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Spin correlations in the bilayer Hubbard model with perpendicular electric field
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We present a nonequilibrium steady-state implementation of the two-particle self-consistent method. This
approach respects the Mermin-Wagner theorem and incorporates nonlocal spatial fluctuations through self-
consistent static vertices. The real-frequency implementation allows one to compute spectral properties without
analytical continuation in both equilibrium and nonequilibrium. As an interesting application, we investigate spin
correlations in the bilayer square lattice Hubbard model under a perpendicular static electric field. In equilibrium,
the result yields spin correlations which are in good agreement with recent optical lattice experiments. Under a
large enough static electric field, the interlayer spin correlations switch from antiferromagnetic to ferromagnetic.
We clarify how this phenomenon is linked to the nonequilibrium modifications of the spin excitation spectrum.
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I. INTRODUCTION

The Hubbard model is a minimal model for the description
of electron correlation effects in solids. Despite its simplicity,
the model exhibits rich equilibrium phase diagrams, which
include magnetic phases, charge density waves, and uncon-
ventional superconducting states [1,2]. Recent advances in
experimental techniques have extended the studies of cor-
related electron properties to the nonequilibrium domain.
An interesting question in this context is the response of
correlated electron systems to external electric fields [3,4].
Unfortunately, due to the exponentially growing complexity
with system size, the Hubbard model cannot be exactly solved
in dimensions D > 1, even in the single-band case. The study
of electric field effects introduces additional challenges, and
necessitates the development of methods capable of address-
ing nonequilibrium conditions.

For equilibrium studies, powerful computational methods
have been devised and used to reveal various Hubbard model
properties [5–8]. Dynamical mean-field theory (DMFT)
[9,10] distinguishes itself by its nonperturbative nature, which
makes it suitable for the study of strong correlation effects
and Mott physics. Here, the lattice problem is mapped onto
a single impurity coupled to a self-consistently computed
noninteracting environment [11,12]. The effective impurity
problem can be solved using numerically exact methods, such
as quantum Monte Carlo [13,14] or the numerical renor-
malization group [15,16]. The local nature of the DMFT
approximation however makes it unreliable in dimensions
D < 3, where nonlocal spatial fluctuations become signifi-
cant. Although cluster or diagrammatic extensions of DMFT
partially overcome this limitation, this comes at a consider-
able computational and storage cost [17,18]. Nonequilibrium
calculations have so far been limited to the dynamical cluster
approximation (DCA) with small clusters [19–21]. Also, there
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is an unsolved conceptual issue of how to properly incorporate
electric fields into the DCA formalism. Consequently, there is
an ongoing quest for novel methods to tackle nonequilibrium
Hubbard systems.

Various semianalytical methods capturing spatial correla-
tions have been developed over the past decades [22–26].
These methods rely on renormalized perturbation theory
[27,28] and aim to describe correlation effects and critical
behaviors by self-consistently calculating irreducible two-
particle vertices. This bottom-up approach allows them to
mitigate spurious phase transitions that often occur in many-
body perturbation theory (MBPT) and DMFT, when applied
to low-dimensional systems. In contrast to the dynamical ver-
tex approximation [29] or dual fermion approach [30], these
methods assume spatially local and frequency-independent
irreducible vertices. These vertices are then determined self-
consistently using either the reduced Parquet equation [22–24]
or local sum rules [25,26]. The former approach focuses on
the qualitatively correct treatment across the entire parameter
regime, while the latter aims to predict quantitatively accurate
solutions in the weak-to-intermediate correlation regime (up
to the regime where local moments emerge in the system)
[25]. In this paper, we concentrate on the latter approach,
specifically the two-particle self-consistent (TPSC) method,
which is extended here to electric field driven nonequilibrium
steady states (NESSs).

The TPSC method, originally introduced in Ref. [31],
successfully reproduces the pseudogap associated with anti-
ferromagnetic (AFM) spin correlations in the square lattice
Hubbard model. The method is formulated in the thermody-
namic limit and respects the Mermin-Wagner theorem, Pauli’s
exclusion principle, particle conservation laws, and various
sum rules [25,26]. While originally designed for the single-
band Hubbard model, the method has been extended in several
directions, to take into account nearest-neighbor interactions
[32], spin-orbital couplings [33], and multiorbital interac-
tions [34–36]. Improved TPSC variants, named TPSC+ [37]
or TPSC+GG [7], which (partially) feed back the spectral
Green’s function into the response function calculation, have
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also been developed. A recent addition is the combination
of TPSC with DMFT, referred to as TPSC+DMFT, where
the TPSC local self-energy is replaced by the DMFT self-
energy [38–40]. While these variants violate some sum rules,
they enable a deeper exploration of the renormalized classical
regime and (in the case of TPSC+DMFT) provide access to
the Mott insulating regime. They also alleviate the overes-
timation of the spin correlations that occurs in the original
theory, although this comes at the cost of smoothing out some
features of the single-particle spectrum. Moreover, TPSC and
related methods are suitable for nonequilibrium extensions,
since the underlying approximation on the irreducible vertex
(completely local in time and space) significantly simpli-
fies the implementation. Recently, the Anderson impurity
model under external bias was studied using reduced Parquet
equations [41], and a time-dependent TPSC formalism [with
approximate solution of the Bethe-Salpeter equations (BSEs)]
was implemented and applied to interaction quenches [40,42].

In this paper, we demonstrate steady-state nonequilibrium
extensions of the original TPSC method and of TPSC+GG.
In contrast to the time-dependent implementation [40,42],
the Bethe-Salpeter equation can be exactly solved in fre-
quency space, which ensures that the sum rules are strictly
respected in our steady-state calculations. The real-frequency
implementation also avoids the large memory cost for stor-
ing two-time Green’s functions, and it provides direct access
to both equilibrium and nonequilibrium spectral properties
without the need for numerical analytical continuation or
(windowed) Fourier transformations. As an application, we
investigate a bilayer stack of the square lattice Hubbard
model under a static perpendicular electric field. Bilayer sys-
tems have been the focus of various recent studies, since
the manipulation of bonding and antibonding states near the
Fermi surface can lead to intriguing phenomena such as pair-
ing correlations in the incipient bands [43,44] and excitonic
condensation [45]. Notably, the response to a perpendicular
electric field in the bilayer system is nontrivial, in contrast to
the single-layer case, which predominantly exhibits a heating
effect. In the present paper, we are primarily interested in the
spin and charge correlation functions and their responses to
the interlayer voltage bias.

The rest of this paper is structured as follows. In Sec. II, we
present the theoretical framework. Formally exact many-body
equations are introduced in Sec. II A, followed by the TPSC
approximation and formalism in Sec. II B. The implementa-
tion of our steady-state formalism is detailed in Sec. II C.
In Sec. III, the method is applied to the bilayer single-
orbital Hubbard model. We introduce the model and setup
in Sec. III A and present the equilibrium and nonequilibrium
results in Secs. III B and III C, respectively. In Sec. IV, we
give a brief conclusion, while detailed derivations and some
TPSC+GG results are provided in the Appendixes.

II. THEORY

We consider a single-band Hubbard model described by the
Hamiltonian

H(t ) =
∑

i j

∑
σ

Wi j (t )c†
iσ c jσ +

∑
i

Ui(t )n̂i↑n̂i↓. (1)

Here, c(†)
iσ represents the annihilation (creation) operator for

site i with spin σ , and n̂iσ = c†
iσ ciσ denotes the corresponding

density operator. The on-site interaction is denoted by Ui and
the hopping amplitude from site j to site i is denoted by Wi j .
The chemical potential has been absorbed into the on-site
components of the hopping matrix W .

A. Many-body theory

We start with formally exact equations from MBPT. A
central quantity in this theory is the single-particle Green’s
function G, which is defined as

Gσ (1, 2) = −i〈Tγ cσ (1)c†
σ (2)〉, (2)

where we adopt a compressed notation 1 ≡ (i, z), with i and
z referring to the site and contour time, and σ denoting spin.
Tγ is the time ordering operator on the contour γ , which, in
the most general case, runs from t0 to some maximum time
tmax along the real axis, back to zero along the real axis, and
then to −iβ (with β = 1/T the inverse temperature) along the
imaginary-time axis [46]. (In the steady-state implementation,
we employ a two-branch Schwinger-Keldysh contour [47].)
Tγ orders the operators from right to left with increasing
contour time, with an additional minus sign for the exchange
of two fermionic operators. 〈· · · 〉 = 1

Z Tr[e−i
∫
γ

dz̄H(z̄) · · · ] de-

notes the expectation value, with Z = Tr[e−i
∫
γ

dz̄H(z̄)] the
partition function of the initial equilibrium state. Physically,
Gσ (1, 2) represents the probability amplitudes for a single
particle propagating in the interacting system.

By taking the derivative of Eq. (2) with respect to time z
and considering the commutation relations of the operators,
one obtains the equation of motion (EOM) of Gσ (1, 2), which
in the case of the Hubbard model, Eq. (1), can be expressed as

∑
k

[
δik i

d

dz
− Wik (z)

]
Gk j,σ (z, z′)

= δi jδ(z − z′) − iUi(z)〈Tγ {n̂i−σ (z)ciσ (z), c†
jσ (z′)}〉. (3)

The second term on the right-hand side of this equation re-
sults from the Coulomb interactions. We define the interaction
self-energy �σ , which encodes how interactions affect the
propagation of the electrons, through

[�σ ∗ Gσ ](1, 2) = −iU (1)〈Tγ {n̂−σ (1)cσ (1), c†
σ (2)}〉. (4)

By introducing the noninteracting Green’s function

∑
k

[
δik i

d

dz
− Wik (z)

]
G0

k j,σ (z, z′) = δi jδ(z − z′), (5)

one arrives at the Dyson equation

Gσ (1, 2) = G0
σ (1, 2) + [

G0
σ ∗ �σ ∗ Gσ

]
(1, 2). (6)

Here, we use the short-hand notation [A ∗ B](1, 2) =∫
γ

d 3̄A(1, 3̄)B(3̄, 2) to denote convolutions over both the
space and time domains. Equation (3) connects single-
particle quantities (left-hand side) to two-particle quantities
(right-hand side), and shows that in an interacting system
two-particle correlations affect the single-particle dynamics.
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To quantify this, we introduce the generic four-point
susceptibility

iχσσ ′ (1, 2, 3, 4) = 〈Tγ {cσ (1)cσ ′ (2)c†
σ ′ (4)c†

σ (3)}〉
+ Gσ (1, 3)Gσ ′ (2, 4), (7)

which satisfies the BSE

χσσ ′ (1, 2, 3, 4)

= Gσ (1, 4)Gσ ′ (2, 3)δσσ ′

− Gσ (1, 1̄)Gσ (3̄, 3)�σσ̄ (1̄, 2̄, 3̄, 4̄)χσ̄−σ (4̄, 2, 2̄, 4),

(8)

where �σσ̄ (1̄, 2̄, 3̄, 4̄) is the irreducible vertex. We use the
convention that variables with overbars are integrated over,
and in the second term we introduced the compact notation
χσσ ′ (1, 2, 3, 4) ≡ χσσ ′σσ ′ (1, 2, 3, 4). Appendix A details the
derivation of the above equations. Combining Eqs. (3), (7),
and (8), we obtain the Schwinger-Dyson equation for the
self-energy:

�σ (1, 2) = − iU (1)G−σ (1, 1+)δ(1 − 2) + U (1)Gσ (1, 1̄)

× �σσ̄ (1̄, 2̄, 2, 4̄)χσ̄−σ (4̄, 1, 2̄, 1+). (9)

Here, 1+ ≡ (i, z+), where z+ is shifted by an infinitesimal
time along the contour, relative to z.

In the following, we focus on paramagnetic states, where
Gσ becomes spin independent and χσσ ′ can be transformed
into contributions from spin and charge channels. We define
the spin and charge susceptibilities as χ ch = ∑

σσ ′ χσσ ′ and
χ sp = ∑

σσ ′ σσ ′χσσ ′ . The physical two-point correlations are
given by χ sp/ch(1, 2) = χ sp/ch(1, 2, 1+, 2+), which can be ex-
pressed as

iχ sp(1, 2) = 〈Tγ {Ŝz(1), Ŝz(2)}〉, (10a)

iχ ch(1, 2) = 〈Tγ {N̂ (1), N̂ (2)}〉 − N (1)N (2). (10b)

Here, consistent with the naming convention, N̂ (1) = n̂↑(1) +
n̂↓(1) and Ŝz(1) = n̂↑(1) − n̂↓(1) are the total density and
spin-z operators (without factor 1/2), respectively. If one takes
the limit 2 → 1+ in Eq. (10), one obtains the following local
spin and charge sum rules [48]:

iχ sp(1, 1+) = N (1) − 2〈n̂↑(1)n̂↓(1)〉, (11a)

iχ ch(1, 1+) = 2〈n̂↑(1)n̂↓(1)〉 − [N (1)]2 + N (1), (11b)

where we used the property (n̂σ )2 = n̂σ .

B. TPSC method

The central approximation in TPSC is the following
Hartree-type decomposition of Eq. (3):[
�(1)

σ ∗ G(1)
σ

]
(1, 2) = −iλ(1)U (1)G(1)

σ (1, 2)G(1)
−σ (1, 1+), (12)

where λ(1) is introduced as a renormalization factor to the
bare Coulomb interaction. The superscript “(1)” denotes the
Green’s function and the self-energy defined in the first-level
approximation. The explicit expression of the self-energy can

be obtained by multiplying with (Gσ )−1 from the right:

�(1)
σ (1, 2) = −iλ(1)U (1)G(1)

−σ (1, 1+)δ(1 − 2). (13)

If λ(1) equals unity, this reduces to the conventional Hartree
diagram. The renormalized Coulomb interaction implies that
the chemical potential should also be renormalized to give the
correct filling.

The thermodynamically consistent irreducible vertex is
obtained as �σσ ′ (1, 2, 3, 4) = −δ�(1)

σ (1, 3)/δG(1)
σ ′ (4, 2) [49],

which yields

�σσ ′ (1, 2, 3, 4) = iU (1)δ(1 − 3)

[
λ(1)δσ ′−σ δ(1−4)δ(1+−2)

+ δλ(1)

δG(1)
σ ′ (4, 2)

G(1)
−σ (1, 1+)

]
. (14)

We furthermore assume that the second term in the brackets
is proportional to δ(1 − 4)δ(1+ − 2), to obtain the following
local form of the spin and charge vertices:

�sp/ch(1, 2, 3, 4) = i�̃sp/ch(1)δ(1 − 3)δ(1 − 4)δ(1+ − 2),

(15)

where we defined �̃ch/sp = �̃↑↓ ± �̃↑↑. The factor i in
Eq. (15) is a convention which makes �̃(1) a real scalar. One
can easily see that

�̃sp(1) = λ(1)U (1), (16)

since δλ(1)/δG(1)
↑ = δλ(1)/δG(1)

↓ in the paramagnetic phase.
Given the completely local form of �̃sp/ch, the BSEs can be

simplified to

χ ch/sp(1, 2) = χ0(1, 2) ± 1
2χ0(1, 1̄)�̃ch/sp(1̄)χ ch/sp(1̄, 2),

(17)

where χ0 in Eq. (17) is the bare response function (also known
as the Lindhard function) given by

χ0(1, 2) = −2iG(1)(1, 2)G(1)(2, 1). (18)

Provided that the double occupancy is known, the sum rules in
Eq. (11) allow one to fix the local vertices �̃sp/ch, since χ sp/ch

depend on �̃sp/ch via the BSEs. This is used for example in the
recently developed TPSC+DMFT approach [38].

In the original TPSC, however, a further local field approx-
imation (LFA) is introduced to self-consistently obtain the
double occupancy without external input [50]. This is based
on the fact that 〈n̂↑(1)n̂↓(1)〉 is spatially local and does not
strongly depend on the nearby sites. Specifically, in the hole
doped case with density (per spin) n = N/2, the LFA makes
the approximation

λ(1) = 〈n̂(1)
↑ (1)n̂(1)

↓ (1)〉
n(1)(1)n(1)(1)

, (19)

where 〈n̂(1)
↑ (1)n̂(1)

↓ (1)〉 denotes the double occupancy in the
first-level approximation. In the electron doped case, one
should replace n̂σ with 1 − n̂σ in Eq. (19) [25]. With this
approximation, the Hartree decomposition, Eq. (12), becomes
identical to the EOM [Eq. (3)] in the limit 2 → 1+.
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The self-consistent calculation of the two-particle vertices
contains the following steps.

(i) Start with some initial guess for the double occupancy
〈n̂(1)

↑ n̂(1)
↓ 〉 and calculate the corresponding �̃sp using Eqs. (19)

and (16).
(ii) Solve the spin channel BSE (17) to obtain χ sp.
(iii) Update the double occupancy, 〈n̂(1)

↑ n̂(1)
↓ 〉, using

Eq. (11a). Repeat the procedures (i)–(iii) until convergence
is reached in the spin channel.

(iv) Once the spin channel is converged, use the converged
value of 〈n̂(1)

↑ n̂(1)
↓ 〉 on the right-hand side of Eq. (11b) and

search for the �̃ch which satisfies this sum rule.
The above thermodynamically consistent two-particle self-

consistency is also known as the first-level TPSC iteration.
Once the vertices �̃sp/ch and susceptibilities χ sp/ch have

been obtained in both the spin and charge channels, the spec-
tral self-energy can be obtained by solving the Schwinger-
Dyson equation, Eq. (9). Specifically, in the paramagnetic
phase with local irreducible vertices, we have

�(2)(1, 3) = −iU (1)G(1)(1, 1+)δ(1 − 3) + �C[α](1, 3),

(20)

where the first term is the usual Hartree contribution and

�C[α](1, 3) = iU (1)

8
G(1)(1, 3)α(3)[�̃ch(3)χ ch(3, 1)

+ 3�̃sp(3)χ sp(3, 1)] (21)

is the correlation self-energy obtained by averaging the
longitudinal and transversal channels [51]. In Eq. (20) , the su-
perscript “(2)” denotes the second-level spectral self-energy.
The coefficient α in Eq. (21), which renormalizes the vertices,
is determined by the local sum rules in the spectral calculation
[25,42], i.e., by the condition

[�(2)[α] ∗ G(2)](1, 1+) = iU (1)〈n̂(1)
↑ (1)n̂(1)

↓ (1)〉. (22)

Here, G(2) is the spectral Green’s function corresponding to
�(2). The α renormalization has been found to be important
for real-time simulations, possibly due to the approximation
introduced in solving the BSEs [42]. However, in the present
steady-state implementation, we find that it has almost no ef-
fect on the results. We thus keep α = 1 in all our calculations.

It is noteworthy that, for a generic system (such as the
bilayer lattice out of equilibrium, as discussed later), the
iteration of G(1)(1, 2) is essential to achieve first-level self-
consistency. This is due to the fact that �(1)(1, 2) in Eq. (13)
is site dependent and different from a noninteracting sys-
tem with a shifted chemical potential. Consequently, the
Lindhard function [Eq. (18)] and Bethe-Salpeter equa-
tions need to be recalculated in each self-consistency loop. If
�(1)(1, 2) is site independent (for example in a single band or
bilayer system in equilibrium), this self-consistency process

can be simplified since the constant shift of the first-level
self-energy can be absorbed into the global chemical potential.

Moreover, the original TPSC does not work deep inside the
renormalized classical regime, where antiferromagnetic spin
fluctuations exponentially increase as the system temperature
decreases [25]. To gauge the validity of the results, in addi-
tion to comparing with numerically exact methods, one can
perform internal accuracy checks by measuring the difference
between Tr[�(2) ∗ G(1)] and Tr[�(2) ∗ G(2)], where the former
one can be proven to be equal to iU 〈n̂(1)

↑ n̂(1)
↓ 〉 [25] (see Ap-

pendix B for more details). The relative error is defined by

rel. error =
∣∣∣∣Tr[�(2) ∗ G(1)] − Tr[�(2) ∗ G(2)]

Tr[�(2) ∗ G(1)]

∣∣∣∣. (23)

One of the recently developed improved TPSC variants,
TPSC+GG, feeds the spectral Green’s function G(2) back to
χ0 in Eq. (18), thus reaching a self-consistency loop [7,40].
Even though this approach in principle violates the local
sum rules, numerical tests show an improvement of the two-
particle correlation functions, compared to QMC results [7].

C. Steady-state implementation

For the steady-state implementation of the formulas, we
adopt a two-branch Schwinger-Keldysh contour, assuming
that initial correlations of the system have been wiped out
upon relaxation into a time-translation invariant steady
state [47]. We further assume the existence of translational
invariance in the lattice model. The general procedure for the
steady-state implementation involves obtaining the real-time
equations by applying Langreth’s rules [46,47] to the equa-
tions for the contour γ , followed by Fourier transformation of
the relevant components to frequency and momentum space
to facilitate the implementation [41,52,53]. This technique
allows one to simulate both thermal equilibrium states and
nonequilibrium steady states, and to obtain spectral functions
without the need for numerical analytical continuation.

We use the vector B to denote a site within the unit cell
and T to represent the translation vector between unit cells.
Thus, a generic site corresponds to the vector R = B + T.
(In the case of the bilayer lattice considered in Sec. III, the
unit cell consists of two sites.) We adopt the Fourier transform
convention

OBB′ (ω; k) =
∑

T

O(B+T)B′ (t )ei(ωt−k·T), (24a)

O(B+T)B′ (t ) = 1

2πNk

∑
k

∫
dωOBB′ (ω; k)e−i(ωt−k·T), (24b)

where Nk is the number of k points (unit cells). For simplicity,
we omit the superscripts “(1)” and “(2)” in the following
subsection. In frequency-momentum space, the BSE for the
spin (charge) channel, Eq. (17), reads

χ
sp(ch),r/a
BB′ (ω; q) = χ

0,r/a
BB′ (ω; q) ∓ 1

2

∑
B̄

χ
0,r/a
BB̄

(ω; q)�̃sp(ch)
B̄

χ
sp(ch),r/a
B̄B′ (ω; q), (25a)

χ
sp(ch),≶
BB′ (ω; q) = χ

0,≶
BB′ (ω; q) ∓ 1

2

∑
B̄

[
χ0,r

BB̄
(ω; q)�̃sp(ch)

B̄
χ

sp(ch),≶
B̄B′ (ω; q) + χ

0,≶
BB̄

(ω; q)�̃sp(ch)
B̄

χ
sp(ch),a
B̄B′ (ω; q)

]
, (25b)
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where the upper minus sign is for the spin channel and the lower plus sign is for the charge channel, and the superscript r (a)
refers to the retarded (advanced) components. The Lindhard function (18) becomes

χ
0,r/a
BB′ (ω; q) = − i

π

1

Nk

∑
k

∫ ∞

−∞
dx

[
Gr/a

BB′ (x; k + q)G<
B′B(x − ω; k) + G<

BB′ (x; k + q)Ga/r
B′B(x − ω; k)

]
, (26a)

χ
0,≶
BB′ (ω; q) = − i

π

1

Nk

∑
k

∫ ∞

−∞
dxG≶

BB′ (x; k + q)G≷
B′B(x − ω; k). (26b)

The local spin and charge sum rules in Eq. (11) can be expressed as

1

Nk

∑
q

1

2π

∫ ∞

−∞
dωχ

sp,<

BB (ω; q) = −i[NB − 2〈n̂B↑n̂B↓〉], (27a)

1

Nk

∑
q

1

2π

∫ ∞

−∞
dωχ ch,<

BB (ω; q) = i
[
N2

B − NB − 2〈n̂B↑n̂B↓〉]. (27b)

For the spectral calculation, we use �
r/a
BB′ (ω; k) = UBnBδBB′ + �

C,r/a
BB′ (ω; k) and �

≶
BB′ (ω; k) = �

C,≶
BB′ (ω; k), where the self-

energy contributions from electron correlations are given by

�
C,r/a
BB′ (ω; k) = + i

8Nk

∑
q

1

2π

∫ ∞

−∞
dxGr/a

BB′ (x; k + q)αB′
[
�̃ch

B′χ
ch,<
B′B (x − ω; q)UB + 3�̃

sp
B′χ

sp,<

B′B (x − ω; q)UB
]

+ i

8Nk

∑
q

1

2π

∫ ∞

−∞
dxG<

BB′ (x; k + q)αB′
[
�̃ch

B′χ
ch,a/r
B′B (x − ω; q)UB + 3�̃

sp
B′χ

sp,a/r
B′B (x − ω; q)UB

]
, (28a)

�
C,≶
BB′ (ω; k) = i

8Nk

∑
q

1

2π

∫ ∞

−∞
dxG≶

BB′ (x; k + q)αB′
[
�̃ch

B′χ
ch,≷
B′B (x − ω; q)UB + 3�̃

sp
B′χ

sp,≷
B′B (x − ω; q)UB

]
. (28b)

Note that we have the symmetry relations χ
r/a
BB′ (ω; q) =

χ
a/r
B′B(−ω; −q) and χ

≶
BB′ (ω; q) = χ

≷
B′B(−ω; −q) both for χ0

and χ sp/ch.
The most time-consuming part in the evaluation

of the above formulas is calculating the convolutions
in frequency-momentum space, such as C(ω; q) =

1
2πNk

∑
k

∫ ∞
−∞ dxA(x; k + q)B(x − ω; k). In our imple-

mentation, we employ fast Fourier transformation to the
time-position domain, where the convolutions become
pointwise multiplications. As a result, the computational
complexity reduces from N2

ωN2
k to NωNk log(NωNk ), where

Nω and Nk are the number of frequency and k points,
respectively. Additionally, since our implementation works
with real frequencies, and the spectra may contains delta
peaks (for example, in the case of the thermodynamic Green’s
function G(1)), a broadening of poles has to be introduced.
However, since our model will be coupled to external baths
(see below), the smearing of the poles is taken care of by
these baths.

As sketched in Fig. 1(a), the model is coupled to external
leads, which are assumed to be in local equilibrium with
chemical potential μα (α = top, bottom) and inverse temper-
ature β. For μtop > μbottom the system is in a nonequilibrium
steady state with a particle current flowing from the top to the
bottom lead [54]. The effect of the leads is described by the
lead self-energy, which depends on the detailed lead setup.
Here, for simplicity, we adopt the wide-band limit (WBL),
which assumes a flat density of states near the Fermi level with
half bandwidth D. The explicit expression for the WBL lead

self-energy (retarded component) for site i and spin channel σ

is

�ld,r
iσ (ω) = iσ

π
ln

∣∣∣∣D + (ω − μi )

D − (ω − μi )

∣∣∣∣ − iiσ θ (|ω − μi| < D),

(29)

where iσ is the coupling strength of the iσ channel and θ is
the Heaviside step function. The lesser part can be obtained
from the fluctuation-dissipation theorem,

�ld,<
iσ (ω) = −2i fβ (ω − μi )Im�ld,r

iσ (ω), (30)

FIG. 1. (a) Schematic illustration of the bilayer square lattice
Hubbard model with external voltage bias. Red and green ellipses
mark nearest-neighbor inter- and intralayer correlations, respectively.
(b)–(d) Real-space self-energy diagram for the model with (b) both
local energy and lead chemical potential shifts, (c) only local energy
shifts (equilibrium doping model), and (d) only lead chemical poten-
tial shifts.
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with fβ the Fermi function for inverse temperature β, since the
leads are assumed to be in local equilibrium. Note that the lead
self-energy is site diagonal in the WBL and that the total lead
self-energy is the sum of �ld

iσ (ω) over sites i. (Generically, the
total lead self-energy could contain off-diagonal terms, which
make it k dependent.) As follows from Fig. 1(a), the lead self-
energy from the top (bottom) bath is added to the sites in the
top (bottom) layer. The red and green ellipses in Fig. 1(a) mark
two sites for measuring nearest-neighbor inter- and intralayer
correlations, as discussed in the following.

III. NUMERICAL RESULTS

A. Setup

We focus in the main text on a bilayer stack of the square
lattice Hubbard model, with each layer coupled to a free-
electron bath, as shown in Fig. 1(a). The unit cell of the
model comprises two sites, and in the noninteracting case the
dispersion relation reads

ε±(k) = 2W ‖
1 [cos(kxa) + cos(kya)] ± W ⊥

1 + W0, (31)

where a = 1 is the lattice constant, W ‖
1 and W ⊥

1 are the
site-independent inter- and intralayer hoppings, and W0 is the
on-site energy, as depicted in Fig. 1. The plus and minus signs
in Eq. (31) refer to bonding (symmetric) and antibonding
(antisymmetric) states resulting from the interlayer hopping.
One can also introduce a Fourier transform along the stacking
direction, in which case the former (latter) state corresponds
to k⊥ = 0 (k⊥ = π ).

The baths are assumed to have an equilibrium distribution
with inverse temperature β. An external applied voltage bias
V shifts their local energy levels and chemical potentials
and results in a perpendicular electric field across the bilayer
structure. In most of the calculations, we assume that the
voltage drop occurs only between the top and bottom layers,
as depicted in Fig. 1(b). (A more advanced modeling would
self-consistently determine the voltage profile by considering
the charge density and Hartree potential.) In our simple setup,
the voltage bias has two main consequences: (i) a reshuffling
of charge between the layers due to the different on-site en-
ergies of the two layers and (ii) nonequilibrium distributions
in the layers due to the different local chemical potentials in
the baths. To distinguish these two effects, we also consider
two additional models: (i) a model with only shifted on-site
energies of the layers, but identical chemical potentials in the
baths (the equilibrium doping model), depicted in Fig. 1(c),
and (ii) a model with only shifted chemical potentials in the
baths but unchanged local energies in the layers, depicted in
Fig. 1(d). Note that the electronic states in the central layers
are identical for the configurations in Figs. 1(b) and 1(c). This
allows us to examine how nonequilibrium effects alter the
system’s behavior by changing the populations of the elec-
tronic states. In the following nonequilibrium calculations, our
default model is the one shown in Fig. 1(b), unless otherwise
stated.

In the numerical calculations, we use a grid of 64×64 k
points and 216 frequency points on each side of the real-
frequency axis, spaced by dω = 10−3 to achieve a fine
spectral resolution. The computation time for each calculation

is approximately 20 minutes when executed with 64 CPU
cores.

B. Thermal equilibrium

We first examine the equilibrium properties of the particle-
hole symmetric system. The parameters chosen in our paper
are U = 4 and inverse temperature β = 4 (unless otherwise
stated), and the coupling to each free-electron bath is  = 0.05
(wide-band approximation). We set W ‖

1 = 1 as the energy
unit.

Figure 2 presents the equilibrium (μtop = μbottom) single-
particle quantities calculated by the original TPSC and for
different interlayer hoppings: W ⊥

1 = 0 [Fig. 2(a)], W ⊥
1 = 0.25

[Fig. 2(b)], W ⊥
1 = 0.5 [Fig. 2(c)], and W ⊥

1 = 1.0 [Fig. 2(d)].
From left to right, the three columns in Fig. 2 display (i) the
local spectral function A(ω) and occupation, (ii) the corre-
lated band structure A(ω; k) along a high symmetry path,  =
(0, 0) → X = (π, 0) → M = (π, π ) →  = (0, 0), and (iii)
the “Fermi surface” A(ω = 0; k). The shaded area in the left
panels marks the equilibrium distribution of occupied states,
A(ω) fβ (ω), where fβ (ω) is the Fermi function for inverse
temperature β.

In the case W ⊥
1 = 0, the two layers are decoupled and

the model reduces to the single-layer square lattice model.
The corresponding local spectral function, shown in Fig. 2(a),
features a pseudogap at the Fermi energy, indicative of strong
antiferromagnetic correlations in the system. Indeed, the band
structure and Fermi surface reveal a suppression of spectral
weight at the X point, k = (π, 0), which results in a discontin-
uous Fermi surface. The destruction of quasiparticles near the
antinode is consistent with the findings from other advanced
many-body methods, such as cluster DMFT or dual fermions
[55,56], but the TPSC approach is computationally much
cheaper. TPSC+GG results are presented in Appendix C,
where it is shown that this modified formalism does not pro-
duce an antiferromagnetic pseudogap in the spectral function
for the same parameters.

Figures 2(b)–2(d) show how the electronic structure
evolves as a function of the interlayer hopping W ⊥

1 . One can
see that the pseudogap at the Fermi level persists if W ⊥

1 is
increased. The underlying physics however changes, since the
bilayer system exhibits a crossover from a pseudogap induced
by antiferromagnetic correlations to a bonding/antibonding-
type band splitting, as can be deduced from the band
structures and Fermi surfaces [57]. As shown in the right
panels, the Fermi surface represented by A(ω = 0; k) un-
dergoes a nontrivial evolution: starting from a pseudogap
pattern with disconnected segments, spectral weight redistri-
bution leads to a splitting into two full Fermi surfaces with
increasing W ⊥

1 .
In Fig. 3, we focus on the spin correlations for W ⊥

1 = 0
(equivalent to the single-layer case). Figures 3(a) and 3(b)
depict the static spin susceptibility − 1

π
Imχ sp,>(q; ω = 0) ob-

tained using TPSC and TPSC+GG, respectively. One can
see hot spots appearing at the corner q = (π, π ) of the
Brillouin zone, which confirms the existence of antiferro-
magnetic correlations in the system. These correlations are
strong in the TPSC solution, but much weaker in TPSC+GG
(note the difference in the color bars), consistent with the
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FIG. 2. Local spectral function A(ω) (shaded area for occupied states), momentum-resolved spectral function A(k; ω), and “Fermi surface”
A(ω = 0; k) of the bilayer square lattice Hubbard model with (a) W ⊥

1 = 0, (b) W ⊥
1 = 0.25, (c) W ⊥

1 = 0.5, and (d) W ⊥
1 = 1.0. Thin white dashed

lines are the noninteracting band structures and Fermi surfaces. (Equilibrium system, U = 4, β = 4.)

presence/absence of a pseudogap in the fermionic spectral
function noted above. In Fig. 3(c), we plot the correspond-
ing real-space instantaneous (t ′ → t) spin-spin correlations
obtained by the Fourier transform:

〈
Ŝz

BŜz
B′+T

〉 = i

2πNk

∑
q

∫ ∞

−∞
dωχ

sp,>

BB′ (ω; q)e−iq·T. (32)

The x axis corresponds to the distance (in units of lattice
spacing) from the origin along the x direction. By symme-
try, the result is the same along the y direction. Due to the
more smeared-out spin excitation spectrum, the TPSC+GG
curve exhibits a faster decay compared to the TPSC result,

indicating a shorter antiferromagnetic correlation length in the
former method.

Previous studies have noted the overestimation of the spin
correlation length by TPSC [7,40], and it has been shown that
TPSC+GG significantly improves the two-particle correla-
tions. Based on this, one might conclude that the TPSC+GG
results with shorter correlation length and nonexistent pseu-
dogap should be more reliable for the present parameters. On
the other hand, it has been shown that self-consistent resum-
mations via “boldification” of diagrams can lead to inaccurate
results [58] and in particular to unphysical fermionic spectral
functions. A well-known example is the boldified second-
order perturbation theory, which leads to a strong smearing
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FIG. 3. Momentum-resolved spin correlations − 1
π

Imχ sp,>(ω =
0; q) for the single-layer (W ⊥

1 = 0) Hubbard model obtained by
(a) TPSC and (b) TPSC+GG. Note the different range of the color
bars. (c) Corresponding real space spin-spin correlations 〈Ŝz

0Ŝz
T 〉. The

horizontal axis shows the distance (in units of lattice spacing) from
the origin along the x direction. (Equilibrium system, U = 4, β = 4.)

of the spectral function and overdamped nonequilibrium
dynamics [10,59].

In the subsequent discussions, we primarily focus on the
original TPSC method, which will be used to study the out-
of-equilibrium behavior of the bilayer system. Before that,
we first benchmark the method using equilibrium data from
a recent optical lattice experiment [60]. To ensure consis-
tency with Ref. [60], we adopt the same parameters U = 8,
β = 1, and n = 0.4 (average filling for each spin channel).
In Fig. 4(a), we plot the intralayer spin structure factor

i
2π

∫
χ

sp,>

00 (ω; q)dω as a function of interlayer coupling W ⊥
1 .

Results are shown for q = (0, 0) (red color) and q = (π, π )
(blue color). The dots with error bars represent the exper-
imental data extracted from Fig. 2(b) in Ref. [60], where
an optical lattice based quantum simulator was employed to
study the bilayer Hubbard model. Note that for the purpose
of this comparison, the TPSC data are divided by 4, since
there is a factor 1/2 difference in the definition of the spin
operator in Ref. [60]. The good agreement of the TPSC curves
in Fig. 4(a) with the data from the optical lattice experiment

FIG. 4. (a) Intralayer spin structure factor (divided by 4) for
q = (0, 0) and (π, π ). The dots with error bars show the experimental
data extracted from Ref. [60]. (b) Corresponding nearest-neighbor
inter- and intralayer spin-spin correlations defined in Eq. (32).
(Equilibrium system, U = 8, β = 1, density per spin n = 0.4.)

FIG. 5. (a) Electron density in the two layers vs voltage bias
V . Solid and dashed lines show the results corresponding to the
models in Figs. 1(b) and 1(c), respectively. (b) Spectral function of
the top layer (blue line) Atop(ω) for V = 4 and occupied states A<(ω)
(orange shading). Inset: Corresponding nonequilibrium distribution
function fneq(ω) (red). The black solid and gray dashed lines show
the bath distribution functions and chemical potentials, respectively.
(Parameters: W ⊥

1 = 1, U = 4, β = 4.)

provides support for the reliability of our method in the pa-
rameter regime considered in this paper. In Fig. 4(b), we
show the corresponding inter- and intralayer spin correlations,
defined by Eq. (32), in red and blue, respectively. As W ⊥

1
increases, the interlayer spin correlations become negative,
because the electrons on the different layers tend to form inter-
layer singlets. Simultaneously, the intralayer nearest-neighbor
spin correlations approach zero, since neighboring singlets
become independent.

In all these equilibrium calculations, the internal error, as
defined in Eq. (23), remains below 10%. This indicates that
the results in the chosen parameter regime do not have any
obvious internal inconsistencies.

C. Nonequilibrium steady state

We next apply a voltage bias V across the bilayer system
with U = 4, to generate a static electric field perpendicular
to the layers. More specifically, the on-site energies of the
top and bottom layers, as well as the respective baths, are
shifted by ±V/2 from their equilibrium values, as illustrated
in Fig. 1(b). As a result, electrons start to flow from the top
to the bottom layers and the system reaches a steady state
(controlled by V and the bath coupling ) after a sufficiently
long time, which is the regime we analyze in the following.

1. Single-particle properties

We start with the single-particle properties plotted in Fig. 5
for W ⊥

1 = 1. Figure 5(a) shows how the electron density (red
for the bottom layer and blue for the top layer) varies as
a function of the voltage bias. Solid lines plot the densities
calculated for the nonequilibrium model [Fig. 1(b)], while the
dashed lines are the results for the equilibrium model with
shifted on-site energies [Fig. 1(c)]. With increasing V , there
is a reshuffling of charge from the top to the bottom layer.
(We neglect the effect of this reshuffling on the electric field
or voltage drop within the bilayer.) When V < 1, the solid
and dashed lines are close to each other, which demonstrates
that in this regime the charge reshuffling is dominated by the
energy level shift. For larger V , the decrease (increase) of
the electron density in the top (bottom) layer of the nonequi-
librium system becomes slower and, after V = 2, the trend
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FIG. 6. Bias dependent two-particle quantities for the model depicted in Fig. 1(b) with parameters W ⊥
1 = 1, U = 4, and β = 4. (a) Spin

(red) and charge (blue) vertices. (b) Double occupancy fluctuation �D = 〈(n̂↑ − n↑)(n̂↓ − n↓)〉, which is the same for both layers. Inset: Layer
dependent 〈n̂↑n̂↓〉. In panels (a) and (b), the dashed lines show the results for the equilibrium doping model [see Fig. 1(c)], and the arrows on
the right indicate the asymptotic values. (c, d) Nearest-neighbor intra- and interlayer spin and charge fluctuations, respectively.

is reversed. Physically, this happens because the overlap in
the densities of states of the top and bottom layer is reduced
with increasing V , so that the transfer of electrons between
the two layers slows down. Note that in the limit of no hop-
ping between the layers both layers will be half filled in our
nonequilibrium setup.

In Fig. 5(b), we plot, in blue, the local spectral func-
tion A(ω) = −ImGr (ω)/π of the top layer. (The spectral
function for the bottom layer is mirrored at ω = 0.) The
occupied states A<(ω) = ImG<(ω)/(2π ) of the upper layer
are shown by the orange shading. The ratio between these
two spectra defines the nonequilibrium distribution function
fneq(ω) = A<(ω)/A(ω), which is plotted as a red curve in
the inset. This nonequilibrium distribution function deviates
significantly from the Fermi function of the upper bath (right
black line), and gives rise to the interesting nonequilibrium
phenomena discussed below.

2. Two-particle properties

We now turn to the investigation of two-particle quantities,
fixing W ⊥

1 = 1 and β = 4 unless otherwise stated. Figure 6(a)
plots the spin (red) and charge (blue) irreducible vertices as a
function of the voltage bias. Again, the solid and dashed lines
show the results for the nonequilibrium setup, Fig. 1(b), and
the equilibrium system with shifted local energies, Fig. 1(c),
respectively. Due to the electron-hole symmetry in the struc-
ture, the local vertices are identical on both layers. In contrast
to the single layer case (see Appendix D), where an increase
of V mainly leads to a heating effect, the vertices in the
bilayer system exhibit a nonmonotonic behavior. Specifically,
for small bias, both �̃sp and �̃ch decrease with increasing
V . This effect mainly comes from the change in the filling
of the layers, as the equilibrium model with shifted local
energies predicts the qualitatively same behavior at small V .
For V � 2, both the spin and charge vertices start to grow.
As discussed above, this is because for large V the layers
are getting decoupled (reduced overlap in the local densities
of states), so that the vertices are expected to approach the
equilibrium values for decoupled layers with β = 4. These
values, �̃sp = 2.17 and �̃ch = 13.31, are indicated by the
arrows on the right.

In Fig. 6(b), we plot the bias dependent double occu-
pancy fluctuation �D = 〈(n̂↑ − n↑)(n̂↓ − n↓)〉 (same for both
layers), where n↑n↓ is subtracted from 〈n̂↑n̂↓〉. The inset

shows the layer dependent 〈n̂↑n̂↓〉, which is strongly influ-
enced by the charge reshuffling. As expected in a repulsively
interacting system, �D < 0 due to the extra energy cost of
double occupation. In the equilibrium system with shifted
local energies [dashed black line in Fig. 6(b)], the correlation
effects decrease with increasing charge polarization, so that
�D approaches zero with increasing V . In the nonequilibrium
setup, a similar trend is evident for small V , and hence can
be attributed to the displacement of the onsite energies. As
V increases, the system traverses a complex nonequilibrium
regime but, for V � 2, �D starts to approach the single layer
equilibrium value (−0.114), due to the effective decoupling
of the layers at very large V .

In Figs. 6(c) and 6(d), we plot the nearest-neighbor instan-
taneous spin and charge fluctuations, respectively. Also here,
the term “fluctuation” refers to the fact that we subtract the ex-
pectation values from the operators, i.e., plot 〈(X̂ − 〈X̂ 〉)(Ŷ −
〈Ŷ 〉)〉, where X,Y ∈ N̂i, Ŝz

i . This has no effect for the spin-
spin correlations, since 〈Ŝz

i 〉 = 0 in a paramagnetic state,
but it shifts the charge-charge correlations by NiNj . The red
(blue) curves are for intralayer (interlayer) correlations. The
nonequilibrium results reveal that the intralayer fluctuations
(red curves), both in the spin and charge channels, are rather
insensitive to V , while the interlayer values (blue curves) react
strongly to the voltage bias. Furthermore, the values of and
changes in the spin fluctuations are roughly three times larger
than the equilibrium values of and changes in the charge
fluctuations, which is consistent with antiferromagnetically
dominated short-range order in the structure. Remarkably, the
interlayer spin fluctuations [solid blue line in Fig. 6(c)] change
sign around V = 2.25, indicating a switch of the preferred
interlayer spin alignment from AFM to ferromagnetic (FM).
The TPSC+GG results (not shown) exhibit the same switch-
ing from antiferromagnetic to ferromagnetic spin correlations
with increasing V . This switching cannot be explained by the
electric field effect on the spin exchange coupling, which has
been discussed in the case of Mott insulators [4,61], since the
sign inversion of the exchange interaction requires V ≈ U .
Our observation is however consistent with Ref. [62], where
the authors simulated the square lattice model subject to a
short in-plane electric pulse using the FLEX+RPA method,
and found a transient switch from antiferromagnetic to ferro-
magnetic correlations before relaxation.

To elucidate the spin dynamics, we perform calculations
of the dynamical spin structure factor, also referred to as
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FIG. 7. Dynamical spin structure factor for V = 0 (first row)
and V = 4 (second row), respectively. The left column shows the
symmetric (q⊥ = 0) channel and the right column shows the anti-
symmetric (q⊥ = π ) channel. (Parameters: W ⊥

1 = 1, U = 4, β = 4.)

the (para)magnon dispersion. This quantity is defined as the
the Fourier transform of the nonlocal spin-spin correlation
function:∑

T,T⊥

∫ 〈
Ŝz

i (t )Ŝz
i+T+T⊥ (t ′)

〉
ei[q·T+q⊥T⊥+ω(t−t ′ )]d (t − t ′)

=
∑
T⊥

eiq⊥T⊥ iχ sp,>

i,i+T⊥ (ω; q), (33)

where T⊥ takes the value 0 (1) for intralayer (interlayer)
correlations. The corresponding q⊥ values are zero and π ,
which represent the symmetric (bonding) and antisymmetric
(antibonding) sectors. In Fig. 7, we plot the dynamical spin
structure factor for V = 0 (first row) and V = 4 (second row),
respectively. The left and right columns correspond to the
symmetric (q⊥ = 0) and antisymmetric (q⊥ = π ) channels.
In the equilibrium system, for q⊥ = 0 [Fig. 7(a)], we see a
linear dispersion around the  point (q = (0, 0)), while the
antisymmetric channel [Fig. 7(b)] exhibits a large signal near
the M point [q = (π, π )]. These observations are qualitatively
similar to the results for the bilayer Heisenberg model (U �
W ) obtained by QMC (see Fig. 1 in Ref. [63]). The most
prominent effect of the bias V = 4 [Figs. 7(c) and 7(d)] is
a transfer of spectral weight from the antisymmetric to the
symmetric channel around the M point, a result consistent
with the observed switch from antiferromagnetic to ferromag-
netic interlayer correlations. Given that the original TPSC
method tends to overestimate correlation functions, it may be
anticipated that these peaks will be smeared to some extent in
more accurate calculations.

To gain further insights into the field-induced switching of
the interlayer spin correlations shown in Fig. 6(c), we plot
in Fig. 8 the momentum averaged interlayer dynamical spin
structure factor i

2πNk

∑
q χ

sp,>

01 (ω; q). This quantity represents
the energy distribution of (in-plane momentum averaged)
interlayer spin excitations, and its integral over ω yields
the instantaneous interlayer spin correlation [see Eq. (32)].
In equilibrium (blue curve), the spectrum is negative and

FIG. 8. Frequency-resolved and in-plane momentum averaged
interlayer spin susceptibility (greater component) for different
voltage biases. Insets: Contributions from q = (0, 0) and (π, π ).
(Parameters: W ⊥

1 = 1, U = 4, β = 4.)

dominated by two low-energy peaks. The negative peak at
ω = 0 predominantly originates from momentum q = (π, π ),
and thus forms a spin mode associated with both AFM inter-
layer spin alignment in the bilayer structure (negative sign)
and AFM intralayer correlations, as can be seen from〈

Ŝz
B(t )Ŝz

B′+T(t ′)
〉

= 1

2πNk

∫
dω

∑
q

iχ sp,>

BB′ (ω; q)e−i[q·T+ω(t−t ′ )]. (34)

The above equation is a time nonlocal generalization of
Eq. (32). The other prominent negative peak at ω ≈ 1.16 can
be linked to in-plane momentum q = (0, 0), and thus to an
intraplane uniform but oscillating spin mode. The net effect of
these correlations is a strengthening of interlayer singlet states
within a unit cell. In the presence of a perpendicular electric
field V = 4, the dominant mode at ω = 0 and q = (π, π )
changes its sign from negative to positive, thus contributing
to an interlayer FM spin alignment (while the associated in-
tralayer correlations remain AFM). Moreover, the negative
weight of the mode at q = (0, 0) is suppressed in the presence
of the voltage bias. The result is a tendency to form interlayer
spin triplet states within the unit cells.

Finally, we present in Fig. 9 the interlayer spin correlation
〈Ŝz

0Ŝz
1〉 as a function of interlayer coupling W ⊥

1 [Fig. 9(a)] and
as a function of the bare Coulomb interaction U [Fig. 9(b)].
The blue and magenta curves in the insets correspond to
the models depicted in Figs. 1(c) and 1(d), respectively. In
Fig. 9(a), the effect of solely shifting the layer on-site energies
(blue curves) or merely shifting the bath chemical potentials
(magenta curves) is to make the interlayer spin correlation
more negative. However, if both these changes are applied
(red curves) the system exhibits ferromagnetic interlayer
correlations in the hopping range 0 < W ⊥

1 � 1.75, which
is a completely nonlinear effect. For stronger W ⊥

1 , antifer-
romagnetic interlayer correlations are recovered, since the
electrons on different layers form a spin singlet. The interlayer
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FIG. 9. Interlayer spin correlations for V = 4 as a function of
(a) interlayer coupling W ⊥

1 (with U = 4, β = 4) and (b) Coulomb
interaction U (with W ⊥

1 = 1, β = 4). Insets: The blue and magenta
curves show the results for the models illustrated in Figs. 1(c) and
1(d), respectively.

spin correlations will approach −0.5 in the large-W ⊥
1 limit.

(For a pure singlet state, we have 〈n̂0σ n̂1σ 〉 = 0 and hence
〈Ŝz

0Ŝz
1〉 = 〈(n̂0↑ − n̂0↓)(n̂1↑ − n̂1↓)〉 = −2〈n̂0↑n̂1↓〉 = −0.5.)

In Fig. 9(b), one can see that the interlayer spin correlations
(in red) monotonically increase with increasing U , undergoing
a sign switch from negative to positive around U = 0.75 for
V = 4. In contrast, the equilibrium doping model (blue curve)
shows an increase in AFM correlations with increasing U .
This effect can be easily understood, since large U suppresses
double occupations in each layer, thereby favoring the
formation of a spin singlet state with antiparallel electrons in
the different layers. Shifting the bath chemical potentials does
not alter the position of the energy levels in the layers (in the
wide-band approximation). The nonequilibrium effect results
from the change in the occupation of the levels. The different
qualitative behaviors of the interlayer spin correlations can be
attributed to these nonequilibrium occupations. Our findings
indicate that the model with a mere shift in the bath chemical
potentials (magenta curve) exhibits a gradual increase in the
AFM correlations. Both observations show that the switch
from antiferromagnetic to ferromagnetic spin correlations is
a nontrivial correlated-electron phenomenon driven by the
external electric field.

IV. CONCLUSIONS

We developed nonequilibrium steady-state two-particle
self-consistent schemes, and used them to study spin and
charge correlations in a bilayer square lattice Hubbard model
subject to a perpendicular static electric field. The TPSC
method respects the Mermin-Wagner theorem, Pauli’s ex-
clusion principle, and various sum rules by self-consistently
calculating vertex functions which are approximated as local
in both space and time. From the local vertices, the non-
local spatial correlations can then be obtained by solving
the Schwinger-Dyson equation. Our steady-state formalism is
based on a two-branch Schwinger-Keldysh contour, and em-
ploys Fourier transformations to frequency-momentum space.
It thus gives access to the spectral properties of the system
both in and out of equilibrium without numerical analytical
continuation. In the applications, we mainly focused on the
original TPSC method, which in contrast to TPSC+GG re-
produces the pseudogap phenomenon related to short-ranged
antiferromagnetic correlations. For the equilibrium bilayer
square lattice Hubbard model, we calculated the evolution of

the spectral function with increasing interlayer hopping, and
illustrated the evolution from a system with antiferromagnetic
pseudogap to a band insulator. We also demonstrated a good
agreement of the calculated intra- and interlayer correlations
with data from recent optical lattice experiments. This shows
that the TPSC approach can reliably predict the nonlocal
correlations in the considered parameter regime.

In the nonequilibrium calculations with perpendicular elec-
tric field, we observed that the system’s behavior for small
bias voltage is influenced by the charge reshuffling between
the layers. With increasing bias or field strength, the sys-
tem exhibits a nontrivial nonequilibrium behavior and finally
approaches a state corresponding to decoupled equilibrium
single layers in the limit of large V . The intralayer spin and
charge correlations are not significantly affected by the elec-
tric field, while the interlayer correlations react strongly to the
applied bias. More importantly, we found that the interlayer
spin correlations switch from antiferromagnetic to ferromag-
netic at some intermediate value of the perpendicular electric
field when the intra- and interlayer couplings are compara-
ble, which might have potential technological applications.
Through comparison with the equilibrium effective doping
model, we attribute this switching to the nonequilibrium pop-
ulation, which can be linked to the inversion of the spectrum
for collective spin excitations.
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APPENDIX A: FUNCTIONAL DERIVATIVE TECHNIQUE

We start from the partition function in the presence of an
external source:

Z[φ] = Tr[Tγ (e−i
∫
γ

dz̄H(z̄)S[φ])], (A1)

where Tγ is the time ordering operator on the contour γ ,
which orders the operators from right to left with increasing
contour time (with an additional minus sign for the exchange
of two fermionic operators). In the above equation, a generic
nondiagonal source field term,

S[φ] = e−i
∫
γ

dz̄dz̄′ ∑
σ

∑
i j c†

iσ (z̄)φi j,σσ ′ (z̄,z̄′ )c jσ ′ (z̄′ )
, (A2)

is introduced for the purpose of deriving thermodynamically
consistent quantities [25,27]. Physical quantities can be ob-
tained by setting φ = 0 in the end. To simplify the notation,
we use a compressed notation 1 ≡ (i, z, σ ), where i, z, and σ

are site, contour time, and spin indices, respectively. With this,
the source field term can be rewritten as

S[φ] = exp

{
−i

∫
d 1̄d 2̄c†(1̄)φ(1̄, 2̄)c(2̄)

}
. (A3)

The generating functional of the Green’s function is de-
fined as the logarithm of the partition function, G[φ] =
− ln Z[φ]. Its first-order derivative with respect to φ yields the
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single-particle Green’s function,

G(1, 2; φ) = −δ ln Z[φ]

δφ(2, 1)
= −i〈Tγ c(1)c†(2)〉φ, (A4)

where we introduced the expectation value

〈Tγ {· · · }〉φ = 1

Z[φ]
Tr

[
Tγ

(
e−i

∫
γ

dz̄H(z̄)S[φ] · · · )]. (A5)

The derivative of G(1, 2; φ) (corresponding to the second-
order derivative of G[φ]) gives the two-particle exchange-
correlation function

L(1, 2, 3, 4; φ) = δG(1, 3; φ)

δφ(4, 2)

= G(1, 3; φ)G(2, 4; φ) − G(1, 2, 3, 4; φ),
(A6)

where

G(1, 2, 3, 4; φ) = (−i)2〈Tγ c(1)c(2)c†(4)c†(3)〉φ (A7)

is the two-particle Green’s function. The generalized four-
point susceptibility is then defined as

χ (1, 2, 3, 4; φ) = −iL(1, 2, 3, 4; φ). (A8)

While the Green’s function can be generated by the func-
tional derivative of G[φ], one can also introduce a generating
functional of the vertex, which is the Legendre transform of
G[φ], i.e.,

[G] = −Tr(G ∗ φ) − ln Z[φ]. (A9)

Here, we introduced the trace operator TrA = ∫
d 1̄A(1̄, 1̄)

and the convolution [A ∗ B](1, 2) = ∫
d 3̄A(1, 3̄)B(3̄, 2). The

functional derivative of [G] with respect to G gives the
source field:

δ[G]

δG(2, 1)
= −φ(1, 2). (A10)

One usually separates the noninteracting contribution from
[G], [G] = 0[G] + �[G], and thereby introduces the
Luttinger-Ward functional �[G], which contains all the corre-
lation contributions. 0[G] can be explicitly computed since
the noninteracting action is Gaussian. Its explicit form reads
0[G] = −Tr[(G0)−1 ∗ G − 1] + Tr ln(iG). As a result, we
have

[G] = −Tr[(G0)−1 ∗ G − 1] + Tr ln(iG) + �[G]. (A11)

�[G] is the generating functional of the two-particle ir-
reducible vertices, and its first-order derivative gives the
self-energy (one-particle irreducible vertex):

�(1, 2) = δ�[G]

δG(2, 1)
. (A12)

Applying the functional derivative with respect to G to
Eq. (A11), one obtains the Dyson equation:

δ[G]

δG(2, 1+)
= −[(G0)−1](1, 2) + [G−1](1, 2) + �(1, 2).

(A13)

Note that the term on the left-hand side is the source field,
as seen from Eq. (A10), and thus vanishes for the physical
model. The second-order derivative of �[G] with respect to
G yields the two-particle (particle-hole) irreducible vertex:

�(1, 2, 3, 4) = − δ2�[G]

δG(4, 2)δG(3, 1)
= −δ�(1, 3)

δG(4, 2)
. (A14)

By taking the functional derivative of Eq. (A13) and using the
identities (variables with overbars are integrated over)

δ[G−1](2, 2′)
δG(1′, 1)

= −[G−1](2, 3̄)
δG(3̄, 4̄)

δG(1′, 1)
[G−1](4̄, 2′),

(A15)

δ2 ln Z[φ]

δφ(6̄, 5̄)δφ(2, 1)

δ2[G]

δG(4, 3)δG(5̄, 6̄)
= δ(1 − 4)δ(2 − 3),

(A16)

we finally arrive at the Bethe-Salpeter equation for the gener-
alized susceptibility:

−iχ (1, 2, 3, 4) = − iG(1, 4)G(2, 3) + iG(1, 1̄)G(3̄, 3)

× �(1̄, 2̄, 3̄, 4̄)χ (4̄, 2, 2̄, 4). (A17)

For an alternative derivation of these results, see Ref. [46].

APPENDIX B: CONSISTENCY CONDITION
FOR [�(2) ∗ G(1)]

Here, we provide a brief proof of the nonequilibrium ver-
sion of the consistency condition

[�(2) ∗ G(1)](1, 1+) = iU (1)
〈
n̂(1)

σ (1)n̂(1)
−σ (1)

〉
, (B1)

where �(2) is calculated from Eq. (20) with α = 1.
From the definition of �(2), we have

[�(2) ∗ G(1)](1, 1+)

= iU (1)[n(1)]2 + i
U (1)

8

i

2

∫
d 1̄χ0(1, 1̄)

× [�ch(1̄)χ ch(1̄, 1) + 3�sp(1̄)χ sp(1̄, 1)], (B2)

where we have used G(1, 1+) = in(1)(1) and Eq. (18). With
the relation iχ0(1, 1+) = 2n(1)(1)[1 − n(1)(1)], Eq. (17) and
the spin and charge sum rules Eq. (11), after some algebra,
one can prove Eq. (B1).

APPENDIX C: TPSC+GG SINGLE-LAYER SPECTRUM

Figure 10 plots the TPSC+GG results for the system
with W ⊥

1 = 0 in equilibrium, analogous to Fig. 2(a). In the
first row, the local spectral function (left panel) and the
momentum-resolved spectral function (middle panel) show
no signs of an antiferromagnetic pseudogap, and also the
Fermi surface estimated by A(k; ω = 0) (right panel) shows
no clear suppression of the quasiparticles in the antinodal
region. This indicates that as far as the pseudogap physics
is concerned, the spectral properties of TPSC+GG are
less reliable in the present parameter regime than those of
standard TPSC. The second row of Fig. 10 further shows
the evolution of the spectral function (red solid curve) in the
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FIG. 10. Top panels: Spectral function, band structure, and Fermi surface obtained by TPSC+GG for W ⊥
1 = 0 (single layer) in equilibrium

at β = 4. These results can be compared to the corresponding TPSC data in Fig. 2(a). Bottom panels: Spectral functions for the first three
iterations in the TPSC+GG calculation. Here, iter. = 1 corresponds to standard TPSC, while the dashed lines show the converged results.

first iterations of the TPSC+GG algorithm. The black dashed
curve plots the converged TPSC+GG result for reference and
“iter. = 1” corresponds to standard TPSC. One can see that
the pseudogap disappears rapidly as the TPSC+GG iteration
progresses. Inaccurate single-particle spectra are a common
problem of self-consistent diagrammatic methods. In fact, the
resummation of Feynman diagrams with the same topology
in a self-consistent calculation can compromise relevant
cancellations with other classes of diagrams [58] and result in
poor spectra. However, despite this limitation, recent studies
have shown that TPSC+GG provides a significantly improved
description of the two-particle correlation functions [7,40].

APPENDIX D: BIAS INDUCED HEATING
IN A SINGLE-LAYER LATTICE

In this Appendix, we study a single-layer square lattice
under a perpendicular static electric field. The parameters

FIG. 11. (a) Local spectral function (in blue) and occupation
(orange shaded area) for V = 1. The orange solid line shows the
nonequilibrium distribution function and the red dashed line shows
a fitted Fermi function. (b) Effective temperature as a function of
voltage bias V .

are the same as in the bilayer case (U = 4, β = 4, and
 = 0.05). In Fig. 11(a), we plot the spectral function for
V = 1 (blue), the occupation (orange shading), as well as
the corresponding nonequilibrium distribution function fneq =
−ImG</[2ImGr] (orange line). By fitting fneq(ω) with a
Fermi function (red dashed line), one obtains the effective
temperature Teff = 0.685 of the nonequilibrium state. The
good agreement between fneq(ω) and the Fermi function in-
dicates that the effect of a small bias is essentially a heating
of the single-layer model (Teq = 0.25). In Fig. 11(b), we plot
the effective temperature as a function of voltage bias. Up to
V = 2, the effective temperature description can capture the
NESS characteristics of the system.

To further validate the effective temperature description,
we compared the vertices as well as local and nearest-
neighbor correlations. In Table I, the first row shows the
result for the nonequilibrium system with bias V = 1 and
the second row shows the results for the equilibrium system
with Teff = 0.685. Again, one finds a remarkable agreement
between the two systems. The relatively large (but still small
in absolute values) error for �̃ch is due to its high sensitivity
to the converged double occupation.

TABLE I. Comparison of vertices and correlation functions com-
puted in the NESS for V = 1.0 and in the equilibrium system with
T = Teff = 0.685 (EQ).

�̃sp �̃ch 〈Ŝz
0Ŝz

0〉 〈Ŝz
0Ŝz

1〉 〈N̂0N̂0〉 〈N̂0N̂1〉
NESS 2.245 10.406 0.719 −0.098 0.281 −0.037
EQ 2.246 10.299 0.719 −0.097 0.281 −0.036
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