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We investigate a 2 + 1D interacting Dirac semimetal with on-site flavor SU(2) symmetry. Topological
considerations imply that the skyrmions in the flavor-symmetry-breaking phase carry electron quantum numbers,
motivating a dual bosonized low-energy description in terms of two complex scalars coupled to anAbelian Chern-
Simons field. We propose that the transition between a nearby Chern insulator and the flavor-symmetry-broken
phase is a bicritical point in the bosonized description, and also suggest that the Gross-Neveu-Heisenberg (GNH)
transition between the Dirac semimetal and the flavor-symmetry-broken phase is a tricritical point. Heuristically,
the dual description corresponds to the gap closing of fermionic skyrmions. We discuss implications and potential
issues with our proposal and, motivated from it, perform extensive unbiased determinantal quantum Monte
Carlo (DQMC) simulations on a lattice regularized Hamiltonian for the GNH transition, extending previously
available results. We compare DQMC results with the estimates in the proposed dual to available perturbative
renormalization group results. We also numerically demonstrate the presence of fermionic skyrmions in the
symmetry-broken phase of our lattice model.
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I. INTRODUCTION

Quantum numbers associated with solitonic textures and
topological defects are crucial in a wide range of phenom-
ena, including fractionalization, quantum criticality, and the
determination of exchange statistics for emergent excitations
[1–12]. These quantum numbers also play a role in dual-
ities relating seemingly different theories that have led to
unique connections between exotic quantum criticality, inter-
acting topological insulators, and compressible quantum Hall
systems [13–36]. In this paper, we explore a setup where
skyrmions of an SU(2) flavor-symmetry-breaking phase carry
electron quantum numbers. Inspired by this observation, we
consider a proposal for a dual of a Gross-Neveu-type [37]
phase transition between the ordered phase and a Dirac
semimetal. This phase transition can be realized in a lattice-
regularized Hamiltonian that can be simulated without the
fermion sign problem [38]. We perform detailed quantum
Monte Carlo (QMC) simulations on the corresponding Hamil-
tonian, obtaining results for the universal scaling exponents
relevant to our duality proposal. A notable feature of the field
theory we investigate is that it cannot arise in a purely local
two-dimensional lattice model with time-reversal symmetry
and on-site flavor symmetry. This characteristic is evident in
the sign-problem-free lattice model that we simulate.

The starting point of our discussion is a Dirac semimetal
in 2 + 1D with two flavors of a two-component Dirac
spinor. Interactions can lead to the spontaneous breaking of
the SU(2) flavor symmetry down to U(1). Using standard
arguments, this transition can be described by the so-called
chiral Gross-Neveu-Heisenberg (GNH) field theory, where
electrons are coupled to a fluctuating O(3) order parameter
[37,39–44]. As already mentioned, a noteworthy aspect of the

symmetry-broken phase in our model is that the skyrmions
of the order parameter carry the same quantum numbers as
the microscopic electrons [10,45]. This suggests a physical
picture where, as one approaches the transition from the
ordered side, the gap to skyrmions closes at the transition,
resulting in the semimetal phase. The low-energy theory in the
ordered phase can be reformulated as a Chern-Simons-matter
theory where a two-component complex scalar is coupled
to a dynamic U(1) Chern-Simons gauge field whose flux
corresponds to the skyrmion density [5]. This motivates us
to explore the phase diagram of our model by tuning the
parameters in a Chern-Simons-matter theory whose field
content is similar to the aforementioned field theory deep
within the ordered phase. We find that the mass change of
the complex scalar describes a transition between the flavor-
symmetry-broken phase and a Chern insulator. This motivates
us to suggest that the GNH critical point where the three
phases, the Dirac-semimetal, the Chern insulator, and the
ordered phase meet, is dual to an interaction-tuned tricritical
point in this Chern-Simons-matter theory. We discuss
implications and potential issues with such a proposal and,
motivated from it, compare our QMC results with available
results from large-N expansions on the tricritical theory.

From a numerical standpoint, the lattice-regularized GNH
model we employ was originally introduced and studied by
Läuchli and Lang in Ref. [38]. However, connections to any
potential duality or topological aspects, such as the quantum
numbers of skyrmions, were not considered. Reference [38]
obtained scaling exponents of several operators corresponding
to the GNH transition. Inspired by the proposed duality, we
will provide universal exponents of several additional opera-
tors, such as the two-point correlation function of skyrmion
density, fermion mass, and electron pairs.
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Since the exchange statistics of skyrmions plays a key role
in the proposed duality, we will also implement a lattice regu-
larized numerical demonstration of the skyrmions’ fermionic
statistics. The main idea is to measure the Berry’s phase asso-
ciated with a process that generates a skyrmion-antiskyrmion
pair from the vacuum, rotates one of them by 2π , and then
annihilates the pair back into the vacuum [5].

The paper is organized as follows: In Sec. II, we intro-
duce the lattice regularized model which exhibits the GNH
transition. In Sec. III, we consider a bosonized description
of various phases and phase transitions in terms of a Chern-
Simons-matter theory. In Sec. VII, we discuss our QMC
results in light of the dual formulation. In Sec. VIII, we
provide a numerical demonstration of the fermionic exchange
statistics of the skyrmions. We conclude in Sec. IX with a
discussion of our main results, potential issues and future
directions.

II. PHASE DIAGRAM OF A LATTICE
REGULARIZED GNH MODEL

The theory we are interested in involves two flavors of
two-component Dirac fermions in 2 + 1D. One way to realize
such a theory is by considering spinless fermions at half-filling
with opposite sublattice hopping on a honeycomb lattice. In
the absence of interactions, one obtains two Dirac nodes in
the momentum space, whose low energy degrees of freedom
correspond to the two flavors. However, if one desires a theory
where the flavor symmetry acts locally in real space, then
the most physical way to realize the theory of our interest
is at the 2 + 1D boundary of a 3 + 1D C-I class topological
superconductor [46]. Alternatively, and for numerical feasi-
bility, one can consider long-range hopping of electrons on
a two-dimensional lattice, i.e., the SLAC fermion approach
originally proposed in Ref. [47]. Specifically, we consider
the Hamiltonian originally introduced in Ref. [38], where the
Hilbert space on site i corresponds to four different species of
complex fermions denoted as ci,τ,σ , where τ = a, b is an index
that becomes the Dirac spin at low energies while σ =↑,↓
denotes the flavor index. Correspondingly, we define Pauli
matrices τ a and σ a with a = x, y, z that act on the Dirac-spin
index and the flavor index, respectively. The Hamiltonian is
given by

H = H0 + HU , where

H0 =
∑
i,x

it (x)c†
i τ

yci+x −
∑
i,y

it (y)c†
i τ

xci+y,

HU = U

2

∑
i,τ=a,b

(ρi,τ − 1)2. (1)

Here t (r) = (−)r iπt0
L sin( πr

L ) , with L being the linear system size of

the lattice while ρi,τ = ∑
σ c†

i,τ,σ ci,τ,σ is the fermion density
operator for τ = a, b. From now on, we will set t0 to unity
so all energy scales are measured in units of t0. The global
continuous symmetry of H is SU(2)flavor × U (1)charge.

The long-range hopping t (r) is precisely the Fourier
transform of a dispersion linear in momentum [47], so in
the thermodynamic limit, H0 realizes two flavors of two-
component massless Dirac electrons: H0 = ∑

�k,σ
c†

�k,σ
�k · �τc�k,σ

(see Appendix A for details). One notable aspect is that HU

is not Lorentz invariant, and the QMC results in Ref. [38]
imply that the Lorentz invariance in the Dirac semimetal
phase and at the GNH transition is emergent. In addition to
the lattice-related symmetries and on-site symmetries corre-
sponding to charge U (1) and flavor SU(2), the model also
possesses an on-site antiunitary symmetry, which we denote
as CT , that involves a combination of charge-conjugation

and time reversal: ci,σ
CT−→ τ zc†

i,σ , i (= √−1)
CT−→ −i, and

time t
CT−→ −t . The CT symmetry is analogous to the one

realized at the 2 + 1D boundary of a 3 + 1D C-I class of
topological superconductors [46]. Crucially, a combination
of CT and flavor rotation, ci → (iσ y)τ zc†

i , is an antiunitary
symmetry that squares to −1, and allows one to simulate
our model without a sign problem [48]. Indeed, as men-
tioned earlier, the phase diagram as a function of U/t has
already been mapped out using unbiased QMC simulations in
Ref. [38].

At small U/t , the system is in a stable, gapless Dirac
semimetal phase. In the continuum limit, the gapless Dirac
modes near � point [ �Q = (0, 0)] can be written as c�r ∼
ei �Q·�r�. Although the QMC simulations effectively involve
simulating an imaginary time action, for the purposes of dis-
cussing symmetries and the duality in the subsequent sections,
we will employ a real-time notation (except in Sec. VIII
where we study exchange statistics of skyrmions). Defining
γ 0 = τ z, γ 1 = −iτ y, γ 2 = iτ x, � = �†γ 0, the free part of
the Hamiltonian, namely, H0, is then described by the standard
continuum Dirac Lagrangian L0 = �(i∂μγ μ)�. QMC simu-
lations show that as the interaction strength U/t is increased,
the system eventually undergoes a second-order phase transi-
tion to a phase with nonzero expectation value �N = 〈� �σ�〉,
see Fig. 1. In Ref. [38], the symmetry-broken phase was
referred to as an antiferromagnet. However, we will call it a
quantum spin-Hall insulator (QSH) since, as discussed below,
it exhibits a nonzero spin-Hall response. The phase transition
between the semimetal and the QSH phase is expected to be
second order and can be described by the following field the-
ory: L = �(i∂μγ μ + mN �N · �σ )� + (∂μ �N )2 + ..., where the
order parameter �N is normalized as �N2 = 1. In addition to
the sign-problem-free QMC [38,43,49–53], this critical theory
can also be studied using perturbative renormalization group
(RG) schemes [39–41,44,54–58].

We find it useful to couple fermions to probe gauge
fields. For most of our discussion, it will suffice to in-
troduce two U (1) gauge fields Ac and As that couple to
conserved currents �γ μ� and �γ μσ z�, respectively. It is
useful to know the transformation properties of these gauge
fields, as well as those of various operators relevant to our
discussion under discrete symmetry CT and mirror sym-
metries Mx, My defined as Mx : cσ (x, y) → τ xcσ (x,−y), My :
cσ (x, y) → −iτ ycσ (−x, y); see Table I. One notices that both
charge and flavor currents, i.e., �γ μ� and �γ μσ z�, re-
spectively, have the same symmetries as the skyrmion current
jμtopo = 1

8π
εμνλ �N · ∂ν �N × ∂λ �N . One also notices that in addi-

tion to diagonal Chern-Simons terms such as AcdAc/4π and
AsdAs/4π , even the off-diagonal Chern-Simons term associ-
ated with spin-Hall response AcdAs/4π is odd under CT . The
table also mentions operators involving an internal gauge field
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FIG. 1. (a) The phase diagram of our model consists of a Dirac
semimetal phase separated from a QSH insulator. (b) The critical
point between the Dirac semimetal phase and the QSH phase in our
lattice model can be located using the crossing point for the cor-
relation ratio r defined as r = 1 − C(δ �q)

C(�0)
, where C( �q) = 1

L4

∑
i, j〈 �Ni ·

�Nj〉ei�q·�ri j is the spin-structure-factor and δ �q = ( 2π

L , 2π

L ). The location
of the transition point is consistent with Ref. [38], Uc/t ≈ 6.76.

a which will be introduced in the next section [see Eq. (6)
below].

III. BOSONIZATION OF GROSS-NEVEU-HEISENBERG
TRANSITION

One approach to find a bosonized dual for the GNH
transition is to utilize dualities for free fermions for which
considerable evidence exists at large N [17–21], and then
append them with appropriate interactions to reach the GNH
fixed point. For example, consider the following two La-

TABLE I. Symmetry transformations of a few operators relevant
to our discussion.

Operator CT My Mx

� �σ�, �N – – –
��, �N · ∂2

x
�N × ∂2

y
�N – – –

�γ 0�, �γ 0σ z�, Ac
0, As

0, �N · ∂x �N × ∂y �N – + +
�γ 1�, �γ 1σ z�, Ac

x, As
x, �N · ∂t �N × ∂y �N + – +

�γ 2�,�γ 2σ z�, Ac
y, As

y, �N · ∂x �N × ∂t �N + + –
a0 + – –
ax – + –
ay – – +
AcdAc, AsdAs, AcdAs, ada – – –
Acda, Asda + + +

grangians with SU(2)flavor × U (1)charge symmetry:

LF =
2∑

a=1

�ai /DA�a + u(� �σ�)2 − m�� + CS(A), (2)

LB = |Da+Aφ|2 − (φ†φ)2 + CS(a) + u(φ† �σφ)2

−v|φ†φ|3 − rφ†φ, (3)

where CS(X ) = 1
4π

tr[XdX − 2i
3 X 3] denotes the non-Abelian

Chern-Simons term for a gauge field X , �a with a = 1, 2
represents the two flavors of Dirac fermions (Pauli matrices
�σ act on the flavor space) coupled to a background U (2) =
SU(2)flavor × U (1)charge gauge field A in the fundamental rep-
resentation, and φa with a = 1, 2 denote two complex scalars
that are coupled to a fluctuating U (N ) gauge field a as well as
the background gauge field A in the fundamental representa-
tion. When u = m = 0, LF , the Lagrangian for two flavors
of gapless free Dirac fermions has been conjectured to be
dual to LB, the Wilson-Fisher fixed point Lagrangian of a
non-Abelian Chern-Simons-matter theory for any value of
N � 2 [17–21]. Under this duality, r ↔ −m, i.e., turning on
the operator ±φ†φ on the boson side corresponds to turning
on the operator ∓�� on the fermion side. For example,
giving a positive mass to the boson yields a nontopologically
ordered phase (i.e., a unique ground state on a torus) [21,22]
and a Hall response −AdA/4π , matching the fermion theory
at negative mass, while giving a negative mass Higgs out of
the internal gauge field a, resulting in a unique, gapped ground
state with Hall response AdA/4π , which again matches with
the fermion theory at positive mass. As discussed above, in
the presence of time-reversal symmetry (i.e., m = 0), tuning
the interaction term u in the fermionic Lagrangian LF beyond
some critical strength drives the GNH transition between the
Dirac semimetal and a flavor-symmetry-broken phase with
two Goldstone modes. Due to duality, it is reasonable to
expect that the same fixed point can also be reached in the
bosonized description LB by perturbing the Wilson-Fisher
point with a term of the form u(φ† �σφ)2 with sufficiently large
u. Therefore, LB, at the appropriate fixed point values of the
coefficients of |φ|4 and (φ† �σφ)2 can be thought of as the dual
description of the GNH transition.

The aforementioned duality proposal for the GNH tran-
sition may be worth analyzing in detail, particularly using
perturbative methods such as large-N calculations. However,
working with non-Abelian gauge fields can be a bit chal-
lenging. On that note, for the Gross-Neveu-Yukawa phase
transition for a single Dirac fermion �, where the order pa-
rameter corresponds to 〈��〉, a duality involving only an
Abelian Chern-Simons-matter theory has been proposed in
Ref. [24]. This duality can be obtained from the seed du-
ality between a single Dirac fermion and a single complex
scalar coupled to a level-1 Chern-Simons gauge field, with
the fermion mass mapping to the boson mass. Using the seed
duality, one can also argue for a duality between the Gross-
Neveu-Yukawa phase transition in a two-flavor QED-3 and
an SU(2) symmetric CP1 theory, as discussed in Ref. [34].
This motivates us to ask if there might exist a dual of the
GNH transition as well, involving only Abelian gauge fields.
One possible approach is to combine the seed duality for
two different flavors of free Dirac fermions, leading to a dual
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theory with two complex scalars z1, z2 coupled to two distinct
U (1) gauge fields [34,59]. One would expect that adding
flavor-symmetric interactions in such a bosonized description
would then drive the GNH transition (in such an approach, the
dual of �σ x� and �σ y� would involve monopole operators)
[60]. Here we will follow a different route and consider an
alternative candidate duality for the GNH transition, which
is motivated from the quantum numbers of skyrmions in the
symmetry-broken phase of our theory.

IV. QUANTUM NUMBERS OF SOLITONS

Let us first discuss the effective field theory of the order-
parameter-field �N deep in the ordered phase in the presence
of probe gauge fields that couple to the charge and flavor
degrees of freedom of the electrons. Coupling SLAC fermions
to gauge fields can lead to various inconsistencies [61–63]
and it is perhaps more appropriate to consider our subsequent
discussion in a setup where hopping of fermions is local,
e.g., spinful fermions at the boundary of a C-I topological
superconductor. After minimal coupling to the probe gauge
fields, one may write the effective Lagrangian as

L = �
((

i∂μ + Ac
μ + �σ · �As

μ

)
γμ + mN �N · �σ

)
� + (∂μ �N )2,

(4)

where Ac is a U (1) probe gauge field for the conserved charge,
�As is an SU(2) probe gauge field for the conserved flavor,
while mN is a parameter that can be thought of as a Hubbard-
Stratonovich (HS) parameter for the interaction of the form
(� �σ�)2. Since we are deep in the ordered phase, we neglect
fluctuations of the magnitude of the order parameter and set
| �N | = 1. After integrating out the electrons, one finds the
following effective action [10,45]:

SQSH[ �N, Ac, As] =
∫

d2x dt

( |mN |
16

tr(∂μ �N )2 + πH ( �N )

+ jμtopoAc
μ + 1

2π
εμνλ

(
∂μAc

ν

) �As
λ · �N

)
. (5)

Here H ( �N ) is the Hopf invariant that equals the winding
number associated with the homotopy group π3(S2) = Z,
where the base manifold S3 corresponds to the space-time
because one has identified the field configurations of �N at
space-time infinity, while the target manifold S2 corresponds
to �N with �N2 = 1. The coefficient π in front of H ( �N ) implies
that the skyrmions of field �N , whose current in the above
equation is denoted as jμtopo = 1

8π
εμνλ �N · ∂ν �N × ∂λ �N , have

fermionic statistics [5,10,45,64,65]. The physical electromag-
netic current is given by jμc = δS

δAc
μ
|Ac=As=0, and Eq. (5) implies

that jμc = jμtopo. The time component of this equation implies
that skyrmions carry the same electric charge as the physical
electron. This is consistent with the fermionic statistics of the
skyrmions and also the fact that the skyrmion density j0

topo has
the same symmetries as the electron density �†� (Table I).
In Sec. VIII, we will perform a numerical calculation that
provides support for the fermionic exchange statistics of the
skyrmions in our model. Finally, the mixed Chern-Simons
term between the gauge fields Ac and �As implies that the
symmetry-broken phase has a quantized spin-Hall response,

and therefore should be identified as a QSH insulator. All of
this is quite analogous to the more familiar case of Nf = 4 fla-
vors of Dirac fermions (e.g., in graphene) except, in that case,
one finds bosonic, charge-2 skyrmions whose condensation
can lead to a deconfined critical point between a QSH insula-
tor and an s-wave superconductor [66–69]. We also note that
the idea of fermionic skyrmions as induced by a Hopf term
was originally discussed in the context of two-dimensional
antiferromagnets in Refs. [64,65]. However, as later shown,
such a possibility does not occur in a strictly two-dimensional
antiferromagnet [46,70].

It is useful to rewrite the Hopf invariant H ( �N ) in terms
of a Chern-Simons field [5]. Let us introduce a CP1 repre-
sentation for the order parameter, �N = z† �σ z, where z is a
two-component complex vector that satisfies z†z = 1. This
is a redundant description since �N is unchanged under the
local transformation z(�r, τ ) → eiθ (�r,τ )z(�r, τ ), which implies
that z is coupled to a fluctuating U (1) gauge field aμ. In this
representation, the Hopf invariant, an integer, can be rewritten
as H ( �N ) = ∫

S3
1

4π2 ada [5,71], so the term πH ( �N ) in the above
action precisely has the same form as a Chern-Simons term
at level 1. Further, the skyrmion current is simply given by
jμtopo = εμνλ∂νaλ/2π . In the absence of the �As probe field, the
effective field-theory deep in the ordered phase may then be
written as

SQSH =
∫

d2x dt

( |(∂μ − iaμ)z|2
g2

+ adAc

2π
+ ada

4π

)
, (6)

where g2 is a coupling constant analogous to 1/|mN | in Eq. (5).
The level-1 Chern-Simons term for the gauge field a implies
that the flux-charge composite operator z†

σM, where M is a
monopole operator that creates a 2π flux of the gauge field
a, has the same quantum numbers as the electron creation
operator �†

σ . This composite operator does not carry any
gauge charge of the internal gauge field a because both the
CP1 bosons zσ as well as a bare monopole M carry a unit
gauge charge of a. Physically, the action of this composite op-
erator on a given state corresponds to creation of a skyrmionic
texture that is bound to an electron. The mixed Chern-Simons
term between a and Ac implies that skyrmions carry a unit
electric charge.

V. PROXIMATE PHASES

To motivate a dual field theory for the GNH critical point,
it’s useful to explore proximate phases that emerge if one
perturbs our model Hamiltonian H with terms that break the
discrete symmetries CT , Mx, and My explicitly. Although we
do not know how to simulate the resulting model Hamiltonian
due to the fermion sign problem, one may still make a reason-
able guess about the phase diagram by considering various
limits. Therefore, consider the following effective Lagrangian
in the vicinity of the GNH transition:

L = �
((

i∂μ + Ac
μ + σ zAs

μ

)
γμ − m

)
� + u(� �σ�)2. (7)

We have supplemented the GNH critical theory with a fermion
mass that explicitly breaks the aforementioned discrete sym-
metries (see Table I) and restricted ourselves to probe gauge
field As that couple only to the z component of the flavor
(we will assume that in the QSH phase, the flavor-symmetry-
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FIG. 2. (a) Schematic phase diagram of the Lagrangian in Eq. (7)
in the (u, m) plane, in the vicinity of the GNH critical point. CI1 and
CI2 denote the two Chern insulators, QSH denotes the quantum spin
Hall phase, GNH denotes the Gross-Neveu-Heisenberg transition
between the Dirac semimetal (blue line along the u axis) and the
QSH phase. (b) Translation of the phase diagram to an RG flow.

breaking occurs along the z direction in the flavor space, so the
spin-rotation symmetry along the z direction is preserved). Let
us write the contribution to the action from the probe fields

as
σ c

xy

4π
AcdAc + σ s

xy

4π
AsdAs + σ sc

xy

2π
AcdAs. Integrating out a single

flavor of fermion coupled to a U(1) gauge field b, a mass m
generates a Chern-Simons response sign(m) bdb

8π
. At m = 0,

as a function of u, the system undergoes the GNH phase
transition from the semimetal phase to the QSH phase, where
〈�σ z�〉 = 0. This phase has σ c

xy = σ s
xy = 0 and σ sc

xy = ±1

(the sign of σ sc
xy depends on the sign of 〈�σ z�〉). On the

other hand, when u = 0, for m > 0, one obtains a flavor-
symmetric Chern insulator (which we will denote as CI1) with
σ c

xy = σ s
xy = 1 and σ sc

xy = 0, while for m < 0, one obtains a
flavor-symmetric Chern insulator (CI2) with σ c

xy = σ s
xy = −1

and σ sc
xy = 0. Assuming that the phase diagram consists of

just these three stable phases, we schematically expect the
phase diagram shown in Fig. 2. We propose the following field
theory for the transition between the QSH and CI2:

S =
∫

d2x dt

(∣∣(∂μ − iaμ + iAs
μσ z

)
z
∣∣2 − r|z|2 + adAc

2π

+ ada

4π
+ u(z† �σ z)2 − AsdAs

4π

)
, (8)

where now z is a two-component complex scalar without the
constraint z†z = 1, and

√
r is the mass for this scalar. Note

that (z† �σ z)2 = |z†z|2. The transition from the CI2 to the QSH
phase is driven by changing the sign of r. When r � 0 or
u � |r|, we expect that z condenses leading to spontaneous

symmetry breaking of the flavor SU(2) down to U (1), result-
ing in the QSH phase, with 〈z† �σ z〉 = 0, and two Goldstone
modes. Deep in this phase, if one neglects the fluctuations of
|z|, one recovers the effective action discussed above using
gradient expansion, Eq. (5), or, equivalently, Eq. (6). Choosing
〈z1〉 = 0 in this phase, one finds a = As due to the Higgs ef-
fect. This correctly reproduces the Hall response σ c

xy = σ s
xy =

0 and σ sc
xy = 1 of the QSH phase. On the other hand, when

r � 0 and r � u, the field z will be gapped and one may
integrate it out. After solving for the equations of motion
for the gauge fields, one finds σ c

xy = σ s
xy = −1 and σ sc

xy = 0,
which we then identify as CI2. One may similarly describe the
phase transition between the QSH phase and the CI1 phase by
writing a similar action where the sign of the ada and AsdAs

terms are reversed, and one chooses 〈z2〉 = 0.
Above we haven’t specified the relation between the

fermion mass m in Eq. (7) and boson mass
√

r in Eq. (8).
Here we simply mention that at a fixed interaction strength
u, the CI2 to QSH transition can be accessed by increasing m
in the fermionic description (see Fig. 2) and by decreasing
r in the bosonized description, which is somewhat similar
to standard bosonization dualities. We will elaborate on our
understanding and potential issues in more detail below.

VI. A DUAL OF THE GNH TRANSITION

The aforementioned theory for the transition between the
QSH to Chern insulator [Eq. (8)] and the phase diagram
(Fig. 2) motivates us to conjecture that the GNH theory written
in terms of fermions and the order-parameter field, i.e.,

L = �
((

i∂μ + Ac
μ + σ zAs

μ

)
γμ + mN �N · �σ

)
� + (∂μ �N )2

is dual to the following theory written in terms of a two-
component complex scalar z and a dynamic, compact U (1)
gauge field a:

L =
(∣∣(∂μ − iaμ + iAs

μσ z
)
z
∣∣2 + adAc

2π
+ ada

4π
+ u(z† �σ z)2

−v|z†z|3 − AsdAs

4π

)
. (9)

Since we are interested in the tricritical point, one needs
to keep terms up to |z|6 in Eq. (9). This ensures that the
symmetry-broken phase obtained by changing the sign of u
has a well-defined minima for the order parameter |z| [72].
Higher order terms are not expected to be relevant. The La-
grangian in Eq. (9) has identical field content and a similar
form as the one for the QSH to Chern insulator transition
[Eq. (8)], except the scalar mass

√
r = 0. We require that the

scalar mass |z|2 is not allowed by the symmetry CT . We will
discuss justification for imposing this requirement below. This
suggests a single parameter (= u) tuned transition between
the QSH phase and a gapless phase without any obvious
instabilities that hosts a gauge-neutral (with respect to a) field
z†
σM with the quantum numbers of the electron. We posit that

the latter phase corresponds to the gapless Dirac semimetal.
This suggestion for the dual of Dirac fermions is somewhat
similar to that proposed in Refs. [64,65], although we do
not know any controlled calculation or a known duality that
justifies this assumption. Nonetheless, assuming that such an
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identification is correct and that there is a unique universality
for the phase transition between the Dirac semimetal and the
QSH phase, we identify the tricritical theory with the standard
GNH transition. Although this is a tricritical point from the
perspective of the Chern-Simons-matter theory in Eq. (8), it
is a single-parameter-tuned transition when the boson mass
|z|2 is prohibited (we assume v > 0). This is reminiscent of
other Bose-Fermi dualities where a Gross-Neveu-type the-
ory maps to a tricritical theory of bosons coupled to gauge
fields [17–21,24], although our understanding of the theory
in Eq. (9) is comparatively limited. A heuristic picture for
the transition is as follows. The aforementioned flux-charge
composite z†

σM is gapless in the semimetal phase, while it
is gapped out in the QSH phase. In the QSH phase, it carries
the same quantum numbers as the electron, as discussed above
and has the interpretation of an electron bound to a skyrmionic
texture [see the discussion following Eq. (6)]. Therefore,
closing the gap to the flux-charge composite is tantamount
to closing the electron gap. This suggests that the standard
GNH Lagrangian [Eq. (4)] is dual to the Chern-Simons-matter
theory in Eq. (9). In the following, we will explore conse-
quences and potential issues related to this duality conjecture.

Above, we already identified the electron creation operator
with the flux-charge composite z†

σM and the topological cur-
rent jμtopo with the electromagnetic current �γμ�. One may be
inclined to identify the negative of electron mass −�� with
the boson mass z†z, analogous to other Bose-Fermi dualities
involving a Chern-Simons term [21,23]. Heuristically, at the
level of semiclassical equation of motion for gauge field a,
Im(z†∂μz) + 2aμz†z + εμνλ∂νaλ/2π = 0, which suggests that
the operator z†z has the same symmetries as ada, which is
odd under CT , see Table I. This is also natural from the
perspective of the phase diagram in the vicinity of the GNH
transition, where |z|2 acts as a tuning parameter for phase
transitions (e.g., between QSH and CI1) that are accompanied
by a change in the Hall response, as discussed above. How-
ever, such an identification does not quite work. When the
coefficient r of z†z is large and positive, the z fields have a
mass gap, and one finds a Hall response for the probe fields
which is consistent with the Chern-insulator phase CI2. This
indeed matches with the Hall response in the GNH theory
[Eq. (7)] when the fermion mass m � 0. However, when the
coefficient of z†z is large and negative, one expects to obtain
the QSH phase with no charge Hall response and two Gold-
stone modes. In contrast, in the fermionic theory [Eq. (7)],
reversing the sign of the mass simply reverses the sign of the
Hall conductance and one obtains the CI1 phase. We don’t
have a satisfactory resolution to this issue (as an aside, such
an issue does not arise if one considers aforementioned duals
of GNH that are based on standard Bose-Fermi dualities, such
as Eq. (2), or the one involving two complex scalars coupled
to two Abelian gauge fields). A guess for the dual of the
fermion mass �� is the topological mass term that drives
the bosonic integer quantum Hall transition for the z fields be-
tween a trivial gapped phase of z bosons and a nontrivial phase
where z bosons are in an integer quantum Hall state with Hall
conductance of two. Such a transition will be accompanied by
a change in the sign of the ada/4π term in Eq. (9), resulting
in a change in the Hall conductance of our original fermions.

Such an identification would be analogous to that obtained
for the standard particle-vortex applied to two flavors of Dirac
fermions [34,59]. However, we do not know how to write such
a mass term explicitly in terms of complex scalars z.

Similarly, it is not clear to us how to write the dual of
the boson mass z†z under the proposed duality. One naive
possibility is that perhaps it corresponds to a linear com-
bination of the two relevant operators at the transition, i.e.,
z†z ∼ α�� + β(� �σ�)2, where α, β are O(1) numbers. Such
an identification would imply that z†z is still prohibited at
the GNH transition due to the discrete symmetries, but it is
neither even nor odd under these symmetries. As one tunes
the coefficient of the z†z term, one moves along a line with
slope α

β
in the phase diagram in the (u, m) plane. An appro-

priate choice of α and β would then be consistent with the
requirement that one obtains the QSH phase for r � 0 and a
Chern insulator for r � 0. On the other hand, when |r| � 1,
so one is in the scaling regime corresponding to the GNH
critical point, z†z will effectively correspond to the operator
that has the lower scaling dimension out of �� and (� �σ�)2

at the GNH critical point (assuming they have different scaling
dimensions). Reference [38] found a scaling dimension of
(� �σ�)2, �u ≈ 1.98(1), and our numerics discussed in the
next section found the scaling dimension of �� to be �m ≈
2.2(3). Therefore, error bars preclude a definitive conclusion
on which of them is larger. At large N , �m = 2 + c/N , where
c > 0 [58,73] which, in light of the QMC results, is suggestive
that �u < �m. If so, then in the regime |r| � 1, for one sign
of r, the GNH critical point will be unstable towards QSH
mass opening [since (� �σ�)2 will dominate ��], while for
the opposite sign of r, at the leading order, there will be no
mass opening while the subleading term proportional to ��

will lead to a Chern-insulator-type mass opening.

VII. QMC RESULTS AND COMPARISON
WITH PROPOSED DUAL

In the last section, we discussed two different phase tran-
sitions. The first phase transition we discussed is between
the QSH phase and the Chern insulator phase. We argued
that this transition is described by the field theory in Eq. (8).
Although one can estimate the scaling dimensions of various
operators for this transition within a large-N RG calculation
[74,75], the Hamiltonian (action) for this transition (using
either the fermionic description or the bosonic description)
suffers from the sign problem, and therefore we are unable to
make any numerical comparison with the field theory results.
The second phase transition we discussed, which is the main
focus of this paper, is the GNH transition between the Dirac
semimetal and the QSH phase. We argued that it admits a
dual description as a tricritical Chern-Simons matter theory
[Eq. (9)]. For this transition, although there is a sign problem
in the conjectured bosonic description [Eq. (9)], there is no
sign problem in the fermionic description [38]. This offers
an opportunity to potentially compare universal exponents
obtained from the QMC with those obtained from large-N RG
calculations. One potential obstacle with such a comparison
is that not much is known about the tricritical theory directly
using large-N methods. However, as we will discuss below, in
the large-N limit, the critical value of the interaction strength
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uc at the bicritical point is very small, which suggests that
in the large-N limit, the exponents of the bicritical point
are likely close to those for the tricritical point. At the very
least, such a comparison can be a starting point for future
investigations of the proposed duality. We will also compare
QMC exponents with the mean-field theory for the tricritical
point.

A. Scaling dimension of fermion operator

The conjectured duality predicts that the scaling dimension
of the electron creation operator in the GNH theory corre-
sponds to the (dressed) monopole operator that creates 2π flux
in the tricritical Chern-Simons-matter theory, Eq. (9). Based
on the QMC calculations in Ref. [38], the electron creation op-
erator �† has a scaling dimension of approximately 1.09(1),
which is also consistent with our QMC simulations and is also
quite close to the large-N result on the GNH theory up to
O(1/N3) [57], which yields an approximate scaling dimension
of approximately 1.10. The monopole scaling dimension in
the standard bicritical theory [Eq. (8)] has been performed in
Ref. [76]. It was found that when the ratio k/N = 1/2, where
k is the level of the Chern-Simons and N is the number of
complex scalars, at large N , the saddle point value of the
critical interaction uc at the bicritical theory is almost zero
(≈0.02) for a dressed monopole of flux 2π [76]. Therefore,
one expects that the leading large-N result for the scaling
dimension of a 2π flux monopole in the tricritical theory is
close to that in the bicritical theory. Assuming this is the case,
one finds that the scaling dimension of the monopole operator
that creates flux 2π is approximately 0.53N [76]. Therefore,
for the problem of our interest, namely, N = 2, one finds that
the scaling dimension of the operator that creates a flux-charge
composite dual to the electron is approximately 1.06 at the
leading order, which is rather close to the QMC result in the
GNH theory.

B. Scaling dimension of charge-2 operator

Operators that are Lorentz scalars and carry charge 2
of the global U (1)charge correspond to 4π flux dressed
monopoles under the duality, and it is instructive to com-
pute their scaling dimensions using QMC as well [77].
We consider two-point correlations of two distinct pairing
operators, the on-site pairing operator Pos(i) = c†

i,a,↑c†
i,b,↓ −

c†
i,b,↑c†

i,a,↓ and the nearest-neighbor pairing operator Pnn(i) =∑
δ ((c†

i,a,↑c†
i+δ,b,↓ + c†

i,a,↓c†
i+δ,b,↑) − a ↔ b), where δ denotes

the four nearest neighbors on a square lattice, that is, ±x̂,±ŷ.
One may verify that both of these are Lorentz scalars (i.e.,
Dirac-spin singlet). The scaling dimensions for either of these
operators are close to each other: �Pos ≈ 2.5(2) and �Pnn ≈
2.6(1), see Fig. 3(a) in the main text and Figs. 12 and 13
in Appendix B. Assuming our duality conjecture is correct,
this number should be compared with the scaling dimension
of the dressed 4π monopole in the tricritical theory, Eq. (9).
One again expects that the leading large-N result is close
to the one in the bicritical theory obtained in Ref. [76],
since the saddle-point value of the critical interaction uc for
this calculation at the bicritical theory is again very small
(≈0.05); see Ref. [76]. The leading order result for the

4π monopole in the bicritical theory at N = 2 is approxi-
mately �4π monopole ≈ 2.69 [76], which is again close to our
QMC estimate.

C. Scaling dimension of electron charge density
and skyrmion density

As discussed above, the conservation of total electron
number is realized as the conservation of the topological
current jμtopo in the Chern-Simons-matter theory. Since
conserved charges do not acquire any anomalous dimension,
this correspondence predicts that ��†� = � j0

topo
= 2, where

both ��†� and � j0
topo

are obtained using QMC simulations in
the model Hamiltonian H by looking at the two-point corre-
lations of the electron density �†� and the skyrmion density
= 1

8π
ε0νλ �N · ∂ν �N × ∂λ �N , respectively. Numerically, we find

that ��†� ≈ 2.0(1) while � j0
topo

≈ 1.9(2), see Figs. 3(b) and
3(c) in the main text and Figs. 6–9 in Appendix B. We note
that the calculation for the skyrmion density correlations is
rather challenging since this correlation function involves
a product of 12 fermion creation or annihilation operators.
We used a MATHEMATICA code to generate all possible
Wick contractions and after the simplification, each such
correlation has 2 064 384 terms, where each term involves
a product of six single-particle Green’s functions. As an
aside, the prefactor CJ for the power-law decay, defined as
�†(x)�(x)�†(0)�(0) ∼ CJ/x4 is also universal, and will
take a different value for the GNH fixed point compared to
the free-fermion fixed point. However, we do not have the
numerical precision to estimate it reliably.

D. Critical exponent ν for diverging correlation length

The tuning parameter for the GNH transition is the inter-
action term u(� �σ�)2. In Ref. [38], it was found that various
quantities are a scaling function of uL1/ν with ν ≈ 0.98(1).
Therefore, the correlation length ξ diverges as ξ ∼ u−ν , and
the scaling dimension of the operator (� �σ�)2 is 3 − 1/ν ≈ 2.
We do not have a large-N estimate for this scaling dimension
in the tricritical theory. However, the value obtained from
the mean-field theory of the tricritical theory is surprisingly
close. In particular, within the mean-field theory, the inverse
propagator at momentum �k for the complex scalar is (k2 +
u〈|z|〉2), and since 〈|z|〉 ∼ √

u/v within mean field, this im-
plies that the mean-field correlation length exponent νMF = 1.
Alternatively, one notes that the scaling dimension of z is 1/2
within mean-field, and that of (z† �σ z)2 ∼ (� �σ�)2 is 2. The
close match between the mean-field tricritical theory and the
QMC results might well be a coincidence, but it is still worth
noting.

E. Scaling dimension of the order parameter �N

Both Ref. [38] and our simulations find the scaling di-
mension of the order parameter �N , � �N ≈ 0.75, see Fig. 10
in Appendix B. Although the scaling dimension of �N in the
bicritical theory has been calculated, see Ref. [78] (one finds
� �N ≈ 1.12 if one sets N = 2 within the large-N calculation
in Ref. [78]), we are not aware of a similar calculation for
the tricritical theory. Within the mean-field of the tricritical
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FIG. 3. Measurement of the scaling dimension of various operators at the GNH quantum critical point (Uc/t ≈ 6.76). The data in (a),
(b), and (d) are obtained from equal-(imaginary) time unequal-space correlations, while (c) is based on unequal-(imaginary) time, equal-
space correlations. The unequal-space correlations are more accurate than the unequal time since the latter requires two steps of fitting:
we first perform a power-law fit for the imaginary time decay at a fixed system size L, and then further perform a 1/L extrapolation to
the thermodynamic limit. The power-law fitting of �†� correlations, �� correlations, Pnn correlations, and Pos correlations at the largest
possible separation [ �Rmax = ( L−1

2 , L−1
2 )] with system size L gives 2��†� = 4.1(1), 2��� = 4.5(6), 2�Pnn = 5.3(1), and 2�Pos = 5.0(3) [the

corresponding numbers obtained from unequal time correlations are 2��†� = 3.2(1), 2��� = 4.6(1), 2�Pnn = 3.8(1), and 2�Pos = 4.6(3)].
From unequal-time skyrmion correlations, we find 2� j0

topo
≈ 3.8(3). The data quality for this calculation is further limited by the rather

challenging nature of the calculation of skyrmion density correlations. Note that data in grey are from density-channel calculations while
that in black are from spin-channel calculations. See Appendix B for more details.

point, since the order parameter is bilinear in the scalar z,
� �N,MF = 1.

F. Scaling dimension of fermion mass ��

To obtain the scaling dimension of ��, we perform finite-
size scaling in our QMC simulations up to system sizes with
linear length L = 25 and find an approximate scaling dimen-
sion ��� = 2.2(3); see Fig. 3(d) in the main text and Fig. 11

in Appendix B. As discussed above, we do not know the
precise form the operator dual to fermion mass ��, although
naively one might expect that the operator with which it has
the largest overlap is the boson mass operator z†z in the tricrit-
ical theory. Although we do not know any reliable estimate of
�z†z in the tricritical theory, within a large-N calculation for
the bicritical Chern-Simons theory, Refs. [74,75], at the lead-
ing order one finds �z†z = 2. Within mean field, this scaling
dimension would be 1.
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G. Estimates for universal entanglement F

The universal part of quantum entanglement for a circular
bipartition, generally denoted as F , has been shown to mono-
tonically decrease between two renormalization group fixed
points in 2 + 1D Lorentz invariant field theories [79–86]. For
various Bose-Fermi dualities that hold true in the large-N limit
[18–20], the equality between the F on two sides of dual-
ity has already been demonstrated in Ref. [87]. A judicious
choice of RG flows connecting theories of interest can con-
strain phase diagrams [88] and could potentially rule out our
conjectured duality. Using the monotonicity property, FGNH >

FDirac semimetal = 2FD, where FD ≈ 0.2190 is the value of F for
a single two-component Dirac fermion. This bound motivates
one to find an upper bound for the tricritical Chern-Simons-
matter theory [Eq. (8)], so as to possibly find contradiction
with the conjectured duality. However, unlike the standard
O(N ) Wilson-Fisher fixed point for which the Gaussian fixed
point provides an obvious upper bound, here the presence of
the Chern-Simons term makes it difficult to find an analo-
gous bound. Therefore, we will simply estimate the two sides
using results from large-N expansions. Using results from
Ref. [85], for an SU(2) GNH fixed point with N doublets of
two-component Dirac spinor, FGNH = 2NFD + 3ζ (3)/8π2 +
O(1/N ). Substituting N = 1, one finds that to this order
FGNH ≈ 0.48. To estimate F for the tricritical Chern-Simons-
matter theory, we use the inequality Ftricritical CS > Fbicritical CS,
where Fbicritical CS can be estimated from the large-N re-
sults in Ref. [89]. It was found that for the CPN−1 the-
ory with a level-k Chern-Simons term, Fbicritical CS = NFS +
1
2 ln(

√
k2 + (πN/8)2) + O(1/N ), where FS ≈ 0.1276 is the F

for a free complex scalar. Substituting N = 2, k = 1, one finds
Ftricritical CS > Fbicritical CS ≈ 0.38, which is not too far from the
aforementioned estimate for FGNH.

VIII. NUMERICAL DEMONSTRATION
OF FERMIONIC SKYRMIONS

To provide evidence for the presence of fermionic
skyrmions in the ordered phase, we consider the imag-
inary time motion of electrons in a specific space-time
configuration of the order parameter �N (�r, τ ). In particular,
starting with a uniform configuration of �N , we first create a
skyrmion-antiskyrmion pair, then separate them, followed by
a continuous 2π rotation of the skyrmion while keeping the
antiskyrmion static, and finally bringing them close together
and annihilating them; see Fig. 4 [5]. We also consider a
reference path where we rotate the skyrmion from zero to
π and then back to zero such that the net rotation is zero.
We chose �N (�r, τ ) so these two paths lead to the identi-
cal contribution to the lattice analog of the kinetic energy
term

∫
d2xdτ

|mN |
16 tr(∂μ �N )2 and, therefore, differ only in the

topological Berry phase picked up during the rotation. Since
rotation of a fermion leads to a minus one sign, we expect that
the ratio of the imaginary-time partition function for these two
paths will be minus one if the skyrmions are indeed fermions.
This calculation is implemented in the same SLAC fermion
lattice regularization of the GNH model that we used for our
QMC simulations discussed above [Eq. (1)]. The path-integral
corresponding to a configuration �N (�r, τ ) with τ ranging from

τ

FIG. 4. The schematic diagram showing the rotation of skyrmion
in a skyrmion-antiskyrmion pair so as to obtain the exchange statis-
tics of a skyrmion.

0 to β is K (0, β ) = ∫
D[�,�]T exp{−S[ �N]}, where S[ �N] =∫ β

0 dτ
∫

d2�r�(i/∂ + imN �N · �σ )�. The skyrmion-antiskyrmion
configuration can be generated by setting �N = (Nx, Ny, Nz ),

where Nx = 2ReW
1+|W |2 , Ny = 2ImW

1+|W |2 , and Nz = |W |2−1
|W |2+1 [90]. For

the skyrmion-antiskyrmion pair, we set W (z, τ ) = a
z+R(τ ) −

a
z−R(τ ) , where z = x + iy, a controls the size of the skyrmion,
and 2R(τ ) is the time-dependent separation between the
skyrmion and the antiskyrmion. We find a systematic relative
sign change for K (0, β ) associated with the rotated skyrmion
configuration and the reference path (unrotated skyrmion) for
a wide range of parameters, including different system sizes,
skyrmion size, and the maximum separation between the pair
(see Appendix C for a detailed discussion), which is consistent
with the presence of spin-1/2 skyrmions in our model.

IX. SUMMARY AND DISCUSSION

In this paper, we studied a model of interacting fermions
that displays a GNH transition. Motivated from the quan-
tum numbers of skyrmions, we considered a duality between
the standard 2 + 1D GNH critical point for two flavors
of two-component Dirac fermions and a tricritical Chern-
Simons-matter theory with two complex scalars coupled to
a level-1 Abelian Chern-Simons field [Eq. (9)]. The lattice
model we studied was originally introduced and studied in
Ref. [38], and we obtained results on the scaling dimensions
of various operators in the GNH critical theory and compared
them with the operators in the conjectured dual using avail-
able results from various perturbative renormalization group
calculations. We also discussed a numerical demonstration of
the fermionic statistics of the skyrmions in the ordered phase.

There are several open questions and potential issues per-
tinent to our proposal. First, we do not know how to show
that at weak interactions, and in the absence of scalar mass,
the Chern-Simons-matter theory flows to the Dirac semimetal
phase. As also emphasized, we do not fully understand the
relation between the operators on the two sides of the pro-
posed duality, in contrast to other bosonization dualities. In
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particular, unlike standard Bose-Fermi dualities, identifying
the boson mass with the fermion mass does not quite work,
which may indicate that either the duality conjecture is incor-
rect or perhaps unrelated to known bosonization dualities. It
could also be interesting to pursue bosonization of the GNH
transition using approaches that are better understood, at least
within large N , such as Eq.(2), or the duality for the two
complex fermions obtained from the duality between a single
complex scalar coupled to a level-1 U(1) Chern-Simons field
and a single complex fermion [34,59,60].

Recent large-N calculations indicate that tricritical Chern-
Simons theories may have a vacuum instability [91], and
in fact if the estimates from the leading large-N results in
Ref. [91] are applied to our case, namely, Chern-Simons level
k = 1 and two complex scalars, one would conclude that our
theory may not be stable. At the same time, the estimates
for the regime of stability obtained from large N may not be
accurate for small values of N . For example, large-N calcula-
tions on the CPN theories without the Chern-Simons term also
indicate absence of a second-order transition at small values of
N (see, e.g., Refs. [92,93]), contrary to the numerical evidence
of a well-defined second-order transition at small values of N
(see, e.g., Refs. [94,95]).

As recently argued [96], the long-range hopping associated
with SLAC fermion regularization can lead to a gap for the
Goldstone modes in the symmetry-broken phase. We did not
find any signature of a similar gap at the critical point, which
is our focus in this paper. As shown in previous works (e.g.,
Ref. [97]), the critical exponents obtained using SLAC regu-
larization are in agreement with those obtained from other ap-
proaches, e.g., conformal bootstrap [98]. Nonetheless, it will
be useful to obtain a field-theoretic understanding of the effect
of long-range hopping associated with SLAC regularization.

Another direction that may be worth pursuing is to sup-
plement our model with interactions that favor binding of
skyrmions and which may therefore result in skyrmionic
superconductivity, similar to the scenario discussed in the
context of deconfined criticality in Refs. [66–69] or more
recently in the context of magic-angle graphene [99–102].

Finally, if the proposed duality is correct, then it would be
fruitful to use it to derive other dualities, e.g., by gauging the
probe fields, similar to the derivation of a multitude of duali-
ties using a seed Bose-Fermi duality [21,23]. For example, if
one elevates the probe gauge field Ac in Eq. (9) to a fluctuating
one, then on the fermion side of the duality, one obtains the
GNH transition in a two-flavor-QED-3, while on the bosonic
side, the gauge field a gets Higgsed and one obtains the tri-
critical O(4) theory (based on the expectation that the SU (2)
symmetry is enlarged to O(4), see, e.g., Refs. [103–105]). The
critical exponents for the O(4) tricritical point are essentially
mean field since the interactions are only marginally relevant
[106–108]. Therefore, this argument is suggestive that the
QED-3 GNH transition is dual to simply the O(4) Gaussian
fixed point. We leave further explorations of such implications
to the future.
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APPENDIX A: SLAC FERMION

As we discussed in the main text, we use the SLAC fermion
[47] to regularize a single four-component Dirac cone on a
square lattice. The noninteracting part H0 has the form

H0 =
∑
i,x

t (x)c†
i,a,σ ci+x,b,σ −

∑
i,y

it (y)c†
i,a,σ ci+y,b,σ + H.c.,

(A1)
where L is the linear system size of the lattice. The hopping
parameter t (r) has the following form for odd L:

t (r) =
{

(−)r iπt
L sin ( πr

L ) r = 0

0 r = 0,
(A2)

and the following form for even L:

t (r) =
{

(−)r iπte−i πr
L

L sin ( πr
L ) r = 0

πt
L r = 0.

(A3)

In Fig. 5, we plot the dispersion along the kx direction. The
dots corresponding to the discrete set of momenta on the
lattice are all located on a straight line.

APPENDIX B: DETAILS OF QMC ESTIMATION
OF SCALING DIMENSIONS

Since our low-energy theory is relativistic, we expect that
the dynamical exponent z = 1 both in the Dirac semimetal
phase and at the GNH critical point. In principal, if one has
access to arbitrary large system sizes with enough accuracy,
one should be able to calculate the scaling dimension of
various operators using either the equal-time correlations or

FIG. 5. SLAC fermion energy-momentum dispersion. The left
figure is for odd L (L = 17) and the right for even L (L = 16). The
blue dots correspond to a discrete set of allowed momentum on a
lattice, the red lines are the dispersion for continuous kx on a finite-
size lattice. It will approach a straight line in the thermodynamic
limit.
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FIG. 6. Measurement of scaling dimension of density operator for noninteracting Dirac fermions. (a) Real-space density operator cor-
relation at largest possible separation [ �Rmax = ( L−1

2 , L−1
2 )] for different system sizes L. We obtain 2��†� = 4.01(1) based on a power-law

fitting. (b) Imaginary-time correlation of density operator. We drop the initial eight points for each L fitting and the fitting range is indicated
by a solid line in the figure. Explicitly, the fitting range is τ t ∈ (0.9, 8). The inset is a linear extrapolation of 2��†� with 1/L, and we get
2��†� = 4.05(2) in the thermodynamic limit.

unequal-time correlations. However, in practice, we find that
for some operators, it is easier to estimate their scaling di-
mension using equal-time, unequal-space correlations while,
for others, unequal time, equal space yields better estimates.

In Figs. 6 and 7, we compare the imaginary-time corre-
lation and the real-space correlation for the electron-density
operator and the skyrmion-density operator for noninteracting
Dirac fermions. The exact value of the scaling dimension
for either of these operators is two, and from these figures,
we notice that both the imaginary-time correlation as well as
the real-space correlation yields an accurate estimate in the
thermodynamic limit.

In Figs. 8–13, we estimate the scaling dimensions of var-
ious operators at the GNH critical point. To improve the
estimation, we tried two different kinds of HS transforma-
tions (see Appendix D), the spin channel and the density

channel. The spin-channel one (denoted by colored points
in the figures) has a higher quality of data for unequal-time
skyrmion density correlations, and the density-channel one
(denoted by grey points in the figures) has a higher quality
of data for unequal-time �̄� correlations and �†� correla-
tions. See Figs. 8, 9, and 11 for details. The calculation of
skyrmion-density correlation is particularly challenging, as
they involve Wick contractions of a product of 12 fermion
operators. With the help of the MATHEMATICA code, we
perform the Wick contractions and after the simplifica-
tion, each two-point correlation of the skyrmion density has
2 064 384 terms, where each term involves a product of six
single-particle Green’s functions. It appears that the unequal-
time, equal-space correlation has a much higher quality than
the equal-time, unequal-space correlation; see Fig. 9 for
details.

FIG. 7. Measurement of scaling dimension of skyrmion-density operator for noninteracting Dirac fermions. (a) Real-space skyrmion-
density operator correlation at largest possible separation [ �Rmax = ( L−1

2 , L−1
2 )] for different system sizes L. We obtain 2� j0

topo
= 4.0(1) based

on a power-law fitting. (b) Imaginary-time correlation of skyrmion-density operator. We drop the initial eight points for each L fitting and the
fitting range is indicated by a solid line in the figure. Explicitly, the fitting range is τ t ∈ (0.9, 8). The inset is a linear extrapolation of 2� j0

topo

with 1/L, and we get 2� j0
topo

= 3.8(1) in the thermodynamic limit.
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FIG. 8. Measurement of the scaling dimension of the density operator at the GNH critical point. (a) Real-space density operator correlation
at largest possible separation [ �Rmax = ( L−1

2 , L−1
2 )] for different system sizes L. We obtain 2��†� = 4.1(1) based on a power-law fitting.

(b) Imaginary-time correlation of density operator. We drop the initial four points for each L fitting, and the fitting range is indicated by a solid
line in the figure. The inset is a linear extrapolation of 2��†� with 1/L; we get 2��†� = 3.2(1) in the thermodynamic limit. Note that the
spin-channel Hubbard-Stratonovich transformation data is denoted by colored points, while the density-channel one is denoted by grey points.
Similar notation is used in the following figures.

APPENDIX C: SKYRMION ROTATION CALCULATION

As discussed in the main text (see Sec. VIII), conceptually
we consider adiabatic motion of electrons in the background
of a specific space-time configuration of the order parameter
�N (�r, τ ) that corresponds to skyrmion rotation (Fig. 4) and
compare the phase picked up by the electron with a reference
configuration where the skyrmion is not rotated. In the actual
calculation, we use a SLAC fermion to regularize the Dirac
fermion on a lattice, and make a Trotter decomposition of the
imaginary time β ≡ Lτ�τ , where �τ is taken to be very small
so as to implement the adiabatic motion. In the calculation, we
set Lτ = 400 and �τ t = 0.1. The space-time Hamiltonian is
written as

H[ �N] = H0 − m
∑

i

�N (�ri, τ ) · c†
i τ

z �σci ≡ c†h(τ )c, (C1)

where h(τ ) is the coefficient matrix of the space time Hamil-
tonian at imaginary time. After tracing out fermions, one
obtains

K (0, β ) = det

[
1 +

Lτ∏
l=1

e−�τ h(l�τ )

]
. (C2)

The skyrmion configuration can be generated by setting
�N = (Nx, Ny, Nz ), where Nx = 2�W

1+|W |2 , Ny = 2�W
1+|W |2 , and Nz =

|W |2−1
|W |2+1 [90]. For the skyrmion-antiskyrmion pair, we can
set W (z) = a

z+R − a
z−R , where z = x + iy, a is the size the

skyrmion, and 2R is the separation of the skyrmion and the
antiskyrmion. To describe the separation process, we make R
time dependent and, similarly, W (z) depends on the time as

FIG. 9. Measurement of the scaling dimension of the skyrmion-density operator at GNH critical point. (a) Real-space skyrmion-density
operator correlation at largest possible separation [ �Rmax = ( L−1

2 , L−1
2 )] for different system sizes L. We obtain 2� j0

topo
= 3.0(5) based on a

power-law fitting. (b) Imaginary time correlation of skyrmion-density operator. We drop several small τ and large τ points for each L fitting,
and the fitting range is indicated by a solid line in the figure. The inset is a linear extrapolation of 2� j0

topo
with 1/L, and we get 2� j0

topo
= 3.8(3)

in the thermodynamic limit.
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FIG. 10. Measurement of the scaling dimension of the QSH order parameter �N at the GNH critical point. (a) Real-space QSH operator
correlation at largest possible separation [ �Rmax = ( L−1

2 , L−1
2 )] for different system sizes L. We obtain 2� �N = 1.47(3) based on a power-law

fitting. (b) Imaginary-time correlation of the QSH order parameter. We drop the initial four points for each L fitting and the fitting range is
indicated by a solid line in the figure. The inset is a linear extrapolation of 2� �N with 1/L, and we get for both the spin-channel calculation and
density-channel calculation 2� �N = 1.52(2) in the thermodynamic limit, which matches with the previously reported value in Ref. [38].

FIG. 11. Measurement of the scaling dimension of �̄� operator at the GNH critical point. (a) Real-space �̄� operator correlation at largest
possible separation [ �Rmax = ( L−1

2 , L−1
2 )] for different system sizes L. We obtain 2��̄� = 4.5(6) based on a power-law fitting. (b) Imaginary-

time correlation of the �̄� operator. We drop the initial eight points for each L fitting and the fitting range is indicated by a solid line
in the figure. The inset is a linear extrapolation of the 2��̄� with 1/L, and we get for density-channel calculation 2��̄� = 4.6(1) in the
thermodynamic limit.

FIG. 12. Measurement of the scaling dimension of Pnn operator at the GNH critical point. (a) Real-space Pnn operator correlation at largest
possible separation [ �Rmax = ( L−1

2 , L−1
2 )] for different system sizes L. We obtain 2�Pnn = 5.3(1) based on a power-law fitting. (b) Imaginary-

time correlation of the Pnn operator. We drop the initial 12 points for each L fitting and the fitting range is indicated by a solid line in the figure.
The inset is a linear extrapolation of the 2�Pnn with 1/L, and we get for spin-channel calculation 2�Pnn = 3.8(1) in the thermodynamic limit.
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FIG. 13. Measurement of the scaling dimension of Pos operator at the GNH critical point. (a) Real-space Pos operator correlation at largest
possible separation [ �Rmax = ( L−1

2 , L−1
2 )] for different system sizes L. We obtain 2�Pos = 5.0(3) based on a power-law fitting. (b) Imaginary-

time correlation of the Pos operator. We drop the initial 12 points for each L fitting and the fitting range is indicated by a solid line in the figure.
The inset is a linear extrapolation of 2�Pos with 1/L, and we get for spin-channel calculation 2�Pos = 4.6(1) in the thermodynamic limit.

well to implement the rotation:

W (z) = a

z + R(τ )
− a

z − R(τ )
eiα(τ ). (C3)

During the period when the skyrmion-antiskyrmion is created
out of the vacuum and slowly separated, we set α(τ ) = 0
as R(τ ) changes from zero to R0 in this process. The re-
verse process of annihilating is also carried out similarly.
During the period when the skyrmion is being rotated, we
set R(τ ) = R0 fixed, and slowly increase α(τ ) from zero to
2π . The rotation process is made very slow by dividing the
angle 2π into 300 small steps. As mentioned above and in
Sec. VIII, we also consider a reference configuration, where
we rotate the skyrmion from zero to π and then from π back
to zero, such that in total there is no rotation. We tried a
range of parameters. We considered different sets of system
sizes: {Lx = 4R0 + 1, Ly = 2R0 + 1} with R0 = 5, 6, 7, 8. We
also considered different values of a = 2, 3, 4 corresponding
to different sizes for the skyrmion. Larger a is not suitable
due to the limited total system size we can simulate. Fi-
nally, we also considered a different set of mass ratios in the

range 0 � m/t � 4. We obtained a relative sign change for
the propagator K (0, β ) corresponding to the rotated skyrmion
compared to that of the unrotated one for all sets of L and a
when 1.0 � m/t � 2.5, as shown in Table II. For larger m/t ,
we do not find a sign change, which may be related to the fact
that when m/t becomes large, ultraviolet physics may affect
the result of the calculation since the phase stiffness of �N is
proportional to |m|. This provides a numerical demonstration
of spin-1/2 skyrmions, at least for a range of parameters.

APPENDIX D: DETAILS OF QUANTUM
MONTE CARLO CALCULATION

We perform projection QMC calculations. The observables
are written as

〈O〉 = 〈�0|O|�0〉
〈�0|�0〉 , (D1)

where |�0〉 is the ground-state wave function and is obtained
via projection

|�0〉 = e−�H |�T 〉, (D2)

TABLE II. Relative sign changes for K (0, β ) for different parameters.

R0 = 5 R0 = 6 R0 = 7 R0 = 8

m/t a = 2 a = 3 a = 4 a = 2 a = 3 a = 4 a = 2 a = 3 a = 4 a = 2 a = 3 a = 4

0.5 + + + + + − + + − + + −
0.6 + + − + − − + − − + − −
0.7 + − − + − − + − − + − −
0.8 + − − + − − + − − + − −
1.0 − − − − − − − − − − − −
1.5 − − − − − − − − − − − −
2.0 − − − − − − − − − − − −
2.5 − − − − − − − − − − − −
3.0 + − − + + − + + − + + +
4.0 + + + + + + + + + + + +
5.0 + + + + + + + + + + + +
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where � is the projection time, and |�T 〉 is the trial wave
function which is set to be the ground-state wave function
of the noninteracting part of H . In the calculation, we set
2�t = 60, which is large enough both for the equal-time and
dynamical calculations. The trotter decomposition step is set
as �τ t = 0.1. To deal with the interaction, we perform a
symmetric trotter decomposition,

e−�τ (H0+HU ) ≈ e− 1
2 �τ H0 e−�τ HU e− 1

2 �τ H0 , (D3)

and then consider the following two kinds of HS transforma-
tion. For convenience, we rewrite c̃i,a/b,↑ = ci,a/b,↑, c̃i,a,↓ =
c†

i,a,↓, c̃i,b,↓ = −c†
i,b,↓. The first type of HS transformation is

in the so-called spin channel,

e− U
2 �τ (ρ̃i,τ,↑−ρ̃i,τ,↓ )2 ≈ 1

4

∑
si,τ =±1,±2

γ (si,τ )eiα1η(si,τ )(ρ̃i,τ,↑−ρ̃i,τ,↓ ),

(D4)

where α1=
√

U
2 �τ , γ (±1)=1+√

6/3, γ (±2)=1−√
6/3,

η(±1) = ±
√

2(3 − √
6), η(±2) = ±

√
2(3 + √

6). The sec-
ond type of HS transformation is in the so-called density-
channel,

e− U
2 �τ (ρ̃i,τ,↑−ρ̃i,τ,↓ )2+ U

2 �τ = 1

2

∑
si,τ =±1

eα2si,τ (ρ̃i,τ,↑+ρ̃i,τ,↓−1), (D5)

where α2 = acoshe
�τ U

2 . It turns out the spin-channel calcu-
lation is more stable for spin-type unequaltime correlations
such as skyrmion density correlation, and the density-channel
calculation is more stable for density type unequaltime corre-
lations such as �̄� correlations and �†� correlations.
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