r) ≈ ∇ × (ẑεU (r)).

A( j)(r) are rotated pseudovector fields defined as

A(t )(r) = Rθt A ≈ (Ax − θt Ay, Ay + θt Ax ),

A(b)(r) = −RθbA ≈ −(Ax − θbAy, Ay + θbAx ). (A6)
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The pseudovector fields for top and bottom layers are opposite in sign.
The interlayer part is written as

Hinter =
∑
SS′

∫
d2r�†

t,S (r)

[
TSS′ (r) + 1

2
{p,�SS′ (r)}

]
�b,S′ (r) + H.c. (A7)

T (r) and �(r) are local and nonlocal terms, respectively.
In momentum space,

Hintra =
∑
k,k′,l

c†
k,l ck′,l

[
hθl

D (k − Kl ) + β0|k − Kl |2σ0 + β̄1(k − Kl )

]
δkk′

+ c†
k,l ck′,l

[
vF γ σ · A(l )

g + ((k + k′)/2 − Kl ) · (C0Agσ0 + η1,gσx + η2,gσy)

]
δk−k′,g (A8)

and

Hinter =
∑
k,k′

c†
k,t ck′,b

[
Tg + 1

2
(k + k′ − Kt − Kb) · �g

]
δk−k′,g + H.c. (A9)

where

β̄1(k) = β1
[(

k2
x − k2

y

)
σx − 2kxkyσy

]
,

η1,g =
(

−
(

vF

2
+ 2D0

)
gxgy,

(
vF

2
+ D0

)
g2

x − D0g2
y

)
ε̃U

g ,

η2,g =
(

−
(

vF

2
+ D0

)
g2

y + D0g2
x,

(
vF

2
+ 2D0

)
gxgy

)
ε̃U

g . (A10)

All model parameters in Eqs. (A1) and (A7) are listed in Tables III and V of Ref. [33].
Hamiltonian HK preserves the C3z rotation, C2zT , C2x and Mz symmetries. C2x is a 180◦ rotation with respect to x-axis and

swaps both layer and sublattice. Mz is the z → −z mirror which swaps layers. Symmetry requirements on A( j)(r) and T (r)
are

C3z : eiσz2π/3A( j)(R−1
3 r)e−iσz2π/3 = A( j)(r),

eiσz2π/3T (R−1
3 r)e−iσz2π/3 = T (r),

C2zT : σxA( j)∗(−r)σx = A( j)(r),

σxT ∗(−r)σx = T (r),

C2x : σxA(1)(Myr)σx = A(2)(r),

σxT (Myr)σx = T †(r),

Mz : A(1)(−r) = A(2)(r),

T (−r) = T †(r), (A11)

and on their Fourier components

C3z : eiσz2π/3A( j)
R−1

3 g
e−iσz2π/3 = A( j)

g ,

eiσz2π/3TR−1
3 ge−iσz2π/3 = Tg,

C2zT : σxA( j)∗
g σx = A( j)

g ,

σxT ∗
g σx = Tg,

C2x : σxA(1)
Mygσx = A(2)

g ,

σxT−Mygσx = T †
g ,

Mz : A(1)
−g = A(2)

g ,

T−g = T †
g . (A12)
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FIG. 6. Detailed comparison of the fully relaxed model using Slater-Koster tight-binding model parameters by individually deactivating A,
A(k), T (k), and β(k2) terms in Eq. (B1). The effects of different terms are summarized in Table I.

In summary, atomic relaxations modify HK in terms of
three aspects: (i) the in-plane relaxation is incorporated as the
pseudogauge field A( j)(r), which couples different momentum
states within the same layer; (ii) both in-plane relaxation
(which shrinks AA-stacking area) and out-of-plane relax-
ation (which increases the vertical atomic distance near AA
stacking) result in larger off-diagonal elements compared to
the diagonal elements of T (r). This correction is relevant
for the band gap between the flat bands and remote bands.
(iii) The formation of the relaxed domain wall enhances the
scattering involving larger momentum states.

APPENDIX B: EFFECTS OF INDIVIDUAL TERMS
OF THE THIRD MODEL

Compared to the BM model Eq. (4), in addition to the Dirac
term hD(k) and the local interlayer tunneling T (which is
k-independent), the fully relaxed continuum model introduces
several other terms. To simplify, we label them based on their
order of momentum dependence: the momentum-independent
in-plane strain field A, its first-order derivative terms A(k)
and second-order derivative terms β(k2), and the nonlocal

interlayer tunneling T (k). Specifically,

Hintra = hD(k) + A + A(k) + β(k2),

Hinter = T + T (k). (B1)

Note that T (k) in the fully relaxed model has a different
form from the one in the generalized BM model in Eq. (9).
By selectively deactivating these terms within the fully re-
laxed model, we provide a detailed comparison of the band
structures and σ 1

H, and gain intriguing insights on the effects
of each term. Figures 6 and 7 provide a comprehensive view
of these changes with Slater-Koster and Wannier model pa-
rameters respectively. We summarize their combined impact
on the band structure and σ 1

H in Tables I and II. In the order
of influence: the momentum-independent in-plane strain field
A greatly suppresses the flat band bandwidth to ∼10 meV,
changes flat band chirality, and most importantly flips the
sign of σ 1

H on the hole-doping side, as well as increases the
magnitude of σ 1

H; A(k) lowers the γ point energies by around
1 meV but completely reverses the effects of A on σ 1

H; the T (k)
term uplifts the γ point energies by around 6–8 meV.
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TABLE I. Effects of different terms in Hamiltonian Eq. (B1) on flat band spectrum and σ 1
H, using Slater-Koster model parameters.

Slater-Koster tight-binding model parameters

The term in H Figures to compare Effects of the term

A Fig. 6(a) versus Fig. 6(c)
Fig. 6(b) versus Fig. 6(e)

• Suppresses the flat band bandwidth from ∼80 to ∼10 meV.
• Changes the flat band chirality.
• Flips the sign of σ 1

H on the hole-doping side.
• Increases the magnitude of σ 1

H from ∼10e2/h to ∼60e2/h.

A(k) Fig. 6(c) versus Fig. 6(d)
Fig. 6(e) versus Fig. 6(f)

• Induces a small particle-hole asymmetry in the flat bands by lowering the γ point
energies by an energy scale 1–2 meV.
• Completely reverses the effects of A on σ 1

H described above.

T (k) Fig. 6(a) versus Fig. 6(b)
Fig. 6(c) versus Fig. 6(e)
Fig. 6(d) versus Fig. 6(f)

• Induces the particle-hole asymmetry in the flat bands by uplifting the γ point
energies by an energy scale of ∼8 meV.
• The effect of T (k) on σ 1

H is complex.

β(k2) Fig. 6(f) versus Figs. 3(a) and 3(b) • Negligible effects on flat band spectrum, DOS and σ 1
H.

FIG. 7. Detailed comparison of the fully relaxed model using Wannier tight-binding model parameters by individually deactivating A,
A(k), T (k), and β(k2) terms in Eq. (B1). The effects of different terms are summarized in Table II.
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TABLE II. Effects of different terms in Hamiltonian Eq. (B1) on flat band spectrum and σ 1
H, using Wannier model parameters.

Wannier tight-binding model parameters

The term in H Figures to compare Effects of the term

A Fig. 7(a) versus Fig. 7(c)
Fig. 7(b) versus Fig. 7(e)

• Suppresses the flat band bandwidth from ∼30 meV to ∼15 meV.
• Changes the flat band chirality.
• Flips the sign of σ 1

H on the hole-doping side.
• Slightly increases the magnitude of σ 1

H from ∼10e2/h to ∼25e2/h.

A(k) Fig. 7(c) versus Fig. 7(d)
Fig. 7(e) versus Fig. 7(f)

• Lowers the γ point energies by an energy scale <1 meV.
• Completely reverses the effects of A on σ 1

H described above.

T (k) Fig. 7(a) versus Fig. 7(b)
Fig. 7(c) versus Fig. 7(e)
Fig. 7(d) versus Fig. 7(f)

• Induces the particle-hole asymmetry in the flat bands by uplifting the γ

point energies by an energy scale of ∼6 meV.
• The effect of T (k) on σ 1

H is complex.

β(k2) Fig. 7(f) versus Fig. 3(e)-3(f) • Negligible effects on flat band spectrum, DOS and σ 1
H.

APPENDIX C: SELF-CONSISTENT HARTREE
APPROXIMATION IN TBG

The full Hamiltonian of TBG is the sum of the single-
particle part described in the main text Sec. III and the
interacting part He−e [51]:

He−e = 1

2A

′∑
q,g

V (q + g)[n̂(q + g)n̂(−q − g) − N̂], (C1)

where g is moiré reciprocal lattice vector and q is in the
first moiré Brillouin zone. ′ on the summation symbol means
q = g = 0 term is excluded in the momentum summation.
V (q) is the Coulomb potential

V (q) = 2πe2

qεBN

, (C2)

and the hBN dielectric constant is chosen to be εBN = 5.1
[53] in our calculations throughout the paper. The occupation
number N̂ and density matrix n̂(q) are

N̂ =
∑
k,g,α

c†
α,k+gcα,k+g,

n̂(q) =
∑
α,g

n̂g
α (q) =

∑
k,g,α

c†
α,k+g−qcα,k+g, (C3)

α label layers and sublattices. The matrix element of the
flavor- and momentum-independent Hartree self-energy is

�H
α,g1;β,g2

= δαβ

A

∑
α′,g′

1,g
′
2

Vαα′ (g2 − g1)

× δρα′,g′
1;α′,g′

2
δρg′

2−g′
1,g2−g1 , (C4)

where δρ is the relative density matrix defined by subtracting
the density matrix of the decoupled graphene bilayer at charge
neutrality

δρ = ρ − ρ0, (C5)

and the density matrix element is explicitly

ρα,g1;β,g2 =
∑
f ,n,k

zn f
α,g1

(k)z̄n f
β,g2

(k)�
(
μ f − ε

f
nk

)
. (C6)

f = 1, 2, 3, 4 represent four flavors, zn f (k) is the plane-wave
representation of SCH quasiparticle eigenvectors, z̄ is its com-
plex conjugate and � is the Fermi-Dirac distribution. Then the
spin-valley projected Hamiltonian is solved self-consistently,

HK (k) = HK
0 (k) + �H . (C7)

Our self-consistent calculations involve all moiré bands (148
bands for each spin-valley flavor).
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