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Nonlinear responses in crystalline solids are attracting a great deal of attention because of exciting phenomena,
such as the bulk photovoltaic effect in noncentrosymmetric crystals and the third-harmonic generation related
to Higgs modes in superconductors, and their potential applicability to electronic devices. Recently, nonlinear
responses have also been studied in strongly correlated electron systems. Experimental evidence has revealed
that correlations play a significant role in nonlinear responses. However, most theoretical calculations only
consider excitonic effects or involve numerically demanding approaches, making interpreting the results chal-
lenging. In this paper, we adopt another approach, which is based on real-time evolution using the correlation
expansion method. We focus in particular on the one-dimensional interacting Rice-Mele model. We analyze
the impact of the density-density interaction on the linear and nonlinear conductivities, and we demonstrate
that two-particle correlations beyond the mean-field level enhance second-order nonlinear responses, especially
the second-harmonic generation, while the linear response is not strongly affected. Furthermore, by decomposing
the current into a one-particle contribution and six two-particle contributions, we show that the “biexciton
transition” term and its nonlinear oscillations are the most dominant two-particle contribution to the nonlinear
response. In addition, we also show that the intercell charge-charge correlation is strongly enhanced when the
system is driven with the frequency corresponding to the excitonic peak, and it can even exceed the intracell
correlation. This implies the possibility of manipulating two-particle correlations with external fields.
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I. INTRODUCTION

Optical and transport measurements are one of the most
fundamental probes to study the microscopic properties of
materials in condensed matter. The linear response theory
developed by Kubo successfully describes many optical re-
sponses and transport phenomena [1], making it possible to
study not only the density of states but also, e.g., the topo-
logical nature of Bloch wave functions when probing the
integer quantum Hall effect [2]. For stronger external fields
or when the linear response is, e.g., prohibited by symmetries,
the system’s response is nonlinear. Nonlinear responses are
also related to microscopic material properties. For example,
two-photon absorption processes make it possible to access
one-photon forbidden states, the nonlinear Hall effect is re-
lated to the Berry curvature dipole [3], which is the gradient
of the Berry curvature in the momentum space, the Shift
current is caused by the difference between the Berry con-
nections of the conduction band and the valence band [4–6],
and third-harmonic generation can detect a Higgs mode in
superconductors [7,8]. These probes are unique to nonlinear
responses, and thus they are not only interesting for under-
standing materials but also essential for future applications
to electronic devices such as solar cells and ultrafast optical
switches [9,10].
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Recently, nonlinear responses have also been studied in
strongly correlated electron systems. Because of the intri-
cately intertwined degrees of freedom in these systems, i.e.,
the coupling of charge, spin, and orbital, nonlinear responses
have become increasingly diverse. A gigantic optical non-
linearity in one-dimensional (1D) Mott insulators [11,12],
nonreciprocal transport originating in spin fluctuations in the
chiral magnet MnSi [13], a giant spontaneous Hall effect in
the Weyl-Kondo semimetal candidate Ce3Bi4Pd3 [14], and an
exciton-mediated enhancement of second-harmonic genera-
tion (SHG) in 2D materials have been observed in experiments
[15,16]. These experiments demonstrate the importance and
impact of strong Coulomb interaction on nonlinear responses.
Furthermore, interest is growing in realizing thermodynami-
cally inaccessible states by controlling nonequilibrium steady
states and fluctuations by intense light irradiation [17,18],
where pump-probe spectroscopy is often utilized as a pow-
erful tool [19,20]. Thus, investigating nonlinear responses in
correlated systems, preferably using a real-time approach, is
highly desired.

Correlation effects on nonlinear responses have been stud-
ied theoretically, often with particular attention given to
electron-hole interactions in semiconductors [21–41]. In the-
oretical calculations, it has been shown that excitonic effects
can significantly enhance the shift current in monolayer GeS
[39]. In other calculations, the enhancement of nonlinear re-
sponses related to the electron mass renormalization in heavy
fermion systems [42,43], spin-charge separation in 1D Mott
insulators [44], and the interplay between charge transfer
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and electron correlations in charge-transfer Mott insulators
[45] have been revealed by utilizing dynamical mean-field
theory and exact diagonalization. Although our understand-
ing of nonlinear responses in correlated systems has grown,
numerous problems remain. Many previous approaches have
been limited to excitonic effects on nonlinear responses. Other
approaches rely on numerically expensive techniques, such as
the density matrix renormalization group. Therefore, another
approach to nonlinear responses is required that is not lim-
ited to particular degrees of freedom, can include correlation
effects, and is easy to interpret.

In this paper, we use another numerical approach to
analyze correlation effects on nonlinear optical responses,
examining the impact of two-particle correlation effects. Our
approach is based on the equation of motion using the corre-
lation expansion [46], including two-particle correlations but
neglecting three-particle correlations. By comparing different
approximations, we confirm the accuracy of this approach
for weak to moderate interaction strengths. In particular, we
consider the 1D interacting Rice-Mele model irradiated by
an ac electric field, and we calculate the bulk photovoltaic
effect, the SHG, and the time evolution of charge correlations
in real space, taking the dynamics of two-particle correlations
into account. We show that two-particle correlation effects
are significant for nonlinear responses, while the linear re-
sponse is not strongly affected except for a slight shift of
the spectrum. Both the bulk photovoltaic effect and the SHG
are enhanced by two-particle correlations, especially near the
excitonic peak, and correlation effects are salient for the SHG.
Moreover, we decompose the current into various contribu-
tions and show that a large part of the two-particle correlation
effects arises from the term called “biexciton transition” [23]
correlation. Our approach can be easily extended to other
systems, is based on a real-time approach compatible with
pump-probe experiments, and can be used as a guideline
to choose meaningful interactions when using a perturba-
tion expansion. It can complement other approaches, such as
exact diagonalization, time-dependent density matrix renor-
malization group, and nonequilibrium dynamical mean-field
theory.

The rest of this paper is structured as follows: In Sec. II,
we describe our model and methods. Section III A shows the
calculated conductivities of the linear absorption, the pho-
tovoltaic effect, and the SHG. In Sec. III B, we show the
decomposed SHG to analyze the importance of two-particle
correlations. In Sec. III C, we demonstrate that two-particle
correlations are essential for understanding the SHG con-
ductivity. In Sec. III D, we show that the electric field
enhances the short-range charge correlations of the sys-
tem. Finally, in Sec. IV, we conclude and summarize the
paper.

II. MODEL AND METHODS

A. Hamiltonian and current operator

In this paper, we consider the 1D interacting spinless Rice-
Mele model, a minimal inversion symmetry-broken model
with nearest-neighbor interaction. The effect of an electric
field is incorporated by the Peierls phase. The Hamiltonian

FIG. 1. Band dispersion of the Rice-Mele model for Qx =
0.25, Qy = 0.3, and Qon = 0.25. The red curve denotes the conduc-
tion band, and the blue curve denotes the valence band. The vertical
axis is in units of h̄ω0, and the horizontal axis is in units of a−1.

in real space is written as

Ĥ (t ) = Ĥ0(t ) + Ĥint,

Ĥ0(t ) = Qx − Qy

2

∑
i

(e−iA(t )/2c†
i,Aci,B + H.c.)

+ Qx + Qy

2

∑
i

(e−iA(t )/2c†
i,Bci+1,A + H.c.)

+ Qon

∑
i

(ni,A − ni,B),

Ĥint = V
∑

i

ni,B(ni,A + ni+1,A), (1)

where c†
i,a(ci,a) are creation (annihilation) operators for

electrons on the sublattice a = {A, B}. ni,a = c†
i,aci,a is the

occupation operator for sublattice a, and A(t ) is the exter-
nal vector potential. Qx, Qy, and Qon correspond to hopping
amplitudes and the local potential. V is the strength of the
nearest-neighbor density-density interaction. Throughout this
paper, we set the Planck constant, the lattice constant, and the
electron charge to unity, h̄ = a = e = 1. Also, we set h̄ω0 =
1 as the unit of energy, where ω0 is an arbitrary constant
that has the dimension of frequency. For example, Qx = 0.25
corresponds to Qx = 0.25h̄ω0. All parameters that have the
dimension of energy obey the same notation. Parameters are
fixed to Qx = 0.25, Qy = 0.3, and Qon = 0.25. The strength
of the interaction is varied between V = 0.0 and 0.15. The
band dispersion of the model without external fields [A(t ) =
0] and without interaction (V = 0) in momentum space is
shown in Fig. 1. We note that, although it is not our main focus
in this paper, the system is topologically nontrivial for these
parameters, and it hosts topological edge states if considered
in the open boundary condition. Recently, in Ref. [47], it has
been shown that these edge states still exist for small interac-
tions by utilizing functional renormalization-group analysis.
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The current operator Ĵ (t ) is defined as the derivative of the
Hamiltonian with respect to the vector potential:

Ĵ (t ) = −∂Ĥ (t )

∂A(t )

= i
Qx − Qy

4

∑
i

(e−iA(t )/2c†
i,Aci,B − H.c.)

+ i
Qx + Qy

4

∑
i

(e−iA(t )/2c†
i,Bci+1,A − H.c.). (2)

Next, we Fourier transform this model to the momentum
space and introduce the Houston basis [48–50]. We define the
Fourier transform of c†

i,A/B to c†
k,A/B as

c†
k,A/B = 1√

N

∑
i

eikri ci,A/B. (3)

ri is the position of the ith unit cell, and N is the number
of unit cells in the system. In this definition, the position in
the unit cell is not included. The noninteracting part of the
Hamiltonian can be written as

Ĥ0(t ) =
∑

k

[c†
k,Ac†

k,B]W (t )†H (kt )W (t )[ck,Ack,B]T , (4)

where kt = k − A(t ), and W (t ) is defined as

W (t ) =
[

1 0
0 eiA(t )/2

]
. (5)

H (kt ) can be diagonalized by a unitary matrix U (kt ) at
each time step. The eigenenergies of H0(kt ) are εc/v (kt ) =
±

√
Q2

x cos2(kt/2) + Q2
y sin2(kt/2) + Q2

on . We use the eigen-
states of the diagonalized noninteracting part of the Hamilto-
nian in momentum space as a new basis, commonly called the
Houston basis, describing the valence (v) and conduction (c)
bands. The Houston basis is defined as follows:[

ck,c

ck,v

]
= U (kt )

†W (t )†

[
ck,A

ck,B

]
,

U (kt ) =
[
UAc(kt ) UAv (kt )
UBc(kt ) UBv (kt )

]
.

(6)

We note that the Houston basis depends on the time when the
vector potential is finite because of the time-dependent unitary
transformation. Hereafter, we denote the matrix representation
of an operator in the Houston basis using a tilde, i.e., Ô =∑

k[c†
k,cc†

k,v
]Õ(kt )[ck,cck,v]T . The noninteracting Hamiltonian,

the dipole matrix, and the current operator in the Houston
basis are as follows:

H̃ (kt ) =
[
εc(kt ) 0

0 εv (kt )

]
− d̃ (kt )E (t ),

d̃ (kt ) = iU (kt )
†V (k)† ∂

∂k
[V (k)U (kt )]

=
[

dcc(kt ) dcv (kt )
dvc(kt ) dvv (kt )

]
,

J̃ (kt ) =
[

∂εc (kt )
∂k 2iεc(kt )dcv (kt )

−2iεc(kt )dvc(kt )
∂εv (kt )

∂k

]
, (7)

where V (k) is a unitary matrix defined as

V (k) =
[

1 0
0 e−ik/2

]
. (8)

V (k) arises from the fact that our definition of the Fourier
transform does not include the position inside the unit cell.
E (t ) = − ∂A(t )

∂t is the external electric field. The off-diagonal
terms in the Hamiltonian proportional to the dipole matrix
arise from the time derivative of the unitary matrix because
the Houston basis is time-dependent. Finally, the interacting
part of the Hamiltonian Ĥint in the Houston basis is given as

Ĥint =
∑
k,k′,q

α,β,γ ,δ

fαβγ δ (kt , k′
t , q)c†

k+q,α
c†

k′−q,β
ck′,γ ck,δ,

fαβγ δ (kt , k′
t , q) = V

N
(1 + e−iq )U ∗

Aα (kt + q)U ∗
Bβ (k′

t − q)

× UBγ (k′
t )UAδ (kt ), (9)

where α, β, γ , δ = {c, v}, corresponding to the two basis
states of the Houston basis. Using fermionic commutation
relations, several terms can be combined. For example, terms
proportional to c†

k+q,cc†
k′−q,cck′,vck,c can be combined with

terms c†
k+q,cc†

k′−q,cck′,cck,v . Thus, there are nine types of in-
teractions in the Houston basis, corresponding to C†C†CC,
C†C†CV , C†C†VV , C†V †CC, C†V †CV , C†V †VV , V †V †CC,
V †V †CV , and V †V †VV . Defining the coefficients of these
terms as Fαβγ δ (k, k′, q), we can write the interacting part of
the Hamiltonian as

Ĥint =
∑
k,k′,q

α,β,γ ,δ

Fαβγ δ (kt , k′
t , q)c†

k+q,α
c†

k′−q,β
ck′,γ ck,δ,

(10)

where (α, β, γ , δ) = {(c, c, c, c), (c, c, c, v), (c, c, v, v),
(c, v, c, c), (c, v, c, v), (c, v, v, v), (v, v, c, c), (v, v, c, v),
(v, v, v, v)}.

B. Equation of motion

1. Correlation expansion

We utilize the correlation expansion method by Fricke [46]
to calculate the time evolution of this system. This method
is useful as a closed set of equations of motion (EOM) for
correlation functions can be obtained systematically. Here, we
briefly review this method. For more information, we refer the
reader to Ref. [46].

The Heisenberg EOM for an operator is

˙̂O = −i[Ô, Ĥ (t )]. (11)

If the Hamiltonian includes two-particle operators, e.g.,
V

∑
i ni,A(ni,B + ni+1,B) in our case, the commutator between

a one-particle operator and Ĥ (t ) yields two-particle operators,
the commutator between a two-particle operator and Ĥ (t )
yields three-particle operators, the commutator between a
three-particle operator and Ĥ (t ) yields four-particle operators,
and so on. Thus, even if we are interested in one-particle
quantities, we have to know all higher-order many-particle
quantities, which is called the hierarchy problem. The corre-
lation expansion method is a simple prescription to truncate
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this hierarchy. Each expectation value is expanded in correla-
tions, denoted as 〈.〉C . We can write the correlation expansion
symbolically as follows:

〈B1〉 = 〈B1〉c,

〈B1B2〉 = 〈B1B2〉c + 〈B1〉c〈B2〉c,

〈B1B2B3〉 = 〈B1B2B3〉c + 〈B1B2〉c〈B3〉c + 〈B2B3〉c〈B1〉c

+ 〈B3B1〉c〈B2〉c + 〈B1〉c〈B2〉c〈B3〉c, (12)

where Bi is an arbitrary product of creation and annihila-
tion operators. For higher orders, the procedure is defined
recursively. For clarity, we look at the following example:
〈c†

k+q,cc†
k′−q,cck′,cck,v〉. The correlation expansion for this ex-

pectation value can be written as

〈c†
k+q,cc†

k′−q,cck′,cck,v〉 = 〈c†
k+q,cc†

k′−q,cck′,cck,v〉c

+ 〈c†
k+q,cck,v〉c〈c†

k′−q,cck′,c〉c

− 〈c†
k+q,cck′,c〉c〈c†

k′−q,cck,v〉c

= Scccv (k, k′, q) + δq,0y(k) fc(k′)

− δk+q,k′ fc(k′)y(k), (13)

where we define the following quantities:

Sαβγ δ (k, k′, q) = 〈c†
k+q,α

c†
k′−q,β

ck′,γ ck,δ〉c,

fα (k) = 〈c†
k,α

ck,α〉,
y(k) = 〈c†

k,cck,v〉. (14)

In the correlation expansion, Eq. (12), an n-particle expec-
tation value is decomposed into an n-particle correlation
function and terms, which can be written as a product of m(<
n)-particle correlations. One-particle correlations are iden-
tical to the corresponding one-particle expectation values.
For example, two-particle expectation values are decomposed
into the product of one-particle expectation values and a
two-particle correlation function. We note that an n-particle
correlation (n > 1) fulfills fermionic symmetries,〈 · · · c†

k1,α1
c†

k2,α2
· · · 〉c = −〈 · · · c†

k2,α2
c†

k1,α1
· · · 〉c,〈 · · · c†

k1,α1
ck2,α2 · · · 〉c = −〈 · · · ck2,α2 c†

k1,α1
· · · 〉c. (15)

We can rewrite the EOM using these correlation functions.
The EOM can be expressed in the following way:

〈1̇P〉c = 〈1P〉c + 〈1P〉c〈1P〉c + 〈2P〉c

〈2̇P〉c = 〈1P〉c〈1P〉c + 〈2P〉c

+ 〈1P〉c〈1P〉c〈1P〉c + 〈1P〉c〈2P〉c + 〈3P〉c. (16)

〈1P〉c, 〈2P〉c, and 〈3P〉c express one-particle terms, two-
particle terms, and three-particle terms, respectively. Equa-
tion (16) is not a closed set of equations. However, if we
neglect the three-particle correlation terms, a closed set of
EOM can be obtained, including two-particle correlations.
This is motivated by the fact that all correlation functions
involving more than one particle vanish in a noninteracting
system. Thus, if the interaction strength is not too strong,
higher-order correlations are not essential, and this truncation
can be expected to be appropriate. In this paper, we consider
parameter regions where the interaction V is moderate and the

system is adiabatically connected to the noninteracting sys-
tem, V = 0. Therefore, we neglect three-particle and higher
correlations.

The EOM arising from Ĥ0(t ) are

ḟc(k)|H0 = −2 Im(dcv (kt )E (t )y(k)) − γ ( fc(k) − fc0(k)),

ḟv (k)|H0 = 2 Im(dcv (kt )E (t )y(k)) − γ ( fv (k) − fv0(k)),

ẏ(k)|H0 = −i( − 2εc(kt ) + E (t )[dcc(kt ) − dvv (kt )])y(k)

− iE (t )d∗
cv (kt )[ fv (k) − fc(k)] − γ (y(k) − y0(k)),

(17)

where we have phenomenologically introduced relaxation
terms originating in a coupling of the system to other de-
grees of freedom that are not included in our formalism, e.g.,
phonons. γ is the relaxation rate, and fc0(k), fv0(k), and y0(k)
are the equilibrium values of fc(k), fv (k), and y(k) in the
ground state, as defined in Eq. (14). Such relaxation terms are
also included in the EOM for the two-particle correlations.
They drive the system back to the equilibrium state. We note
that the arguments of fc0, fv0, etc., should be kt in the Hous-
ton basis. However, for these parameters, the external field is
so weak that the effect of the external field in kt on the current
is negligible, and there are no qualitative changes. γ is fixed
to γ = 0.02 throughout this paper.

2. Time-dependent mean-field equations

To analyze the importance of two-particle correlations,
we will furthermore compare the results to a set of equa-
tions where two-particle correlations are also neglected. This
corresponds to the time-dependent mean-field approximation
(tdMF). In addition to Eq. (17), the EOM includes one-particle
correlations originating in Hint as

ḟc(k)|MF = 2 Im(Mcv (k)y(k)),

ḟv (k)|MF = −2 Im(Mcv (k)y(k)),

ẏ(k)|MF = −i(Mvv (k) − Mcc(k))y(k)

+ iMvc(k)[ fv (k) − fc(k)]. (18)

Mαβ (k) are mean-field corrections to the Hamiltonian. Their
explicit expressions are given in Appendix A.

3. Initial state

Finally, we describe the initial state used for calculating
the time evolution. In principle, we use the ground state as
the initial state for each calculation. For tdMF calculation, the
ground state can be obtained by diagonalizing the mean-field
Hamiltonian. On the other hand, a direct diagonalization of
the Hamiltonian is not possible for calculations including
two-particle correlations. In this situation, the ground state is
obtained by adiabatically switching on the interaction, which
is possible for the weak to moderate interaction strengths
used in our calculation. More details about this procedure are
explained in Appendix B

C. Conductivity

There are two main approaches to calculating the conduc-
tivity of a system. One is an analytical approach using the
Kubo formula and its extensions to nonlinear responses. The
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FIG. 2. Comparison between conductivities calculated by the Kubo formula (Kubo) and tdMF (tdMF) for V = 0. (a) Linear conductivity
σLinear . (b) Photovoltaic conductivity σPV. (c) SHG conductivity σSHG. σLinear, σPV, σSHG, and 
 are in units of e2a2

h̄ , e3a3

h̄2ω0
, e3a3

h̄2ω0
, and ω0,

respectively.

other approach is to calculate the time evolution of the system.
Recently, calculating the time evolution has been adopted
more frequently because it can easily take temporal fluctua-
tions into account and is more compatible with pump-probe
experiments. Here, we use the time-evolution approach to
calculate the linear, photovoltaic, and SHG conductivities.

We briefly explain how to calculate conductivities in this
approach. First, we calculate the time evolution of the system
until we obtain a nonequilibrium steady state. We note that
relaxation terms play an essential role in stabilizing a nonequi-
librium steady state. Then, the current at each time step can be
calculated by one-particle quantities, fc/v (k) and y(k), as

〈Ĵ〉 = −∂εc(kt )

∂k
[ fv (k) − fc(k)] − 4εc(kt )Im[dcv (kt )y(k)].

(19)

If we consider an electric field with a single frequency, i.e.,
E (t ) = E0 cos(
t ), the steady state and physical observables
are periodic with period 2π



. Thus, we Fourier transform the

expectation value of the current operator as

Jn
 =
∫ t0+
/2π

t0

dω〈Ĵ〉ein
t . (20)

For weak electric fields E0, J1
 corresponds to the linear re-
sponse, and J0
 and J2
 correspond to second-order nonlinear
responses (for strong electric fields, higher-order nonlinear
responses will also affect these currents). In this paper, the
electric field has the form E (t ) = E0 cos(
t ), and the strength
is fixed to E0 = −0.005 when calculating currents. By divid-
ing these conductivities by E0/2 or (E0/2)2, we define the
linear, photovoltaic, and SHG conductivities as

σLinear = Re

[
J1


E0/2

]
,

σPV = Re

[
J0


(E0/2)2

]
,

σSHG = Re

[
J2


(E0/2)2

]
. (21)

To confirm that these conductivities are well-defined in our
approach, we compare them with conductivities calculated

by the Kubo formula in the noninteracting system. Fig-
ure 2 shows the linear, photovoltaic, and SHG conductivities
calculated by the Kubo formula and the EOM using the
correlation expansion. In all three cases, the conductivities
calculated by both methods agree very well. Tiny differ-
ences can be explained by the broadening, i.e., the relaxation,
which is introduced differently in the Kubo formula and the
time-evolution formalism. These results demonstrate that the
conductivities calculated with our approach are well-defined
physical quantities.

To analyze the impact of correlations on the conductivity,
we will compare three different levels of approximations. In
addition to calculating the conductivity via the time evolution,
including two-particle correlations (2P) and using tdMF, we
will calculate the conductivity using the independent-particle
approximation (IPA). In the IPA, we calculate the ground
state of the interacting system in equilibrium by neglect-
ing two-particle correlations. Thus, interactions only result
in renormalized parameters. [The expressions of the renor-
malized parameters are given in Eq. (C1) in Appendix C.]
We then use the Kubo formula to calculate the conductivity
in this system with renormalized parameters directly. Two-
particle correlations, such as vertex corrections and the time
dependence of expectation values, are entirely neglected in
this approximation.

D. Decomposition of the current

In our approach, there are various two-particle correlations,
such as Scccc, Scccv , Sccvv , ...Svvvv , as defined in Eq. (14).
To clarify which two-particle correlations strongly affect the
current, we decompose the current into various contributions.

Although the current itself is a one-particle quantity and
includes only fc/v (k) and yk , the time derivative of the current
includes various types of two-particle correlations. It can be
symbolically written as (neglecting coefficients)

〈 ˙̂J〉 = 〈1P〉c + 〈1P〉c〈1P〉c + 〈C†C†CC〉c + 〈C†C†CV 〉c

+ 〈C†C†VV 〉c + 〈C†V †CV 〉c

+ 〈C†V †VV 〉c + 〈V †V †VV 〉c. (22)
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〈α†β†γ δ〉c corresponds to two-particle correlation terms re-
lated to Sαβγ δ (k, k′, q). Thus, the time derivative of the current
can be decomposed into one-particle terms and six two-
particle correlation terms. Here, we combine 〈V †V †CC〉c with
〈C†C†VV 〉c because they are related to each other by com-
plex conjugation. Similarly, we note that 〈C†V †CC〉c and
〈C†C†CV 〉c, and 〈V †V †CV 〉c and 〈C†V †VV 〉c can be com-
bined, respectively.

Using this decomposition of the time derivative of the
current, we can analyze the importance of two-particle cor-
relations in the current. We integrate the derivative to obtain
the current as

〈Ĵ〉 =
∫ t

〈 ˙̂J〉 =
∫ t

〈1P〉c +
∫ t

〈1P〉c〈1P〉c

+
∫ t

〈C†C†CC〉c +
∫ t

〈C†C†CV 〉c

+
∫ t

〈C†C†VV 〉c +
∫ t

〈C†V †CV 〉c

+
∫ t

〈C†V †VV 〉c +
∫ t

〈V †V †VV 〉c. (23)

The current is decomposed into one-particle terms and six
terms related to two-particle correlations.

III. RESULTS

A. Linear and nonlinear conductivities

In this section, we analyze the linear, photovoltaic, and
SHG conductivities for different interaction strengths, V =
0.0-0.15. We compare the results of one-particle mean-field
calculations (tdMF) with the calculations, including two-
particle correlations (2P), and results based on the IPA. As
noted above, the parameters in the noninteracting Hamiltonian
are Qx = 0.25, Qy = 0.3, and Qon = 0.25. The system con-
sists of 22 sites. The relaxation rate in the EOM is γ = 0.02,
and the strength of the electric field is E0 = −0.005.

First, we focus on the linear conductivity. Figure 3(a)
shows the linear conductivity for V = 0.0, 0.05, 0.15 calcu-
lated by tdMF. For comparison, we include the conductivity
calculated by IPA for V = 0.15. As IPA only takes into ac-
count equilibrium expectation values and neglects dynamical
fluctuations, the interaction between excited electrons and
holes is not considered. Thus, IPA strongly overestimates the
gap between the valence and conduction band and thus puts
the spectrum at far too high frequencies. All spectra calculated
by tdMF are located at lower frequencies than the spectrum
calculated by IPA. In Appendix C, we show that the peaks
calculated by tdMF in the interacting system have an excitonic
nature by analyzing the correlation function of the electron
density and the hole density in real space. IPA fails to capture
the excitonic nature of this peak correctly. As the interaction
is increased, the peak around 
 = 0.7-0.8 becomes taller, and
the width becomes smaller. The peak itself can be fitted by
a Lorentzian function, which is demonstrated in Fig. 3(b) for
V = 0.15. We thus see that interactions enhance the response
at the excitonic peak.

In Fig. 4, we compare the linear conductivity for V = 0.03
and 0.15 calculated by tdMF and the correlation expansion,

FIG. 3. (a) Linear conductivity calculated by tdMF for V =
0, 0.05, 0.15 and linear conductivity calculated by IPA for V = 0.15.
(b) Magnification of (a), showing the linear conductivity around

 = 0.7-0.8 calculated by tdMF for V = 0.0, 0.15. The dashed line
in (b) is a Lorentzian fit of the peak of the conductivity for V = 0.15.
σLinear, 
, and V are in units of e2a2

h̄ , ω0, and h̄ω0, respectively.

including two-particle correlation effects. Figure 4(a) shows
the results for weak interaction, V = 0.03, and Fig. 4(b)
shows V = 0.15. For V = 0.03, both approximations yield
almost identical results. Two-particle correlation effects are
not visible. On the other hand, for V = 0.15, two-particle
correlations slightly affect the linear conductivity. While the
height of the peak does not change, the spectrum is slightly
shifted toward lower frequencies when including two-particle
correlation effects. However, even for V = 0.15, the impact
of two-particle correlations on the linear response is small.
We thus see that while interactions affect the linear response
in this model, a time-dependent mean-field description of the
system is sufficient to analyze the linear conductivity.

Next, we analyze two-particle correlation effects on the
photovoltaic conductivity. Figure 5 shows the results for the
photovoltaic conductivity calculated by tdMF and the cor-
relation expansion for V = 0.03 and 0.15. We note that the
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FIG. 4. Linear conductivity calculated by the correlation ex-
pansion including two-particle correlations (2P) and by tdMF for
V = 0.03 (a) and V = 0.15 (b). σLinear, 
, and V are in units of
e2a2

h̄ , ω0, and h̄ω0, respectively.

photovoltaic conductivity over the frequency mainly consists
of two peaks: one peak around 
 = 0.7-0.8 and another
peak at larger frequencies. The left peak at 
 = 0.7-0.8 cor-
responds to the excitonic peak, which has been mentioned
above. The peak at slightly larger frequencies corresponds
to the contribution from electrons that do not form excitons,
which is confirmed in Appendix C. A comparison between
V = 0.03 and 0.15 immediately shows that interactions have a
strong impact on the photovoltaic conductivity. The excitonic
peak at 
 = 0.7-0.8 is strongly enhanced from σPV ≈ 0.45 at
V = 0.03 to σPV ≈ 1.12 at V = 0.15. On the other hand, the
peak at higher frequencies is strongly suppressed. Comparing
tdMF and the correlation expansion up to second-order, we
see that both spectra agree well. Two-particle correlations
slightly enhance the magnitude of the excitonic peak. Fur-
thermore, two-particle correlations slightly shift the spectrum
for V = 0.15. Compared to the linear conductivity, we can
say that interactions have a strong effect on the photovoltaic
conductivity. However, the impact of two-particle correlations

FIG. 5. Photovoltaic conductivity calculated by the correlation
expansion (2P) and by tdMF for V = 0.03 (a) and V = 0.15 (b). σPV,

, and V are in units of e3a3

h̄2ω0
, ω0, and h̄ω0, respectively.

beyond the mean-field level on the photovoltaic conductivity,
although slightly stronger than on the linear conductivity, re-
mains small. This robustness of the photovoltaic effect might
be a signature of its topological nature. In the noninteracting
case, the photovoltaic effect in this model originates in the
shift current. The shift current has been reported to be robust
against interior and surface defects [51], and our calculation
implies that the shift current is also robust against weak two-
particle correlations.

Then, we analyze the two-particle correlation effects on
the SHG conductivity. In Fig. 6, we show the SHG conduc-
tivity for V = 0.03 and 0.15 with and without two-particle
correlation effects. Both figures demonstrate that the spectrum
of the SHG conductivity consists of two peaks. The peak at
low frequencies corresponds to two-photon excitations, which
do not exist in the other spectra shown above. The peak at
high frequencies is a one-photon peak. Remarkably, this one-
photon peak shows a strong dependence on the interaction
strength. For V = 0.03 [Fig. 6(a)], tdMF can describe the
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FIG. 6. SHG conductivity calculated by the correlation expan-
sion (2P) and tdMF for V = 0.03 (a) and V = 0.15 (b). σSHG, 
, and
V are in units of e3a3

h̄2ω0
, ω0, and h̄ω0, respectively.

SHG conductivity well, and two-particle correlation effects
are not very important. On the other hand, for V = 0.15,
the one-photon peak is significantly affected by two-particle
correlations beyond the mean-field level. The spectrum is
shifted toward low frequencies. Furthermore, the response is
clearly enhanced by two-particle correlations, as can be seen
at 
 ≈ 0.8 comparing between the red and blue lines. In par-
ticular, the small positive peak becomes much sharper, and the
height is about five times larger when two-particle correlations
are included. We note that the two-photon peak at 
 ≈ 0.4
is not strongly affected by two-particle correlations. This is
partly because excitations of electron-hole pairs around this
peak originate from two-photon processes, including virtual
excitations to intermediate states, so fewer electron-hole pairs
are excited than around the one-photon peak.

Finally, to analyze the impact of interactions on the SHG
conductivity, in Fig. 7, we show the maximum value of the
two-photon peak (left peak in Fig. 6) in the upper panel
(a) and the maximum value of the one-photon peak (right

FIG. 7. Interaction strength dependence of the peak intensity in
the SHG conductivity calculated by the correlation expansion (2P)
and by tdMF for the two-photon peak (a) and the one-photon peak
(b). The peak intensity of the one-photon peak corresponds to the
negative peak in Fig. 6. The peak value of SHG and V are in units of
e3a3

h̄2ω0
and h̄ω0, respectively.

peak in Fig. 6) in the lower panel (b) for different inter-
action strengths. We note that the maximum value of the
one-photon peak is taken from the large negative peak, i.e.,

 ≈ 0.72 in Fig. 6(a). These results demonstrate that the SHG
is strongly enhanced by the interaction, even on the mean-field
level (tdMF). The strength of the SHG in the one-photon
peak reaches a maximum value at V = 0.16, which is nearly
three times the maximum value of the noninteracting system.
Also, as shown in Fig. 7(a), the interaction dependence of the
two-photon peak is well described by the tdMF, which has
been already demonstrated in Fig. 6. On the other hand, two-
particle correlations have a clear impact on the one-photon
peak, which is further enhanced when taking into account
two-particle correlations beyond the mean-field level.

In this section, we have seen that the impact of inter-
actions and two-particle correlations on the linear response
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FIG. 8. (a) Comparison between the one-particle contribution
and Sccvv contribution to the SHG conductivity for V = 0.15. (b) A
magnification of the upper panel around 
 ∼ 0.7–0.9. σSHG, 
, and
V are in units of e3a3

h̄2ω0
, ω0, and h̄ω0, respectively.

is weak compared to nonlinear conductivities. In particular,
the one-photon peak of the SHG conductivity is significantly
enhanced by two-particle correlations, and the shape of the
spectrum is altered. We will explore these two-particle corre-
lation effects in more detail in the next section.

B. Two-particle correlations in the SHG conductivity

To analyze which two-particle correlation is essential for
the current, we now decompose the current into single-
particle contributions and six two-particle correlation terms,
〈C†C†CC〉, 〈C†C†CV 〉, 〈C†C†VV 〉, 〈C†V †CV 〉, 〈C†V †VV 〉,
and 〈V †V †VV 〉, as we have explained in Sec. II D.

Using this decomposition, we can see that the one-particle
contribution and the two-particle term related to 〈C†C†VV 〉
and 〈V †V †CC〉 (which are related by complex conjugation)
are the dominant contributions to the SHG conductivity for
V = 0.15. In Fig. 8(a), we show the total SHG conductivity,
the one-particle contribution, and the 〈C†C†VV 〉 contribu-

tion. Other two-particle contributions are not shown here
because they are small and almost negligible for this interac-
tion strength. Figure 8(b) shows a magnification of Fig. 8(a)
around the one-photon peak. As shown in Fig. 8(a), two-
particle contributions are tiny around the two-photon peak.
Thus, one-particle contributions are almost identical to the
total spectrum. This is consistent with the result in the pre-
vious section, showing that two-particle correlation effects
on this peak are weak. Interactions, nevertheless, are impor-
tant and enhance the response at these frequencies, as shown
in Fig. 7(a). However, these results show that a mean-field
description is sufficient to analyze the two-photon peak at
weak to moderate interaction strengths. On the other hand,
the contribution of 〈C†C†VV 〉 constitutes a large fraction of
the full spectrum for the one-photon peak. Notably, the sharp
peak around 
 ∼ 0.78 mainly originates from the 〈C†C†VV 〉
contribution, which cannot be captured by only considering
one-particle contributions and taking interactions into account
only on the mean-field level.

We note that 〈C†C†VV 〉 is similar to 〈C†V 〉 in that it
becomes finite when the system includes electron-hole pairs.
If we consider 〈c†

k+q,cc†
k′−q,cck′,vck,v〉 on the mean-field level,

each electron-hole pair must have the same momentum, k
and −k, because of momentum conservation. On the other
hand, Sccvv (k, k′, q) is the deviation from this mean-field ex-
pectation value. It can be finite even when electron-hole pairs
have different momenta k + q and −k. Thus, the number of
possibilities to form excited electron-hole pairs is increased
when including two-particle correlations, which results in an
enhancement of the excitonic peak.

C. Nonlinearity of Sccvv (k, k′, q)

In Sec. III B, we have revealed that the contribution re-
lated to 〈C†C†VV 〉 is essential in understanding the SHG
conductivity. In this section, we analyze the dynamics of
Sccvv (k, k′, q). Furthermore, we study whether the time de-
pendence of Sccvv (k, k′, q) is important to understand the SHG
conductivity. To analyze this point, we first Fourier transform
Sccvv (k, k′, q), using the nonequilibrium steady state:

Sccvv (k, k′, q) =
∞∑

n=−∞
S̃n


ccvv (k, k′, q)e−in
t . (24)

We then consider approximations of Sccvv (k, k′, q) by truncat-
ing the summation at nmax as

Snmax
ccvv (k, k′, q) =

nmax∑
n=−nmax

S̃n

ccvv (k, k′, q)e−in
t . (25)

For example, if we truncate at nmax = 2, we ignore third-
and higher-order harmonics in this two-particle correlation
function. Using the approximated Snmax

ccvv (k, k′, q) [and the same
approximation for Snmax

vvcc(k, k′, q)], we can recalculate the cur-
rent and the SHG conductivity varying nmax in Eq. (23). In
Fig. 9, we show the SHG conductivity for nmax = 0, 1, 2 and
the full conductivity(nmax = ∞) for V = 0.15. We note that
the calculations for nmax = 0 and 1 yield identical results;
thus, they are shown together in this figure. From this result,
we see that there is no 1
 contribution from Sccvv (k, k′, q) and
Svvcc(k, k′, q) to the SHG conductivity. Furthermore, as can be
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FIG. 9. Contributions of different harmonics (nmax = 0, 1, 2, ∞)
to the one-photon peak in the SHG conductivity for V = 0.15. σSHG

and 
 are in units of e3a3

h̄2ω0
and ω0, respectively.

seen in this figure, the conductivity for nmax = 2 completely
reproduces the full conductivity. This is very natural because
third-order harmonics correspond to at least third-order per-
turbations in the electric field. Thus, when calculating the
SHG conductivity, S2

ccvv (k, k′, q) and S2
vvcc(k, k′, q) are suf-

ficient. On the other hand, the conductivity for nmax = 1
deviates from the full conductivity. This difference is espe-
cially large around 
 ∼ 0.78, where two-particle correlation
effects are important, as shown in Figs. 6 and 8. Thus, Fig. 9
reveals that two-particle correlation effects in our calculations
are related to second-order harmonics of Sccvv (k, k′, q) and
Svvcc(k, k′, q) with frequency 2
.

D. Enhancement of two-particle correlations

In this section, we study the charge-charge correlations in
the nonequilibrium steady state. We use an electric field with
amplitude E0 = −0.05 in this section, assuming a strongly
driven correlated electron system. The interaction is set to
V = 0.15. In Fig. 10(a), we show the time evolution of the
intracell charge-charge correlations 〈ni,Ani,B〉c and the inter-
cell charge-charge correlations 〈ni+1,Ani,B〉c under the external
electric field for 
 = 0.78, 0.85. The frequency 
 = 0.78
corresponds to the excitonic peak as shown in Fig. 4. 
 =
0.85 is slightly above the excitonic peak. We note that the
plotted values are averaged over one period,

〈ni,Ani,B〉c
av = 


2π

∫ t

t−2π/


dt ′〈ni,Ani,B〉c,

〈ni+1,Ani,B〉c
av = 


2π

∫ t

t−2π/


dt ′〈ni+1,Ani,B〉c. (26)

As seen in Fig. 10(a), the change of charge-charge correla-
tions due to the electric field switched on at t = 0 is small at

 = 0.85. On the other hand, charge-charge correlations are
significantly enhanced for 
 = 0.78. The enhancement of the
intercell correlations for 
 = 0.78 is so large that the absolute

FIG. 10. (a) Time dependence of the averaged intercell and
intracell density-density correlation for 
 = 0.78 and 0.85. (b) Com-
parison of intercell and intracell correlations in the steady state for
different frequencies. Around the excitonic peak, the intercell corre-
lations are strongly enhanced and exceed the intracell correlations. t
and 
 are in units of ω−1

0 and ω0, respectively.

value of the intercell correlation exceeds the intracell corre-
lations. This enhancement is further analyzed in Fig. 10(b),
which shows the frequency dependence of the enhancement
in the steady state. We see that both correlations are enhanced
only around the excitonic peak. The intercell correlations
exceed the intracell correlations at the excitonic peak. These
results demonstrate that correlations and fluctuations in the
nonequilibrium state can be qualitatively different from those
in equilibrium.

IV. CONCLUSION

In summary, we have calculated linear and nonlinear re-
sponses in a 1D Rice-Mele model, including two-particle
correlation effects. Our approach is based on the corre-
lation expansion method, which enables us to calculate
nonequilibrium states by simulating the time evolution of the
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one-particle and two-particle density matrices. We have ana-
lyzed the impact of interactions and, particularly, two-particle
correlations on the linear conductivity, the photovoltaic ef-
fect, and the SHG conductivity. We have shown that the
conductivity at the frequency corresponding to the excitonic
excitation in this system is enhanced by interactions. How-
ever, while we have seen that interactions affect the linear
conductivity, we have demonstrated that two-particle corre-
lation effects beyond the mean-field level are more salient in
nonlinear conductivities. Notably, the one-photon peak in the
SHG conductivity is significantly enhanced by two-particle
correlations beyond the mean-field level. To understand
which two-particle correlations affect the conductivities most
strongly, we have decomposed the current into one-particle
and two-particle contributions. Utilizing this decomposition,
we have revealed that Sccvv (k, k′, q) and Svvcc(k, k′, q) are the
most important contributions to the enhancement of the SHG
conductivity. In addition, we have shown that the second-order
harmonics of Sccvv (k, k′, q) and Svvcc(k, k′, q) are essential,
which cannot be treated within methods only considering
the dynamics of one-particle quantities. Finally, we have
calculated the real-time dynamics of charge-charge correla-
tions. We have seen that the two-particle correlations are
enhanced by the external electric field with frequency around
the excitonic peak. Furthermore, external driving significantly
enhances the intercell two-particle correlations so that the
magnitude of intercell correlations can exceed intracell two-
particle correlations.

Our calculations demonstrate that two-particle correlations
can affect nonlinear conductivities considerably and cannot
be ignored when assessing nonlinear responses. Even con-
sidering only electron-hole systems, two-particle correlation
effects include various many-body phenomena, such as the

impact ionization, the Auger recombination, and other exci-
tonic effects. Controlling these effects is known to be essential
to realizing efficient solar cells [52,53]. Our approach en-
ables us to calculate nonlinear optical properties, including
two-particle correlation effects at a microscopic level. Fur-
thermore, our method is a real-time approach and easily
extended to simulate optical responses under a pump pulse
setup. In principle, our calculation can also be done using
open boundary conditions, which would be useful to investi-
gate two-particle correlation effects on topological edge states
under external fields. Such calculations are left as future
problems, which would lead to a deeper understanding of
photoexcited correlated electron systems.

The code and data supporting this study’s findings are
available from the corresponding authors upon reasonable
request.
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APPENDIX A: INTERACTING TERMS IN THE tdMF

Here, we show the explicit expression for Mαβ in Eq. (18)
of the tdMF equations. They are defined as

Mcc(k) =
∑

k′
Fcccc(k′

t , kt , 0) fc(k′) +
∑

k′
Fcccc(kt , k′

t , 0) fc(k′) −
∑

k′
Fcccc(kt , k′

t , k′
t − kt ) fc(k′)

−
∑

k′
Fcccc(k′

t , kt , kt − k′
t ) fc(k′) +

∑
k′

Fcccv (k′
t , kt , 0)y(k′) −

∑
k′

Fcccv (k′
t , kt , kt − k′

t )y(k′)

+
∑

k′
Fcvcc(kt , k′

t , 0)y∗(k′) −
∑

k′
Fcvcc(k′

t , kt , kt − k′
t )y

∗(k′) −
∑

k′
Fcvcv (k′

t , kt , kt − k′
t ) fv (k′), (A1)

Mvv (k) = −
∑

k′
Fcvcv (kt , k′

t , k′
t − kt ) fc(k′) +

∑
k′

Fcvvv (k′
t , kt , 0)y(k′) −

∑
k′

Fcvvv (kt , k′
t , k′

t − kt )y(k′)

+
∑

k′
Fvvcv (kt , k′

t , 0)y∗(k′) −
∑

k′
Fvvcv (kt , k′

t , k′
t − kt )y

∗(k′) +
∑

k′
Fvvvv (k′

t , kt , 0) fv (k′)

+
∑

k′
Fvvvv (kt , k′

t , 0) fv (k′) −
∑

k′
Fvvvv (kt , k′

t , k′
t − kt ) fv (k′) −

∑
k′

Fvvvv (k′
t , kt , kt − k′

t ) fv (k′), (A2)

Mcv (k) =
∑

k′
Fcccv (kt , k′

t , 0) fc(k′) −
∑

k′
Fcccv (kt , k′

t , k′
t − kt ) fc(k′) +

∑
k′

Fccvv (k′
t , kt , 0)y(k′)

+
∑

k′
Fccvv (kt , k′

t , 0)y(k′) −
∑

k′
Fccvv (kt , k′

t , k′
t − kt )y(k′) −

∑
k′

Fccvv (k′
t , kt , kt − k′

t )y(k′)

+
∑

k′
Fcvcv (kt , k′

t , 0)y∗(k′) +
∑

k′
Fcvvv (kt , k′

t , 0) fv (k′) −
∑

k′
Fcvvv (k′

t , kt , kt − k′
t ) fv (k′),

Mvc(k) = M∗
cv (k). (A3)
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FIG. 11. One-particle expectation values fc(k), y(k), and two-particle correlation Sccvv during the adiabatic switching on of the interaction
strength for V = 0.15, T = 50, and different momenta. All correlations reach a plateau at t = T (= 50) without large oscillations. t and k are
in units of ω−1

0 and a−1, respectively.

APPENDIX B: INITIAL STATE IN THE CORRELATION
EXPANSION METHOD

To obtain the ground state within the correlation expansion,
we adiabatically switch on the interaction strength and cal-
culate the time evolution of the density matrices. Obtaining
the correlated ground state by slowly varying Hamilto-
nian parameters, e.g., changing the interaction parameter,
is called adiabatic state preparation [54]. There are various
choices for changing the interaction parameter from the ini-
tial Hamiltonian to the final one. We adopt the sinusoidal
cubic switching function in this paper because it reproduced
the exact mean-field ground state most accurately among
several other switching functions, such as linear switching
and (half) Gaussian switching. Sinusoidal cubic switching is
given as

V (t ) = V sin3

(
πt

2T

)
, (B1)

where T determines the speed at which the interaction is
switched on. In this paper, we use T = 50.0. We use V (t )
in the EOM for the correlation expansion method without an
external electric field and relaxation, i.e., E0 = 0 and γ = 0.
We then calculate the time evolution starting from the non-
interacting initial state at t = 0 and adiabatically switch on
the interaction. We use the density matrices at t = T as the
approximate ground state and use them as the initial state in
the calculations in the main text. An example of this procedure
for V = 0.15 is shown in Fig. 11. We see how the occupation
in the conduction band, fc(k), and the transition element be-
tween conduction and valence band, y(k), increase and reach
stationary states at t = T when switching on the interaction.
The interaction induces a change in the occupation numbers.
While in the noninteracting system only the valence band is
occupied, in the interacting model there are electrons in the
conduction band. We also include the value of Sccvv in Fig. 11.
This correlation function smoothly decreases to a negative
value and reaches a plateau at t = T when the interaction is
turned on. These results show that even at V = 0.15, the occu-
pation number in the conduction band, the transition element,
and two-particle correlations behave smoothly without large
oscillations and reach a plateau at t = T when the interaction
is turned on. Thus, we conclude that we can calculate an

FIG. 12. Comparison of the conduction-electron–valence-hole
correlations calculated in real space for different distances between
electron and hole. The upper panel (a) shows the time-resolved
correlations at the excitonic peak, demonstrating a substantial en-
hancement of the local correlations. The lower panel (b) shows the
time-resolved correlations away from the excitonic peak, where these
correlations are still comparably strong for large distances. t is in
units of ω−1

0 .
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accurate ground state, which we use as the initial state in the
real-time calculations.

APPENDIX C: ELECTRON-HOLE CORRELATIONS
IN REAL SPACE

To demonstrate that our system has an excitonic nature and
that the sharp peak of the spectrum in the main text corre-
sponds to an excitonic peak, we calculate the electron-hole
correlation function in real space under an external electric
field. We consider the system excitonic if we can confirm that
the conduction electrons and valence-band holes are bound to
each other at a small relative distance. We note that the calcu-
lations in this Appendix are done by tdMF because excitonic
properties appear even at the mean-field level, as shown in this
section.

We define the creation (annihilation) operators for conduc-
tion electrons and valence electrons in real space c†

i,c/v (ci,c/v )
as the Fourier transform of those electrons in the momentum
space c†

k,c/v (ck,c/v ). Using these operators, we calculate the
correlation functions of the electron density in the conduc-
tion band at site i and the hole density in the valence band
at site j, 〈ni,c(1 − n j,v )〉. We note that the basis used here
differs slightly from that in the main text. While in the main
text the Houston basis is defined by the noninteracting part
of the Hamiltonian, here we absorb the interaction at the
mean-field level into the Hamiltonian. This change makes the

interpretation of the results easier. The one-particle terms in
the Hamiltonian are renormalized as follows:

Qx → Qx − V (〈c†
i,Bci,A〉 + 〈c†

i+1,Aci,B〉),

Qy → Qx + V (〈c†
i,Bci,A〉 − 〈c†

i+1,Aci,B〉),

Qon → Qon − V (〈ni,A〉 − 〈ni,B〉). (C1)

In Fig. 12, we show the 〈ni,c(1 − n j,v )〉 correlation function
for 
 = 0.7151 (a) and 
 = 0.7806 (b). These frequencies
correspond to the two peaks in the spectrum of Fig. 5(a). The
interaction strength in this calculation is V = 0.03, for which
the tdMF and correlation expansion, including two-particle
correlations, yield identical results. Figure 12(a), which is cal-
culated at the excitonic peak, demonstrates that the amplitude
of the electron-hole correlation in the steady state rapidly de-
creases as the distance between the sites, i − j, increases. The
correlation for i − j = 1 is already ten times smaller than that
for i − j = 0. This is a manifestation of the excitonic nature
of this peak, confirming a locally bound electron-hole pair.
On the other hand, as shown in Fig. 12(b), the electron-hole
correlations at 
 = 0.7806 do not show such a rapid decrease
as i − j is increased. For this frequency, we cannot see a
locally bound electron-hole pair. These calculations clearly
show that the peak at 
 = 0.7151 has an excitonic nature, and
the peak at 
 = 0.7806 does not. For a larger interaction, e.g.,
V = 0.15, the excitonic nature is enhanced, and the excitonic
peak plays a more important role, as shown in Fig. 5(b).
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