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Excitons are compound particles formed from an electron and a hole in semiconductors. The impact of
this substructure on the phonon-exciton interaction is described by a closed system of microscopic scattering
equations. To calculate the actual excitonic thermalization properties beyond the pure bosonic picture, this
equation is derived directly from an electron-hole picture within the Heisenberg equation of motion framework.
In addition to the well-known bosonic character of the compound particles, we identified processes of a
repulsive, fermionic type, as well as attractive carrier exchange contributing to the scattering process. In this
analytical study we give general statements about the thermalization of excitons in two- and three-dimensional
semiconductors. We give insights on the strong dependence of the thermalization characteristics of the exciton
Bohr radius and the thermalization wavelength. Above all, we analytically provide arguments why a bosonic
behavior of excitons—such as an enhanced ground-state occupation—requires the dominant phonon scattering
to be quasielastic. Acoustic phonons tend to fulfill this, as each scattering event only takes small amounts of
energy out of the distribution, while optical phonons tend to prevent macroscopic occupations of the lowest
exciton state, since the Pauli repulsion between the individual carriers will then dominate the thermalization
dynamics.
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I. INTRODUCTION

van der Waals heterostructures of atomically thin semicon-
ductors sparked new hope to find bosonic or even macroscopic
occupation effects of excitons, since they can host long-living
excitonic interlayer states [1–7]. The discussion whether
semiconductor excitons can show macroscopic occupation
and spontaneous emergence of coherence dates back more
than half a century [8–11], and there are reports of experimen-
tal signatures of related effects also for excitons in other semi-
conductor platforms, e.g., in GaAs quantum wells [12,13], in
quantum hall systems [14], and recently in bulk Cu2O [15].

The last decades have also seen quite a few theoretical
approaches towards effects of macroscopic occupation and
spontaneous coherence in excitonic systems, and even more
on exciton-polaritons. There is, e.g., the quantum kinetic ap-
proach from the Haug group [16–19] and also an abundance of
other theory works, e.g., Refs. [20–31]. They are very diverse
in their theoretical approaches, however, to our understanding,
they all implicitly or explicitly share one key assumption,
namely, that excitons are pure bosons also for densities
beyond the classical Maxwell-Boltzmann limit, which is a
necessary condition to apply Bogoliubov approximations or
Gross-Pitaevskii approaches [32]. It was, however, also shown
in several works that the fermionic substructure of excitons
cannot be neglected at elevated densities [33–38]. In a recent
numerical study [39], we challenged the assumption of pure
bosonic thermalization, presenting an excitonic Boltzmann
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scattering equation to account for phonon-mediated excitonic
thermalization above the classical Maxwell-Boltzmann limit,
taking the fermionic substructure into account. We showed
that for large parts of the parameter space, fermionic Pauli
blocking inhibits bosonic thermalization, thus resulting in
effects such as macroscopic ground-state occupations. The
equations of motion we study here, as derived and numer-
ically approached in Ref. [39], are, in principle, valid for
Wannier-type excitons of arbitrary dimension in semiconduc-
tors. However, they do not apply for Frenkel-type excitons, as
they are, for instance, described in organic semiconductors or
molecular aggregates [40–42].

In the present study we provide analytic limits of a gen-
eralized exciton-phonon interaction dynamics, allowing us to
deduce statements on the nature of the exciton as a particle
between boson and fermion in a more general framework and
predict its behavior in two and three dimensions and in a unit-
less and therefore material insensitive description. We show
that three parameters influence the thermalization, namely, the
exciton Bohr radius a0, the thermal de Broglie wavelength λth,
and their value relative to the phonon momentum Qphon, which
couples to the excitonic ground mode Q = 0. The two main
findings are as follows: The Bohr radius of the exciton needs
to be significantly smaller than the thermal wavelength, and
only when the dominant exciton-phonon scattering process
is elastic enough, stimulated scattering to the ground state
can win over the Pauli repulsion between the carriers which
constitute the excitons, as inelastic optical phonon scattering
favors Pauli blocking over stimulated scattering. The results
from our analytic computations presented in this work are in
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good agreement with the numerically obtained findings we
presented in Ref. [39], and thus offer a deeper understanding
of these results.

The paper is structured as follows: In Sec. II we present the
excitonic Boltzmann equation which was derived in Ref. [39],
and the individual contributions within the equation are reca-
pitulated. In Sec. III we give a detailed discussion on the ana-
lytic limit of low temperatures and derive analytic expressions
allowing interpretation of the behavior of excitons at low tem-
peratures at the threshold of the first deviation from the clas-
sical Maxwell-Boltzmann limit. In Sec. IV we give visualiza-
tions of the analytic expressions and discuss the resulting re-
quirements for bosonic or fermionic thermalization behavior
of excitons in two or three dimensions. In Sec. V we conclude.

II. EXCITONIC BOLTZMANN EQUATION

This section is a brief recapitulation of the equation that
was derived and introduced in Ref. [39], before we examine
its analytical limits in detail in the subsequent sections.
The kinetic equation describes the dynamics of the exciton
occupation,

Nν
Q =

∑
qq′

(
ϕν

q

)∗
ϕν

q′ 〈v†
q+α̃Qcq−β̃Qc†

q′−β̃Q
vq′+α̃Q〉c, (1)

with center-of-mass momentum Q and the excitonic Rydberg
state ν, where ϕν

q accounts for the real-space relative motion
wave function of the exciton gained from solving the Wannier
equation [43]. The wave functions represent a full orthonor-
malized set

∑
q(ϕλ

q )∗ϕν
q = δλν , while c(†)

q and v(†)
q are the

fermionic annihilation (creation) operators for carriers in the
conduction band and the valence band, respectively. The rela-
tive electron and hole masses α̃ = me

M and β̃ = mh
M abbreviate

the respective proportion of the exciton mass M = me + mh.
It is important to state that for the derivation of the

equation of motion for Nν
Q, in Ref. [39] we started from

the fundamental electronic semiconductor Hamiltonian [44],
which allowed us to account for bosonic and fermionic prop-
erties of the exciton thermalization:

H =
∑
kλ

ελ
kλ

†
kλk +

∑
qα

h̄ωα
q b†α

q bα
q

+ 1

2

∑
λλ′kk′q

Vqλ
†
kλ

′†
k′λ

′
k′+qλk−q

+
∑
kqλα

gλα
q λ

†
k+qλk

(
bα

q + b†α
−q

)
. (2)

The first term accounts for the dispersion of electrons,
parametrized from density-functional theory (DFT)
calculations in the effective mass approximation [45]. In
the conduction band, the band index is λ = c, and in the
valence band λ = v, while k refers to the momentum k,
respectively. The second term accounts for the dispersion
of phonons. The mode index α accounts for acoustic and
optical phonon modes, parametrized by ab initio values from
the literature, for transition metal dichalgogenide (TMDC)
excitons; see, e.g., Refs. [46–48]. The third term accounts for
the Coulomb interaction between electrons and holes. The
coupling element Vq is obtained from an analytic solution

of the Poisson equation for the Rytova-Keldysh potential
[49,50]. The fourth term accounts for the electron-phonon
interaction in the valence and conduction band. The appearing
electron-phonon coupling elements gλα

q , for the different
involved phonon modes α in the two bands λ = c, v, are
treated in the effective deformation potential approximation,
parametrized with values typically obtained from DFT
calculations; see, e.g., for TMDCs Refs. [47,48,51–53].

The excitonic Boltzmann scattering equation in the Born-
Markov limit was derived in Ref. [39] from the fundamental
electronic semiconductor Hamiltonian, Eq. (2). It is valid for
a not-too-strong exciton-phonon coupling, which does not
induce a fast time dependence of the exciton distribution
function on the timescale of the phonon oscillation frequency.
This is common for many semiconductor materials [17,51,54–
57], as long as the initial pulsed excitation does not break this
limit. This allows treating the appearing hierarchy problem in
the second-order Born-Markov approximation [55]. In situ-
ations where this approximation does not hold, higher-order
perturbation or a nonperturbative calculation would have to
be taken into account by, for instance, including higher orders
in the Born approximation [58,59], applying quantum kinetic
approaches [18,60], by utilizing a polaron framework [61–63],
or employing path integral methods [63,64]. Further studies
on the relevance of non-Markovian effects can be found,
e.g., in Refs. [58,65,66]. Compared to a classical Boltzmann
equation, this novel equation comprises terms second order
in Nν

Q, which where obtained by applying the unit operator
technique [33,35,36], allowing to project the fermionic expec-
tation operators on excitonic pair occupation operators. The
strict calculation in the electronic picture also circumvents
difficulties in the factorization of excitonic expectation values.
For details on the derivation, see Ref. [39] and Appendix A.
The resulting equation reads

∂t N
ν
Q = ∂t N

ν
Q

∣∣
class + ∂t N

ν
Q

∣∣
bos + ∂t N

ν
Q

∣∣
ferm + ∂t N

ν
Q

∣∣
exc. (3)

The first term in Eq. (3) accounts for the linear contribu-
tion, responsible for a thermalization according to the classical
Maxwell-Boltzmann statistics. It is valid for dilute, classical
exciton gases [53,67,68] and reads

∂t N
ν
Q

∣∣
class = 2π

h̄

∑
Q′λ

(
W λν

Q′QNλ
Q′ − W νλ

QQ′Nν
Q

)
, (4)

with the scattering tensor

W νλ
QQ′ =

∑
α

|gνλ
|Q−Q′|,α|2((1 + nα

|Q−Q′|)δ
(
Eλ

Q′ − Eν
Q + h̄ωα

|Q−Q′|
)

+ nα
|Q−Q′|δ

(
Eλ

Q′ − Eν
Q − h̄ω|Q′−Q|α

))
. (5)

The exciton-phonon coupling reads

gνν ′
Q,α =

∑
q

(
gcα

Q

(
ϕν

q

)∗
ϕν ′

q−β̃Q − gvα
Q

(
ϕν

q

)∗
ϕν ′

q+α̃Q

)
(6)

and depends on convolutions of exciton wave functions ϕν
q and

the electron-phonon coupling element gλα
q from the electronic

Hamiltonian, Eq. (2).
For densities above the classical limit, additionally three

nonlinearities become important, all in the same order of the
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FIG. 1. Recapitulation of the different nonlinear effects in the
excitonic thermalization process, as introduced in detail in Ref. [39].
(a) The nonlinearity ∂t NQ|bos leads to stimulated scattering, similar to
pure bosonic particles. (b) The fermionic correction term ∂t NQ|ferm

leads to a repulsion as electrons (and holes) show Pauli blocking.
Many excitons contribute to this effect at a given momentum, illus-
trated by the summation over k in the lower panel. (c) The exchange
nonlinearity, ∂t NQ|exc, is of attractive nature. It is due to a carrier
exchange during the scattering process. Figure adapted from [39].

exciton density

n̄ = 1

Ld

∑
Qν

Nν
Q, (7)

with a factor Ld of unit [Ld ] = nmd, i.e., an area or a volume,
dependent on the dimension d ∈ {2, 3}, which we introduce
here as an index to allow for a more general formulation
throughout the whole manuscript. The nonlinearities are all
sketched in Fig. 1. The second term in Eq. (3) accounts for
bosonic stimulated scattering, which would also occur for
pure bosons [17], see Fig. 1(a):

∂t N
ν
Q

∣∣
bos = 2π

h̄

∑
Q′λ

�B,νλ
QQ′ Nλ

Q′Nν
Q. (8)

The respective scattering matrix can be directly computed
from the classical scattering matrix W νλ

QQ′ , Eq. (5), and
reads

�B,νλ
QQ′ = W νλ

QQ′ − W λν
Q′Q

=
∑

α

|gνλ
|Q−Q′|,α|2(δ(Eλ

Q′ − Eν
Q − h̄ωα

|Q−Q′|
)

− δ
(
Eλ

Q′ − Eν
Q + h̄ωα

|Q′−Q|
))

. (9)

The mentioned stimulated scattering of this bosonic nonlinear
contribution, Eq. (8), leads to amplified scattering to already
strongly occupied states, and thus enables high occupations of
the ground state at Q = 0.

In addition to the classical and bosonic contributions to
Eq. (3), two further nonlinearities occur due to the electronic
substructure of the excitons. The third term in Eq. (3), see
Fig. 1(b), is of repulsive nature and occurs due to Pauli block-
ing of the fermionic carriers the exciton is constituted of. It
reads

∂t N
ν
Q

∣∣
ferm = 2π

h̄

∑
Q′Kλν ′

(
�F,νλ,ν ′

Q′Q,K Nλ
Q′ − �F,λν,ν ′

QQ′,K Nν
Q

)
Nν ′

K . (10)

Note that compared to classical and bosonic contributions of
Eq. (3), this repulsive term requires an additional convolution
over all excitonic states, which originates from the projection
into the excitonic basis. Similar to the scattering matrices
above, we find here the three-dimensional scattering tensor

�F,λν,ν ′
QQ′,K =

∑
α

Re
(
gνλ

Q−Q′,αgF,λν,ν ′
Q′Q,K,α

)(
δ
(
Eλ

Q′ − Eν
Q − h̄ωα

Q−Q′
)

− δ
(
Eλ

Q′ − Eν
Q + h̄ωα

Q′−Q

))
. (11)

Furthermore, there occurs a second nonlinearity due to the
electronic substructure of the exciton, namely, the fourth term
in Eq. (3), see Fig. 1(c). It results from exchanging carriers be-
tween excitons during the scattering and constitutes a typical
fermionic exchange nonlinearity:

∂t N
ν
Q

∣∣
exc = 2π

h̄

∑
KK′λ′ν ′

�E ,νλ′ν ′
Q,K,K′Nλ′

K′Nν ′
K . (12)

Here, the respective scattering tensor reads

�E ,νλ′ν ′
Q,K,K′ = 1

2

∑
Q′αλ

(
gνλ

Q−Q′,αgE ,νλ,λ′,ν ′
Q′Q,K,K′,α + gλν

Q′−Q,αgE ,λν,λ′,ν ′
QQ′,K,K′,α

)
× (

δ
(
Eλ

Q′ − Eν
Q − h̄ωα

|Q−Q′|
)

− δ
(
Eλ

Q′ − Eν
Q + h̄ωα

|Q′−Q|
))

. (13)

For all contributions of Eq. (3), the coupling constants for the
exciton-phonon coupling are given by the wave-function over-
lap of the involved carriers, which depend on the momenta Q′
of the phonons associated to the process. While for the classi-
cal a bosonic contribution, this is encoded in the well-known
coupling gνν ′

Q,α , Eq. (6), the new scattering tensors that arise due
to the fermionic substructure come with new, more elaborate
overlaps, namely, gF,λν,ν ′

Q′Q,K,α
for the fermionic nonlinearity, and

gE ,λν,λ′,ν ′
QQ′,K,K′,α for the exchange nonlinearity (see Appendix B for

details). Their increased complexity reflects the convolution
with all carriers involved, (i.e., also those of the other exci-
tons). The fact that the fermionic scattering tensors depend
on more overlapping excitonic wave functions compared to
the classical and bosonic terms leads to a strong dependence
of the relative dominance between the nonlinearities on the
exciton Bohr radius a0. Large Bohr radii lead to smaller wave
functions in momentum space. This will be crucial for the
analytic discussion in the following section.

III. ANALYTICAL LIMIT

Equation (3) is a general result which is valid for exci-
tons in different systems, thus also for systems with different
dimensionality. The following discussion is thus conducted
for two- and three-dimensional excitons, respectively, with
TMDC excitons used to give an example of experimen-
tally accessible parameter ranges in two dimensions. For our

155110-3



KATZER, SELIG, AND KNORR PHYSICAL REVIEW B 109, 155110 (2024)

analytical discussion, we rewrite Eq. (3) to a more compact
form:

∂t N
ν
Q = 2π

h̄

[ ∑
Q′λ

[(
W λν

Q′Q
(
1 + Nν

Q

) −
∑
Kν ′

�F,νλ,ν ′
Q′Q,K Nν ′

K

)
Nλ

Q′

− (
W νλ

QQ′
(
1 + Nλ

Q′
) −

∑
Kν ′

�F,λν,ν ′
QQ′,K Nν ′

K

)
Nν

Q

]

−
∑

KK′λ′ν ′
�E ,νλ′ν ′

Q,K,K′Nλ′
K′Nν ′

K

]
. (14)

In order to identify parameter regimes where the ther-
malization is dominated by the bosonic nonlinearities, we
introduce two general parameters, the Bohr radius a0 and
the thermal wavelength λth. To formally define an exciton
Bohr radius, the 1s wave functions, which are accessed as the
eigenfunctions of the Wannier equation, can be fitted to an an-
alytical model [44], which in the two- and three-dimensional
case read

ϕd=2
q =

8
√

2πa2
0/L2(

4 + a2
0q2

) 3
2

ϕd=3
q =

8
√

πa3
0/L3(

1 + a2
0q2

)2 . (15)

In the three-dimensional model, a0 is directly equivalent to
the extension of the exciton in real space, while for two
dimensions, it is typically defined to be twice the radius of
the extension [44]. TMDC excitons, for example, typically
have extension radii in the order of 1 nm [69]; we therefore
estimate the Bohr radius for TMDCs to be around 2 nm when
we give examples in the following discussion. Furthermore,
we introduce the thermal wavelength λth (also referred to as
de Broglie wavelength), which depends on temperature T and
effective exciton mass M:

λth = h̄√
2MkBT

. (16)

The thermal wavelength λth characterizes a typical inverse
wavelength extension of the occupation number distribution
as a function of wave numbers in an ideal classical exciton gas
at a specified temperature and thus is a well-defined parameter
close to the classical limit [65]. In Sec. III B we will introduce
an analytical expression for the exciton occupation in the
classical limit, Eq. (21), from which we can read off that the
inverse of λth marks the absolute value of the center-of-mass
momentum |Qth| = 1

λth
, where, for this specific temperature

and particle mass, the occupation (of a classical ensemble)
is NQth = 1

e NQ=0, and therefore λ−1
th is directly linked to the

mass- and temperature-dependent width of the occupation
of a classical exciton occupation distribution in momentum
space. This is typically used, e.g., to provide unitless plots of
occupation distributions when discussing density-dependent
phenomena which occur independent of temperature and par-
ticle mass; see, e.g., Bloch et al. [70]. In the following we
discuss the analytical limits of Eq. (3).

A. Low-temperature limit

In the following analytic discussion of Eq. (3), we as-
sume that the Bohr radius is small compared to the thermal

FIG. 2. Equilibrium distribution NQ at 10 K for a Bohr radius
a0 ≈ 0.2 nm in momentum space when computed with the full equa-
tion (3) exemplarily for TMDC parameters, in comparison to the
respective 1s wave function ϕq. The wave function can in very good
approximation be estimated as flat in the momentum region of the
exciton dynamics.

wavelength:

a0 	 λth, (17)

i.e., the average particle wavelength is large compared to its
Bohr radius. We can also express this with regard to tempera-
ture and assume M ≈ 1.1 mel and a0 ≈ 2 nm (typical TMDC
values) to get an idea for which temperatures this approxima-
tion is valid, e.g., for TMDC excitons:

T 	 h̄2

2MkBa2
0

≈ 98 K. (18)

This shows that also for experimentally accessible regimes,
for instance, in TMDCs, at low temperatures, the analyzed
limit remains a good approximation over a large parameter
range. In addition, translated to momentum space, this ap-
proximation implies that the wave function can be considered
flat on the momentum scale of the thermalization dynamics,
see Fig. 2. This allows us to approximate ϕq ≈ ϕq+Q′ in
the appearing overlap integrals in the scattering matrices in
Eqs. (6), (B1), and (B2), i.e., we set∑

q

(ϕq)∗ϕq−β̃Q′ ≈ 1, (19)

and approximate other overlap integrals accordingly. In phys-
ical terms this means that we neglect that the overlap integrals
are slightly smaller than 1, as this is a small effect in this
regime. We carefully checked that in the limit of Eq. (17), the
full numerics [39] give very similar results with and without
this assumption, see Appendix C.

If we apply this approximation to all scattering tensors,
the long expressions for the overlaps of four and six wave
functions in Eqs. (B1) and (B2) can be reduced to analyti-
cally solvable expressions of the form

∑
q |ϕq|4 and

∑
q |ϕq|6,

respectively. This allows us to give analytic expressions de-
pending on a0 for the overlaps, which we introduce as the
dimension-dependent abbreviations Fd ,Bd , d ∈ {2, 3}, see
Appendix D. These abbreviations allow for a dimension-
invariant derivation, making use of the fact that after the
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approximation, Eq. (19), the integrals over the wave function
give only an analytically computable factor and a dependence
of the Bohr radius a0, for the fermionic term ad

0 , and for the

exchange term even (ad
0 )

2
. We furthermore identify the exci-

ton density n̄, Eq. (7). This allows us to significantly simplify
the main equation to

∂t NQ ≈ 2π

h̄

∑
Q′α±

∣∣gcα
Q′−Q − gvα

Q′−Q

∣∣2

×
[(

1

2
± 1

2
+ nα

|Q−Q′|

)
δ
(
EQ′ − EQ ± h̄ωα

|Q−Q′|
)
NQ′ −

(
1

2
± 1

2
+ nα

|Q−Q′|

)
δ
(
EQ′ − EQ ∓ h̄ωα

|Q−Q′|
)
NQ

+ (
NQ′NQ − 2n̄ad

0Fd
(
NQ′ + NQ

) + (
n̄ad

0

)2Bd
)(

δ
(
EQ − EQ′ + h̄ωα

|Q−Q′|
) − δ

(
EQ − EQ′ − h̄ωα

|Q′−Q|
))]

. (20)

Note that this approximate form, Eq. (20), is—as is the
full equation, Eq. (3)—density conserving, which can be
seen when executing the sum over all momenta (

∑
Q ∂t NQ).

For the nonlinearities, the density is conserved for each
term separately, simply because the sum

∑
QQ′α δ(EQ − EQ′ +

h̄ωα
|Q−Q′|) − δ(EQ − EQ′ − h̄ωα

|Q′−Q|) = 0.
Equation (20) allows for a better understanding of the

derived full excitonic scattering equation, Eq. (3). First of all,
the second line represents the classical, linear case, which at
approaching equilibrium drives the exciton distribution into
the classical Maxwell-Boltzmann distribution. The tempera-
ture enters here directly via the phononic occupation number
nα

Q(T ), i.e., the phonon equilibrium Bose distribution; thus
the second line of Eq. (20) corresponds to the classical ther-
malization dynamics in dilute gases [52,67,68]. Above the
low-density limit, terms of the order of n̄2 become relevant,
leading to a deviation from the Maxwell-Boltzmann distribu-
tion in equilibrium.

The last line of Eq. (20) accounts for these different non-
linearities induced by quantum effects beyond the classical
gas dynamics. Evidently, all nonlinearities share the same
phonon prefactor and energy-momentum selection rules. The
first term, scaling as NQ′NQ, corresponds to the ideal, bosonic
case and is independent of the unitless parameter η = n̄ad

0 (it
is dependent on the density n̄ via the square of the occupation,
but not on the Bohr radius, as we will see in the following). In
contrast, the corrections due to the fermionic substructure of
the excitons are typically scaling in orders of n̄ad

0 [33,35], and
it thus is intuitive that also in the case of Eq. (3) those terms
depend on this unitless parameter; the occurring nonlinearity
with negative sign goes linear in η, the attractive exchange
even with the square, η2.

Equation (20) also makes a fact visible which will be-
come important in the following: The bosonic, stimulated
scattering, i.e., the first nonlinear term, is dependent not
only on the occupation NQ itself but also on the occupation
of the respective scattering partner NQ′ , with the momen-
tum Q′ determined by the Fermi selection rules [last line
in Eq. (20)]. For the stimulated scattering, especially the
scattering to the ground state (the Q = 0 mode) this is de-
cisive. In the following we treat the scattering momentum
provided by the phonons to fill the ground state as a key
parameter for the classification of the exciton thermalization
as of bosonic or fermionic tendency. We denote the respective

momentum for scattering to the ground state Qphon. Tak-
ing the phonon dispersion into account, for inelastic, optical
phonon scattering, this momentum is comparatively large,
typically in the range of Qphon ≈ 1 nm−1 for TMDC mono-
layers, while acoustic phonons show angular dependent, yet
significantly smaller momenta in the range Qphon ≈ 0.05 −
0.1 nm−1 [47,48,53,69]. As a consequence, the occupation
of the modes that provide the scattering to the ground state
are significantly higher populated for acoustic phonons than
for optical ones, as is illustrated for a monolayer MoSe2 at
T = 10 K in Fig. 3. This is important, since the fermionic
Pauli repulsion occurs independent of this specific occupation
NQphon but sums over all occupations and is thus indepen-
dent of the scattering momentum, i.e., the second and third

FIG. 3. Visualization of the occupation NQ′ of the scattering part-
ner for the lowest Q = 0 mode, compared to NQ=0, see Eq. (20), but
also in the main equation, Eq. (3). We show exemplary values at
T = 10 K, the lower the temperature, the lower also the occupation
of the scattering partners. We can see that for acoustic, i.e., rather
elastic phonon scattering, the occupation of the scattering partner is
high enough that the bosonic nonlinearity can win over the fermionic
term in Eq. (20). For optical scattering the occupation of the exciton
state that scatters to the ground mode is almost unoccupied. Thus, the
repulsion will win over the stimulated scattering, as it is independent
of this occupation.
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nonlinearities in Eq. (3), scaling with n̄ad
0 and (n̄ad

0 )2, and do
not rely on high values of the occupation NQphon compared to
the occupation of the ground mode, NQ=0. Thus, for dominant
optical, i.e., inelastic phonon scattering, the excitonic thermal-
ization cannot be bosonic, as we will show in more detail in
the following.

B. Small deviations from the classical Maxwell-Boltzmann limit

In the following, we focus on small deviations from the
classical thermalization, as we are only interested in the first
deviation from the classical thermalization. Thorough numer-
ical studies [39] always suggested monotonous behavior of
bosonic or fermionic deviations with density for a set of
exciton mass and temperature. It is therefore sufficient to

concentrate on densities where the equilibrated occupation
shows the first small deviations δNQ = NQ − NMB

Q compared
to a classical thermalization distribution NMB

Q (which follows a
Maxwell-Boltzmann statistics). At even higher densities, this
trend set by the first deviations is only intensified, resulting
in stronger deviations of the same kind (bosonic or fermionic
compared to a classical distribution). This allows us to write
an equation of this deviation in leading order of δNQ. In the
Boltzmann limit, the occupations for a given exciton density
n̄ read for arbitrary dimension d

NMB
Q ≈ (2π

1
2 λth)d n̄e−λ2

thQ2
. (21)

The prefactor can be obtained by using the definition of the
exciton density n̄, Eq. (7), for normalization. Assuming δNQ
to be small allows us to rewrite Eq. (20) to

∂t
(
NMB

Q + δNQ
) ≈ 2π

h̄

∑
Q′α±

∣∣gcα
Q′−Q − gvα

Q′−Q

∣∣2

×
[(

1

2
± 1

2
+ nα

|Q−Q′|

)
δ
(
EQ′ − EQ ± h̄ωα

|Q−Q′|
)
NMB

Q′ −
(

1

2
± 1

2
+ nα

|Q−Q′|

)
δ
(
EQ′ − EQ ∓ h̄ωα

|Q−Q′|
)
NMB

Q

+
(

1

2
± 1

2
+ nα

|Q−Q′|

)
δ
(
EQ′ − EQ ± h̄ωα

|Q−Q′|
)
δNQ′ −

(
1

2
± 1

2
+ nα

|Q−Q′|

)
δ
(
EQ′ − EQ ∓ h̄ωα

|Q−Q′|
)
δNQ

+ ((
NMB

Q′ NMB
Q + δNQ′NMB

Q + NMB
Q′ δNQ + δNQ′δNQ

) − 2n̄ad
0Fd

[
NMB

Q′ + δNQ′ + NMB
Q + δNQ

] + n̄ad
0 ]

)2Bd
)

× (
δ
(
EQ − EQ′ + h̄ωα

|Q−Q′|
) − δ

(
EQ − EQ′ − h̄ωα

|Q′−Q|
))]

. (22)

First of all, ∂t (NMB
Q ) = 0 (the equilibrated classical distribution is constant in time). Besides, the first two terms of Eq. (22)

cancel each other out, as can be directly seen when inserting Eq. (21), and which has to be the case, as the Boltzmann statistics
solve the classical Boltzmann scattering equation [17,52,71]. Then, the leading order is identified, with 1 � NQ � NQNQ �
δNQ � NQδNQ � δNQδNQ, which gives

∂t
(
δNQ

) ≈ 2π

h̄

∑
Q′α±

∣∣gcα
Q′−Q − gvα

Q′−Q

∣∣2

×
[(

1

2
± 1

2
+ nα

|Q−Q′|

)
δ
(
EQ′ − EQ ± h̄ωα

|Q−Q′|
)
δNQ′ −

(
1

2
± 1

2
+ nα

|Q−Q′|

)
δ
(
EQ′ − EQ ∓ h̄ωα

|Q−Q′|
)
δNQ

+ (
NMB

Q′ NMB
Q − 2n̄ad

0Fd
[(

NMB
Q′

) + (
NMB

Q

)] + (n̄ad
0 )2Bd

)(
δ
(
EQ − EQ′ + h̄ωα

|Q−Q′|
) − δ

(
EQ − EQ′ − h̄ωα

|Q′−Q|
))]

.

(23)

The tendency of δNQ towards a distribution that is more fermionic (negative at Q = 0) or bosonic (positive at Q = 0) than the
classical equation will essentially depend on the sign of the inhomogeneous part of Eq. (23), which is why we can focus on the
inhomogenic source terms of the equation ∂t (δNQ) and thus neglect the homogenous part, i.e., the contributions linear in δNQ on
the right side, which, after inserting Eq. (21), gives

∂t (δNQ) ≈ 2π

h̄

∑
αQ′

∣∣gcα
Q′−Q − gvα

α,Q′−Q

∣∣2
π2n̄2

(
(2π

1
2 λth)2d e−λ2

thQ′2
e−λ2

thQ2 − 2(2π
1
2 λth)d ad

0Fd (e−λ2
thQ′2 + e−λ2

thQ2
) + (

ad
0

)2Bd
)

× (
δ
(
EQ − EQ′ + h̄ωα

|Q−Q′|
) − δ

(
EQ − EQ′ − h̄ωα

|Q′−Q|
))

. (24)

In Eq. (24), all three terms appear consistently in second
order in n̄. However, the first term, the ideal bosonic non-
linearity, is entirely independent of the Bohr radius a0 and
just depends on the thermal wavelength λth, i.e., it will be-
come important at low temperatures and for small excitonic

masses, as one would expect for ideal bosons. The fermionic
corrections, however, depend on the Bohr radius a0. In or-
der to predict the sign of the nonlinearity, Eq. (24), with
respect to the ground state, we compute the equation for the
occupation at Q = 0, which allows us to eliminate the

∑
Q′
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by the Fermi rule δ functions. This is in principle possi-
ble for arbitrary phonon dispersions, as long as one has an
analytic expression for the phonon energy h̄ωα . To give an
example, we illustrate it here for a monolayer TMDC, where
typically, for optical phonons, one can assume zeroth-order
deformation potential, i.e., h̄ωopt ≈ Eopt = const. [53,69], and

thus Qopt
phon =

√
2M
h̄2 Eopt, while for acoustical phonons, one

can typically assume first-order deformation potential, thus a
linear dispersion h̄ωakk ≈ kcakk [53,69], and hence Qakk

phon =
2M
h̄2 cakk . This is, however, only to give an example; in other

materials, different phonon modes are important and hence the
values of the momentum are also different. In the following
we only assume that we obtained a Qα

phon from the Dirac δ and
eliminated the

∑
Q′ in Eq. (24). This gives

∂t (δNQ=0) = Ld

h̄πd−2

∑
α

Qα
phon

∣∣gcα
Qα

phon
− gvα

Qα
phon

∣∣2
n̄2

(
(2π

1
2 λth)2d e−λ2

th (Qα
phon )2 − 2(2π

1
2 λth)d ad

0Fd
(
e−λ2

th (Qα
phon )2 + 1

) + (
ad

0

)2Bd
)
,

(25)

or, in 2D, i.e., for d = 2,

∂t (δNQ=0) = L2

h̄

∑
α

Qα
phon

∣∣gcα
Qα

phon
− gvα

Qα
phon

∣∣2
16π2n̄2

(
λ4

the−λ2
th (Qα

phon )2 − 8

5
λ2

tha2
0(e−λ2

th (Qα
phon )2 + 1) + a4

0

)
︸ ︷︷ ︸

≡λ4
th f α

2D( a0
λth

,λthQα
phon )

, (26)

and in 3D, i.e., d = 3,

∂t (δNQ=0) = L3

h̄

∑
α

Qα
phon

∣∣gcα
Qα

phon
− gvα

Qα
phon

∣∣2
16π2n̄2

(
64λ6

thπe−λ2
th (Qα

phon )2 − 264
√

πa3
0λ

3
th(e−λ2

th (Qα
phon )2 + 1) + a6

0
4199

8

)
︸ ︷︷ ︸

≡λ6
th f α

3D( a0
λth

,λthQα
phon )

. (27)

IV. RESULTS IN UNITLESS PARAMETERS

A. Individual phonon branches

In Eq. (3), typically, both acoustic and optical phonon
modes contribute to the index α. In the following we treat
the phononic modes individually to determine the sign of
the combined nonlinearities of each phononic mode on the
energetically lowest excitonic state at Q = 0. The border
f α
d ( a0

λth
, λthQα

phon) = 0 between fermionic and bosonic behav-
ior is determined by setting δNQ=0 = 0:

0 = (
(2π

1
2 λth)2d e−λ2

th (Qα
phon )2 − 2ad

0Fd (2π
1
2 λth)d

× (e−λ2
th (Qα

phon )2 + 1) + (
ad

0

)2Bd
))

. (28)

When divided by (λd
th)2, we can rewrite Eqs. (26) and (27)

to

f α
2D

(
a0

λth
, λthQα

phon

)

= 16e−λ2
th (Qα

phon )2 − 32

5

a2
0

λ2
th

(e−λ2
th (Qα

phon )2 + 1) + a4
0

λ4
th

, (29)

and for d = 3,

f α
3D

(
a0

λth
, λthQα

phon

)

= πe−λ2
th (Qα

phon )2 − 33

8

√
π

a3
0

λ3
th

(e−λ2
th (Qα

phon )2 + 1)

+ a6
0

λ6
th

4199

512
. (30)

Interestingly, only the dimensionless parameters a0
λth

and
λthQphon (or, as later shown, equivalently a0Qphon) determine
the dynamics. Figure 4 is a plot of the sign of Eqs. (29) and
(30) over the unitless parameters a0

λth
and λthQphon. This plot

in principle applies in general for different semiconductor
materials, as long as phonon scattering of two- or three-
dimensional semiconductor excitons dominates the dynamics.
For both two- and three-dimensional excitons, one can see
that as expected, the excitons become more bosonic with
decreasing Bohr radius a0, with 3D excitons being even more
sensitive towards this radius, which makes sense as it enters
the equation in powers of ad

0 , thus more dimensions d make
the dependency stronger.

In Appendix E we show that the limiting case of ideal
bosonic behavior is included, which makes sense mathemati-
cally, when setting a0 = 0 in Eqs. (29) and (30), only the first
term prevails, which stands for bosonic stimulated scattering
to the ground state similar to the behavior of ideal bosons. In
the same Appendix we also provide log plots showing that
this limiting case is only approached very slowly; thus for all
realistic Bohr radii we always have strong contributions from
the fermionic corrections.

In order to relate our findings to experimentally reasonable
values for the unitless parameters, we exemplarily provide
positions in this parameter plane for TMDC excitons, which
we estimate to have a Bohr radius of a0 = 2 nm and a mass
of M = 1.1 mel . This allows us to give exemplary lines for
temperature (vertical) and for typical phonon momenta Qphon

(the momentum that a typical scattering event requires for
scattering to the ground state). It becomes evident from Fig. 4
that optical phonon processes require too large momenta to
make bosonic behavior probable, while acoustical phonons
are more likely to favor bosonic thermalization. The fact that
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FIG. 4. Plot of the sign of the nonlinearities deciding the thermal-
ization occupation of the ground state as a function of the unitless
parameters a0

λth
and λthQα

phon. Blue stands for a positive sign of

f α
d ( λth

a0
, λthQα

phon), indicating bosonic thermalization behavior, and
red stands for a negative sign, respectively indicating fermionic be-
havior compared to the classical distribution. (a) 2D case, Eq. (29).
The gray lines in the 2D plot show temperatures and λthQphon values
for typical TMDC parameters, i.e., a0 = 2 nm and M = 1.1 mel , in
order to give an orientation in the parameter plane. (b) Same plot for
the 3D case, Eq. (30). (Above a0

λth
> 1 in principle there is another

parameter range with positive sign; however, the approximations we
made require a0 	 λth, and thus we show only the region that is in
accordance with this approximation).

the bosonic first term in Eqs. (29) and (30) only for very small
scattering momenta dominates the second term, its fermionic
counterpart is here encoded in the exponential function we
inserted for the occupation of the scattering partner NQphon .
Large momenta between the excitonic states for optical
phonon scattering lead to small occupation of the scattering
partner, as already shown in Fig. 3. Inelastic, optical phonon
scattering therefore hinders bosonic thermalization. This is in
very good agreement with our findings from the full numerics
[39].

A shortcoming of the plot in Fig. 4 is that it is not
very intuitive to read temperature dependencies from it. We
therefore provide another set of equations, where λth is only
on one axis and thus the temperature dependence can be
seen more directly. We will see that it does not alter our
main finding that optical phonon modes (or, more gener-

ally, inelastic phonon scattering) inhibit stimulated scattering
effects.

The whole expressions of Eqs. (26) and (27) divided by
(a2

0)d read for 2D

gα
2D

(
λth

a0
, a0Qα

phon

)

= 16
λ4

th

a4
0

e
− λ2

th
a2

0
(a0Qα

phon )2

− 32

5

λ2
th

a2
0

(e
− λ2

th
a2

0
(a0Qα

phon )2

+ 1) + 1

(31)

and for 3D

gα
3D

(
λth

a0
, a0Qα

phon

)

= π
λ6

th

a6
0

e
− λ2

th
a2

0
(a0Qα

phon )2

− 33

8

√
π

λ3
th

a3
0

(e
− λ2

th
a2

0
(a0Qα

phon )2

+ 1) + 4199

512
. (32)

(Note that we rewrote also the arguments of the exponentials
in order to express everything with respect to the same unitless
parameters.) Figure 5 is a plot of the sign of Eqs. (31) and
(32) as a function of the unitless parameters λth

a0
and a0Qα

phon.
From the plot we can see that in order to expect bosonic
signatures, the temperature has to be chosen low enough that
for the respective particle mass, λth can compensate the Bohr
radius a0. Furthermore, one requires values of Qα

phon 	 1
a0

for

2D excitons or Qα
phon 	 1

2a0
in the 3D case. Such low scat-

tering momenta typically can only be provided by acoustic,
quasielastic phonon scattering. For larger Qα

phon, the fermionic
nonlinearity dominates [to be precise, the +1 next to the
respective exponential function wins for too large values of
Qα

phon in Eq. (31)]. Interestingly, 3D excitons are even more
temperature sensitive, with only a comparatively small win-
dow of temperatures apparently allowing for bosonic behavior
if the dominant phonon process is elastic enough.

For TMDC excitons, we can again estimate a0 = 2 nm and
M = 1.1 mel and give exemplary lines for temperature (verti-
cal) and for typical phonon momenta Qα

phon (the momentum
that a typical scattering event requires for scattering to the
ground state). For the example of TMDC excitons, tempera-
tures between 1 and 10 K look promising for acoustic phonon
branches to give positive values, i.e., dominant bosonic sig-
natures. As discussed earlier, optical phonon scattering to
the ground state requires much larger momenta, since those
scattering processes are much less elastic. The Qopt

phon are thus
typically one order of magnitude larger than for the acoustic
branches, at least in the monolayer [47,48]. They will thus
contribute with a negative sign and lead to a fermionic ther-
malization behavior.

B. Sum over phonon branches

In the more realistic case of taking all phonon branches
into account that are relevantly contributing to the scattering
process, we have to consider the sum over α in Eq. (25) and
thus get prefactors for the contributions from the different
branches, which depend on the Qα

phon of the respective phonon
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FIG. 5. Plot of the sign of the nonlinearities deciding the ther-
malization occupation of the ground state as a function of the
unitless parameters λth

a0
and a0Qα

phon. Blue stands for a positive sign of

gα
d ( λth

a0
, a0Qα

phon), indicating bosonic thermalization behavior, and red
stands for a negative sign, respectively indicating fermionic behavior
compared to the classical distribution. (a) 2D case, Eq. (31). The gray
lines show temperatures and a0Qphon values for typical TMDC pa-
rameters for orientation, i.e., a0 = 2 nm and M = 1.1 mel . (b) Same
plot for the 3D case, Eq. (32).

mode α, which can be written as

hd

(
λth

aB
, λth

)

=
∑

α

Qα
phon

∣∣gcα
Qα

phon
− gvα

Qα
phon

∣∣2
f α
d

(
λth

aB
, λthQα

phon

)
. (33)

For the example of TMDC excitons, the relation between
optical and acoustic phonon scattering branches is

Qopt
phon

∣∣gc,opt
Qphon

− gv,opt
Qphon

∣∣2 ≈ 2000 Qakk
phon

∣∣gc,akk
Qphon

− gv,akk
Qphon

∣∣2
. (34)

Due to the mentioned larger values for Qphon and the fact
that gc,v

Qphon
is significantly larger for the optical phonons, the

prefactor Qphon|gcα
Qphon

− gvα
Qphon

|2, for instance, is around 2000
times larger than for the acoustical branch in a TMDC mono-
layer [47,48,51]. This also applies for the linear equation;
however, there the acoustic phonons become important once
the nα

Q′ � 1, while the optical mode freezes out [52,53,67].
However, the nonlinear terms are not directly dependent on

temperature; thus for the nonlinearity, optical phonon modes
will probably always dominate, at least in monolayer TMDCs.

van der Waals heterostructures of TMDCs and excitons in
other kinds of semiconductors may show different behavior if
the optical phonon modes are absent, or less dominant. Our
study suggests that the macroscopic occupation of the lowest
state becomes more probable in systems with dominating
acoustic phonons. This is supported by the full numerical
solution of Eq. (3). If we simulate the thermalization for
only acoustical phonon branches, the thermalization shows a
bosonic behavior for much larger Bohr radii, far beyond the
TMDC limit of a0 = 2 nm, as can be seen in Fig. 2(b) of
Ref. [39].

V. CONCLUSION

We analytically discussed a recently derived equation for
the exciton-phonon kinetics [39] above the linear zero density
limit. The kinetic equation is microscopically derived from
the electron-hole picture, taking the next order in η = n̄ad

B into
account, thus going beyond the bosonic commutator relation
for those composite particles. In a fully analytic approach,
we discussed the effect of Bohr radius, thermal wavelength,
and typical phonon scattering momentum on the ground-state
occupation to study the question of whether the overall ther-
malization can be considered bosonic or fermionic and make
general statements within a framework of unitless parameters,
such as a0

λth
, λthQphon, and a0Qphon. Conducting the derivation

in a dimension-independent approach allowed us to give pre-
dictions for both 2D and 3D exciton systems. As demonstrated
before in our numerical study [39], also in the analytical limit
we show drastic deviations from a purely bosonic behavior,
and show that for typical Bohr radii of around a0 = 2 nm for
TMDC excitons, the compound particles cannot be consid-
ered bosonic and thus are not likely to show macroscopic
occupation effects for the ground state, as long as optical
phonon scattering dominates the thermalization dynamics. For
significantly smaller Bohr radii, such as, for instance, the
reported a0 ≈ 0.6 nm for the antiferromagnet van der Waals
material NiPS3 [72], or with absent optical phonon modes
at low temperatures, we showed that the respective excitons
can be expected to show a bosonic behavior, as the bosonic
stimulated scattering in this regime would overcompensate the
weaker fermionic Pauli blocking.
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APPENDIX A: DERIVATION OF THE EXCITONIC
SCATTERING EQUATION

The excitonic Boltzmann scattering equation, Eq. (3) of the
main manuscript, was derived thoroughly in the Supplemental
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Material of Ref. [39]. We repeat the most important steps of
this derivation here for completeness. The starting point of
the derivation is the fundamental electronic semiconductor
Hamiltonian [44], Eq. (2) of the main manuscript, where all
interactions are introduced with respect to the actual car-
riers λ(†) ∈ {c(†), v(†)}, i.e., the electrons in conduction and
valence band. In our analysis we focus on the dynamics of
the exciton occupation Nν

Q, which we define as a function of
these elementary electron and hole operators in Eq. (1) of the
main manuscript, where ν denotes the exciton state (we later
focus on ν = 1s) and Q the center-of-mass wave number. This
description in the excitonic basis is possible via application of
the Wannier equation [35,65]

h̄2q2

2μ
ϕν

q +
∑

k

Vkϕ
ν
q+k = E νϕν

q, (A1)

and by introducing center-of-mass momenta Q and relative
momenta q,

Q′ = k1 − k2 Q = k4 − k3 (A2)

q′ = α̃k2 + β̃k1 q = α̃k3 + β̃k4 (A3)

k2 = q′ − β̃Q′ k3 = q − β̃Q (A4)

k1 = q′ + α̃Q′ k4 = q + α̃Q, (A5)

where α̃ = me
me+mh

and β̃ = mh
me+mh

give the relative mass of
electron and hole. To obtain the dynamics of the exciton
occupation, Eq. (1), the Heisenberg equation of motion for
the following set of electron and hole operators is com-
puted with respect to the fundamental electronic Hamiltonian,
Eq. (2):

ih̄∂t 〈c†
k1

vk2v
†
k3

ck4〉 = (
εc

k4
− εc

k1
+ εv

k2
− εv

k3

)〈c†
k1

vk2v
†
k3

ck4〉 −
∑

q

Vq(〈c†
k1

vk2v
†
k3−qck4−q〉 − 〈c†

k1+qvk2+qv
†
k3

ck4〉)

+
∑
Kα

(
gcα

K

(〈
c†

k1
vk2v

†
k3

ck4−K
(
bα

K + b†α
−K

)〉 − 〈
c†

k1+Kvk2v
†
k3

ck4

(
bα

K + b†α
−K

)〉)
+ gvα

K

(〈
c†

k1
vk2−Kv

†
k3

ck4

(
bα

K + b†α
−K

)〉 − 〈
c†

k1
vk2v

†
k3+Kck4

(
bα

K + b†α
−K

)〉))
. (A6)

The first line of Eq. (A6) is later summed up in the excitonic dispersion by utilizing Eqs. (A1) and (A2). In order to close
Eq. (A6), for the last two lines, i.e., the phononic interactions, it is necessary to compute another set of Heisenberg equations of
motion for the phonon-assisted occupation, as given here exemplarily with

ih̄∂t
〈
c†

k1
vk2v

†
k3

ck4 b(†)α
∓K

〉 = (
εc

k4
− εc

k1
− εv

k3
+ εv

k2
∓ h̄ωα

∓K

)〈
c†

k1
vk2v

†
k3

ck4 b(†)α
∓K

〉
−

∑
q

Vq
(〈

c†
k1

vk2v
†
k3−qck4−qb(†)α

∓K

〉 − 〈
c†

k1+qvk2+qv
†
k3

ck4 b(†)α
∓K

〉)
+ gcα

−K

(〈c†
k1

vk2v
†
k3

ck4+K〉nα
K − 〈c†

k1−Kvk2v
†
k3

ck4〉
(
1 + nα

K

))
− gvα

−K

(〈c†
k1

vk2v
†
k3−Kck4〉nα

K − 〈c†
k1

vk2+Kv
†
k3

ck4〉
(
1 + nα

K

))
± (

1 + nα
K − nα

K

)∑
λk

gλα
−K〈c†

k1
vk2λ

†
k−Kλkv

†
k3

ck4〉, (A7)

where we made two assumptions. We neglect higher-order
phonon-exciton correlations, as they are of fourth order in the
phononic coupling element gλα

K [52,55,73]:

〈λ†
1λ2λ

†
3λ4b†

1b2〉 ≈ 〈λ†
1λ2λ

†
3λ4〉〈b†

1b2〉. (A8)

Furthermore, we assume a Markovian reservoir for the
phonons, i.e.,〈

bα
Kb†α

K′
〉 ≈ (

1 + nα
K

)
δK,K′

〈
bα

Kbα
K′

〉 ≈ 0, (A9)

with the phononic occupation given by a standard Bose-
Einstein statistics [51,67]

nα
K = 1

exp
( h̄ωα

K
kBT

) − 1
. (A10)

When one transforms Eqs. (A6) and (A7) to the exciton
picture, leaves out the last term of Eq. (A7), and solves the
set of equations in a Born-Markov framework, one obtains
the classical Boltzmann scattering equation for the excitonic
occupation, as it was documented many times in litera-
ture [17,19,52], and which resembles the classical part of
Eq. (3), namely, Eq. (4) of the main manuscript. This equation

describes the phonon-scattering-induced dynamics of exci-
tons, as long as the exciton density is low enough to justify
the omission of terms second order in Nν

Q. In order to include
these second-order terms, it is necessary to compute also the
last term in Eq. (A7). To close the equation in terms of the
exciton operators in undoped materials, where electrons and
holes appear always in pairs, we can expand this expectation
value of unequal electron and hole number in terms of the
unit operator introduced by Ivanov and Haug [33,35] to the
first order:

1 =
∑

k′
c†

k′ck′ + vk′v
†
k′ , (A11)

which gives∑
λk

gλα
−K〈c†

k1
vk2λ

†
k−Kλkv

†
k3

ck4〉

=
∑
kk′

(
gcα

−K〈c†
k1

vk2 c†
k−Kvk′v

†
k′ckv

†
k3

ck4〉

− gvα
−K〈c†

k1
vk2 c†

k′vkv
†
k−Kck′v

†
k3

ck4〉
)
. (A12)
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Applying again the Born-Markov approximation, the resulting
eight-operator quantities then have to be factorized as follows
[33,36,74]:

〈P†
12P†

34P56P78〉 ≈ 〈P†
12P56〉〈P†

34P78〉 + 〈P†
12P78〉〈P†

34P56〉
− 〈P†

12P58〉〈P†
34P76〉 − 〈P†

12P76〉〈P†
34P58〉

− 〈P†
14P56〉〈P†

32P78〉 − 〈P†
14P78〉〈P†

32P56〉
+ 〈P†

14P58〉〈P†
32P76〉 + 〈P†

14P76〉〈P†
32P58〉,

(A13)

where we abbreviated

P12 = v
†
k1

ck2 , P†
12 = c†

k2
vk1 , (A14)

and so forth. From Eqs. (A12)–(A14), a long and tedious, but
rather straightforward computation is necessary, including,
as for the classical case, the transformation to the excitonic
basis and a solution in the Markov framework, in analogy
to the derivation of the classical Boltzmann equation. Before
resulting in the excitonic scattering equation, Eq. (3) of the
main manuscript, one last assumption is necessary. As we
are interested only in the incoherent scattering of exciton
occupations, i.e., we only want the final equation to comprise
terms like Nν

Q and (Nν
Q)2, we apply a random phase approx-

imation for the appearing products of each of two exciton
operators, e.g.,〈

P†,λ
Q Pν ′

k+K

〉〈
P†,λ′

k Pν
Q−K

〉 ≈ δλν ′
k,Q−Kδλ′νNλ

QNν
Q−K. (A15)

In summary, the following assumptions were made throughout
the derivation:

(1) The electron-phonon interaction is weak enough to
justify a treatment in second-order Born approximation, and

the phonon reservoir is equilibrating on a timescale much
faster than the excitons, which justifies the assumption of a
Markovian phonon reservoir.

(2) The semiconductor is uncharged, allowing for the
omission of trions, which is a necessary condition for the
application of the unit operator method by Ivanov and Haug
[33,35].

(3) This unit operator method is applied to its first order,
resulting in terms of the order (NQ)2. Note that the dimension-
less parameter η = n̄ad

0 (which we introduced in the main text
as dependent on the exciton density n̄ and the Bohr radius a0
in d dimensions) is restricted here to the density regime one
order higher in η than in the classical case [33,35]. For even
higher densities, our equation is no longer valid. Also, the
closer the density gets to the Mott transition, the weaker the
exciton picture becomes anyway, and a electron-hole picture
might be more appropriate.

(4) Random phase approximation: Coherent, nondiagonal
terms in Eq. (A15), as well as biexcitons and the like, are
excluded from the equation, as we focus on the incoherent,
“long-time” thermalization of the excitons. This implies also
that the derived equation is most valuable for long-lived ex-
citons, e.g., dark excitons [75] or interlayer excitons in 2D
materials [2,76], where the excitonic lifetime is long enough
to allow the exciton to fully thermalize before it recombines.

APPENDIX B: WAVE-FUNCTION OVERLAPS

The wave-function overlaps for the fermionic tensors,
Eq. (11), read

gF,λν,ν ′
Q′Q,K,α =

∑
q

gcα
Q′−Q

((
ϕλ

q

)∗(
ϕν ′

q+β̃K+α̃Q′−Q

)∗
ϕν ′

q+β̃(K−Q′ )ϕ
ν
q−α̃(Q−Q′ ) + (

ϕλ
q

)∗(
ϕν ′

q−α̃(K−Q′ )
)∗

ϕν ′
q−α̃(K−Q′ )ϕ

ν

q+β̃(Q−Q′ )

)
− gvα

Q′−Q

((
ϕλ

q

)∗
(ϕν ′

q+β̃(K−Q′ ) )
∗ϕν ′

q+β̃(K−Q′ )ϕ
ν
q−α̃(Q−Q′ ) + (

ϕλ
q

)∗(
ϕν ′

q−α̃K−β̃Q′+Q)

)∗
ϕν ′

q−α̃(K−Q′ )ϕ
ν

q+β̃(Q−Q′ )

)
, (B1)

and for the exchange tensor, Eq. (13),

gE ,λνλ′ν ′
QQ′,K,K′,α =

∑
q

(
gcα

Q−Q′ (ϕν
q

)∗(
ϕλ′

q+α̃(Q−K′ )
)∗(

ϕν ′
q+β̃K+α̃Q−Q′

)∗
ϕν ′

q+β̃K−β̃Qϕλ′
q+α̃(Q−K′ )ϕ

λ
q+α̃(Q−Q′ )

+ gcα
Q−Q′

(
ϕν

q

)∗(
ϕλ′

q−K+β̃K′+α̃Q

)∗(
ϕν ′

q−α̃K+K′+α̃Q−Q′
)∗

ϕλ′
q+β̃K′−β̃Qϕν ′

q−α̃(K−Q)ϕ
λ
q−K+K′+α̃(Q−Q′ )

− gvα
Q−Q′

(
ϕν

q

)∗(
ϕλ′

q−α̃K′−β̃Q+Q′
)∗(

ϕν ′
q+β̃(K−Q)

)∗
ϕν ′

q+β̃(K−Q)ϕ
λ′
q−α̃K′+α̃Qϕλ

q−β̃(Q−Q′ )

− gvα
Q−Q′

(
ϕν

q

)∗(
ϕλ′

q−K+β̃K′−β̃Q+Q′
)∗(

ϕν ′
q−α̃K+K′−β̃Q

)∗
ϕλ′

q−β̃(Q−K′ )ϕ
ν ′
q−α̃K+α̃Qϕλ

q−K+K′−β̃(Q−Q′ )

)
. (B2)

APPENDIX C: NUMERICAL VALIDATION OF THE
LOW-TEMPERATURE ASSUMPTION

In Sec. III A we approximate the wave-function overlaps
to be close to unity in regimes where a0 	 λth, see Eq. (19).
This assumption was carefully validated by comparing the full
numerics we introduced in Ref. [39] to the same numerics
with the approximation taken into account. Figure 6 is an
exemplary plot for this comparison, showing that in the re-
spective parameter regime the approximation is justified.

APPENDIX D: INTEGRALS OVER WAVE FUNCTIONS

In Sec. III A we introduced abbreviations which essentially
give the result of integrals over not only two

∑
q |ϕq|2 = 1,

but four or six wave functions, to approximate the integrals of
Eqs. (B1) and (B2). In 2D this reads

Fd=2 = L2

a2
0

∑
q

|ϕq|4 = 4π

5
(D1)
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FIG. 6. (a) Full numerics of a 2D realization of Eq. (3) without
the low-temperature approximation, similar to the plots Fig. 2 and
Fig. S2 in Ref. [39]. (b) Same numerics, with the approximation
equation, Eq. (19), applied to all scattering tensors, Eqs. (6), (B1),
and (B2). Clearly, the results are very similar for the regime where
λth � a0 holds.

Bd=2 = L4

a4
0

∑
q

|ϕq|6 = π2 (D2)

and in 3D,

Fd=3 = L3

a3
0

∑
q

|ϕq|4 = 33π

2
, (D3)

Bd=3 = L6

a6
0

∑
q

|ϕq|6 = 4199π2

8
. (D4)

The computation of the 3D case involves solving integrals
with a Schwinger parametrization scheme,∫ ∞

0
dqq2 1(

1+ a2
0q2

)n = 1

�(n)

∫ ∞

0
dqq2

∫ ∞

0
dttn−1e−t (1+a2

0q2 )

= 1

�(n)

∫ ∞

0
dttn−1e−t

∫ ∞

0
dqq2e−ta2

0q2

=
√

π

4a3
0�(n)

�

(
n − 3

2

)
(D5)

for n ∈ {4, 8, 12}, respectively, after applying the analytic ex-
pression for the 3D wave function, Eq. (15), and converting

the sum to a three-dimensional integral in spherical coordi-
nates. It can be seen that Eq. (15) fulfills our normalization
condition,∑

q

|ϕq|2 = L3

2π2

∫ ∞

0
dqq2

∣∣8√
πa3

0/L3
(
1 + a2

0q2
)−2∣∣2 = 1.

(D6)

The same wave-function model is then again used to evaluate
also the higher-order integrals, namely,

∑
q

|ϕq|4 = L3

2π2

∫ ∞

0
dqq2

∣∣8√
πa3

0/L3
(
1 + a2

0q2
)−2∣∣4

= 33π

2L3
a3

0, (D7)

and∑
q

|ϕq|6 = L3

2π2

∫ ∞

0
dqq2

∣∣8√
πa3

0/L3
(
1 + a2

0q2
)−2∣∣6

= 4199π2

8L6
a6

0. (D8)

From this we can read off the abbreviations as they are given
above. The 2D integrals are more straightforward but are
treated analogously.

APPENDIX E: THE LIMIT OF SMALL BOHR RADII

Our theory comprises the ideal case of pure bosonic
particles for vanishing Bohr radius a0 = 0, where, e.g., in
Eqs. (29) and (30) only the nonlinearity for bosonic stimulated
scattering prevails, and the bosonic character occurs inde-
pendent of thermal wavelength (and thus of temperature and
particle mass) and independent of the details of the phonon
coupling. This limit is shown in Figs. 7(a) and 7(b), re-
spectively. However, this limit is of pure theoretical nature;
even for arbitrarily small but finite values of a0, the equa-
tion remains highly sensitive towards the phonon scattering
momentum, as can be seen in the log plot, Figs. 7(c) and 7(d).
Even for arbitrarily small Bohr radii the fermionic corrections
remain important.

APPENDIX F: EXEMPLARY MATERIAL
PARAMETERS FOR MoSe2

In most of the plots of this work we give exemplary, mate-
rial realistic values of monolayer MoSe2 for orientation. The
necessary parameters are given in this appendix. In Table I
we list standard literature constants in semiconductor units.
Table II gives the phonon dispersion of the four phonon modes
considered here. Table III gives details on the semiconductor
geometry and the dielectric tensor, which is necessary to ac-
curately compute the screening in the material [49,50]. Table
IV lists the effective masses of electron and hole, and Table V
gives the electron-phonon coupling. All listed values are taken
from ab initio literature as indicated. For details on the imple-
mentation of the parameters and the assumptions concerning
the exciton-phonon scattering, see also [39,51,53,67,68].
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FIG. 7. Plot of the sign of Eqs. (29) and (30). Blue stands for
a positive sign of f (a0/λth, λthQphon), and red for a negative one,
respectively. The gray lines for the 2D plots show temperature-
dependent λthQphon values for TMDC-like values, i.e., a0 = 2 nm and
M = 1.1 mel , analogous to Fig. 4. The main point here is that the
theoretical limit of a0 = 0 gives ideal bosons that show stimulated
scattering independent of the phonon scattering momenta. This limit,
however, is not experimentally accessible, as even for arbitrarily
small Bohr radii the fermionic corrections remain important.

TABLE I. Important constants in semiconductor units.

e 1 eC
c 299.7925 nm/fs
h̄ 0.658 212 196 eV fs
kB 8.617 45 ×10−5 eV/K
ε0 5.526 308 ×10−2 eC2/(eV nm)
μ0 2.013 384 742 ×10−4 eV fs2/(eC2 nm)
mel 5.685 680 0 fs2 eV/nm2

mP 10 439.604 13 fs2 eV/nm2

TABLE II. Phonon dispersion. Velocity of sound for the acoustic
long-range modes ci and phonon energies h̄ωi for optical modes,
taken from [48].

cLA/10−3nm fs−1 4.1 cTA/10−3nm fs−1 4.1

h̄ω� A′
/meV 30.3 h̄ω� T O/meV 36.1

TABLE III. General material parameters. We give the lattice
constant a0 and the distance between the two selenium atoms d0.
Additionally, we require the in-plane component of the respective
dielectric tensor.

a0/nm 0.3319 [77]
d0/nm 0.343 71 [77]
ε⊥ 15.27 [69]

TABLE IV. Effective masses taken from first-principle computa-
tions (PBE) [45].

m↑
eK/mel 0.50

m↑
hK/mel 0.60

TABLE V. Electron phonon coupling. Electron phonon coupling
parameters in effective deformation potential approximation. The
electron phonon matrix element is then given by gi =

√
h̄

2ρωiA
Vq,

with ρ being the mass density of the unit cell and A being the
semiconductor area (which cancels for all calculations). In the case
of acoustic long-range phonons, the coupling is given by the first-
order deformation potential Vq = D1q, whereas in the case of optical
phonons and zone edge phonons, the coupling is given by zeroth-
order deformation potential coupling Vq = D0. The parameters were
taken from Refs. [47,48].

Trans. (Momentum) Conduction band Valence band

K → K (�) Da
1/eV 3.4 Da

1/eV 2.8

Do
0/eV nm−1 52 Do

0/eV nm−1 49
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