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The prediction and subsequent discovery of topological semimetal phases of matter in solid state systems has
instigated a surge of activity investigating the exotic properties of these unusual materials. Among these are
transport signatures which can be attributed to the chiral anomaly; the breaking of classical chiral symmetry in
a quantum theory. This remarkable quantum phenomenon, first discovered in the context of particle physics has
now found new life in condensed-matter physics, connecting topological quantum matter and band theory with
effective field theoretic models. In this paper we investigate the interplay between interactions and the chiral
anomaly in field theories inspired by semimetals using Fujikawa’s path integral method. Starting from models
in one spatial dimension we discuss how the presence of interactions can affect the consequences of the chiral
anomaly leading to renormalization of excitations and their transport properties. This is then generalized to the
three-dimensional case where we show that the anomalous response of the system, namely, the chiral magnetic
and quantum Hall effects, are modified by the presence of interactions. These properties are investigated further
through the identification of anomalous modes which exist within interacting Weyl semimetals. These massive
excitations are nonperturbative in nature and are a direct consequence of the chiral anomaly. The effects
of interactions on mixed axial-gravitational anomalies are then investigated and the conditions required for
interaction effects to be observed are discussed.
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I. INTRODUCTION

The state of a physical system is defined through pa-
rameters that fully determine its configuration. Two distinct
physical states have distinct values of these parameters. For
example, the state of a point particle in three dimensions can
be determined by the generalized coordinates x = (x, y, z).
Changing x takes the particle to different positions in the
three-dimensional space. A transformation x → T [x] then
yields a different physical state. While the two states x and
T [x] are different, the physical laws that govern x and T [x]
can be identical; then T is a symmetry of the physical laws,
i.e., the theory. In other words, if T is a symmetry transfor-
mation, the physical description of the system will be blind to
the difference between x and T [x]. For example in the action
functional formulation, given a T that preserves the action
functional, if the physical path xph minimizes the action then
also will T [xph].

There are two prominent types of physical descriptions:
classical and quantum. The quantum description is canoni-
cally derived from the classical one. So one expects that if x
and T [x] are governed by identical classical laws they should
also be governed by the corresponding identical quantum
laws. In other words, one expects a symmetry of the classical
theory to be also a symmetry of the corresponding quantum
theory. However, peculiarly enough, that will not always be
the case, due to the existence of quantum anomalies: In some
cases the quantum theory will distinguish between the two
states; the classical symmetry is ruined after quantization. It
means that quantum corrections know something about the

system that the classical description is completely ignorant
about.

For every symmetry there is a corresponding conserved
Noether current. Thus, anomalies which destroy a classical
symmetry consequently ruin a classical conservation law, giv-
ing rise to a source term which is usually called the anomalous
term. This nonvanishing source term is responsible for the
decay of the neutral pion—the phenomenon which would
have been suppressed if not for quantum anomalies and thus
led to their discovery [1–5].

Anomalies are hence purely quantum mechanical and
therefore become of even greater interest when one finds out
that there are macroscopic phenomena based on these beings
which dwell deep in the quantum realm. One example of such
macroscopic phenomena are anomalous transport signatures
in condensed-matter systems.

Quantum anomalies are among many concepts that have
originated in high-energy physics but have gradually found
their way into condensed-matter physics. In this paper we will
be concerned with the chiral anomaly and its corresponding
anomalous term which supplies the nonconservation of the
chiral current. In condensed-matter systems such as crystals,
chiral symmetry is an emergent property, since the periodic
nature of the crystal results in a periodic band structure
which allows for exactly as many left-handed chiral modes
as there are right-handed ones. In other words, if a band
crosses the Fermi surface at one point it will cross the Fermi
surface back at least at one other point due to the periodicity
of the band structure [6–9]. As a consequence, exciting the
system will generate left-moving particles around one point
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while it produces right-moving particles around the other. So
a definite chirality cannot be attributed to a specific band.
Even though chiral points are connected through the deep
lattice structure, they can be thought of as distinct nodes in
the low-energy description of the material which is blind to
the lattice structure. In this sense the chiral anomaly has a
prosaic explanation in condensed-matter systems, namely, the
pumping of charge through the bottom of the band from one
node to another. Amazingly, this simple picture relates key
concepts such as the quantized Hall conductance (e.g., via
Laughlin’s argument [10]) and existence of topological metals
(e.g., the Weyl semimetal [11–21]) to chiral anomalies.

Topology is the cornerstone of chiral anomaly. We will
see that the chiral anomaly is connected to zero-modes of the
fermionic theory on one hand and the winding number of the
gauge field on the other, when we review the nonperturbative
formulation of anomalies named after Fujikawa [22–24] in
Sec. II. Within perturbative QED the chiral anomaly arises
only from the triangle diagrams when one needs to care-
fully regularize the difference between linearly divergence
integrals [25]. Higher-order loop diagrams will cancel their
own contribution to chiral symmetry breaking and render the
chiral anomaly subject to nonrenormalization theorems; the
higher-order terms will leave the form of the anomalous term
unmodified and are accounted for by replacing the bare fields
and parameters with their renormalized values.

While in theories of elementary-particle physics, one
is restricted by normalizability conditions and symmetries
such as Lorentz invariance and charge conservation, this is
not the case of condensed-matter systems where we often
seek effective low-energy descriptions of complex systems.
Condensed-matter physics is therefore home to a diverse
array of particles and interactions, and thus a low-energy
description of a condensed-matter system is apt to carrying in-
teraction terms that could be alien to fundamental physics. In
this article we investigate the interplay of the chiral anomaly
with these features that arise in condensed-matter systems.
In particular, building on a previous work [26] we study the
effects of interactions on anomalous chiral symmetry breaking
in low-energy descriptions of Dirac and Weyl materials.

After the review of the basics presented in Sec. II, we
employ the path-integral formulation in Sec. III to investi-
gate in detail the aspects of introducing interactions on chiral
anomaly in a (1 + 1)-dimensional system, e.g., a Luttinger
liquid. Even in (1 + 1) dimensions the altered chiral anomaly
leads to noteworthy results such as modified massive photon,
Eq. (50), and the dressed electrical charge, Eq. (54). We then
proceed to do the same in the next Sec. IV for (3 + 1)-
dimensions where a much richer behavior will emerge. As
will we see, due to interactions there are modifications to the
chiral symmetry breaking in both systems [e.g., Eqs. (37) and
(67)], and how they are related to each other is the subject of
Sec. V. As mentioned before there are macroscopic phenom-
ena attributed to chiral anomaly such as chiral magnetic effect
and anomalous Hall response. Since the anomalous term will
be different in a theory that contains the additional interaction,
these phenomena will be modified as well. In particular we see
that, even though Hall conductivity will remain the same in the
equilibrium and homogeneous limit, it will have a different
finite frequency behavior in the presence of interactions [see

Eq. (101)]. Other notable results are the emergence of lon-
gitudinal Hall response, Eq. (102), and modified anomalous
charge density response, Eq. (105). These are investigated
in Sec. VI where we have represented them as a way to
measure the interaction effects. Curiously, the effects of inter-
action exceed the mere modification of anomalous transport
phenomena; in Sec. VII we see that, due to the interplay of
interactions and Weyl node separation, anomalous current will
have a dynamic of its own even in the absence of an electro-
magnetic gauge field, Eq. (110). These “anomalous modes”
can further enforce dynamics on the gauge field; in particular
they give rise to an axionic electrodynamics. Section VIII
carries on to thermal phenomena and investigates how in-
teractions influence the gravitational anomaly and transport
in the presence of nontrivial geometry, which among other
things leads to the interacting chiral vortical effect (CVE) ob-
tained through mixed chiral gravitational anomaly, Eq. (131).
Finally, although we are mainly focusing on the consequences
of a general local current-current interaction, Sec. IX explores
another type of interaction terms, encapsulating the effects of
local spin-spin interactions on the chiral anomaly, presented
in Eq. (135). For this a new calculation of the quantum
anomaly is required in which fermions are coupled to both
a vector and an axial-vector gauge field. The calculation is
presented in Appendix D. As we see for the path-integral
approach to quantum anomalies a certain regularization is
needed, questions that might arise regarding the justification
of the regularizations utilized are generally answered by the
procedure provided in Appendix C. The Appendixes A and B
contain some remarks on the (1 + 1)-dimensional anomaly in
the interacting model.

Overall, the reader who is only interested in the effect of
interactions on anomaly in (3 + 1) dimensions and is familiar
with the subject of chiral anomaly and Fujikawa’s method for
deriving it may start from Sec. IV and go back to previous
sections upon questions or difficulties.

Notation

Throughout the paper we use natural units where the re-
duced Planck constant h̄ and the speed of light c are set to one.
We also use Einstein’s summation convention and sometimes
represent the four-vector of current as jμ ≡ (ρ, jx, jy, jz ) in
Minkowski coordinates xμ ≡ (t, x, y, z). The Minkowskian
metric is denoted by ημν = diag(1,−1,−1,−1), the Kro-
necker delta by δμ

ν , the d’Alembertian operator by � ≡ ∂2
t −

∇2 and Dirac’s slash notation, γ μVμ = /V , is employed.
Gamma matrices γ μ are the matrix representations of the

Clifford algebra: {γ μ, γ ν} = 2ημν . We also define γ5 as the
matrix that satisfies a natural extension {γ μ, γ5} = 0 and γ 2

5 =
1. In a two-dimensional spacetime we can choose the repre-
sentation as γ 0 = σ x and γ 1 = iσ y, yielding γ5 = σ z, with
σ x, σ y, and σ z being the Pauli matrices. In four dimensions
we can write them as

γ μ =
(

0 σμ

σ̄μ 0

)
, γ5 =

(−1 0
0 1

)
, (1)

with σμ ≡ (1, σ ) and σ̄ μ ≡ (1,−σ ). The basis of the above
particular representation is called the Weyl basis. A Wick
rotation, t → −it , changes the Minkowskian metric, ημν →
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diag(−1,−1,−1,−1), and hence changes the algebra, which
leads to a redefinition of the zeroth gamma matrix by
γ 0 → −iγ 0.

Moreover, to avoid clutter and for better compatibility with
high-energy physics, we have treated the Fermi velocity as the
speed of light unless when it was needed to restate it distinctly.

II. FUJIKAWA’S METHOD

Here we briefly review our main technical tool, Fujikawa’s
path-integral approach to calculating quantum anomalies. The
reader who already has a fresh knowledge of the subject can
safely pass through to the next section.

A. Nontrivial Jacobian

A symmetry transformation leaves the equations of motion
unchanged, or in the language of action principle, it preserves
the action functional (up to a boundary term). Let us assume
action functional S[	] describes our classical system and it
has as symmetry transformation T that preserves it. All the
degrees of freedom are represented by 	. Let us further for-
mulate our quantum theory by the path integral approach. All
there is to know about the quantum system are given by path
integrals of the form I = ∫

D	eiS[	]. An anomaly, as we have
introduced it, is an instance when a classical symmetry fails
to be also a quantum one. But S in invariant under T , so I also
would be if it was not for the path integral measure D	. The
only thing that can ruin the symmetry at the quantum level,
when described by the path integral language, is evidently
the measure. Thus for the quantum anomaly to appear D	

must transform under T with a nontrivial Jacobian of trans-
formation. This remarkable transparency, where the quantum
anomaly is anticipated at the outset, is a feature of the path in-
tegral approach in comparison with the perturbative approach
where the quantum anomaly is discovered when higher-order
corrections are being calculated. This Lagrangian formalism
of quantum anomalies is named after Fujikawa [22–24].

In this paper we are concerned with chiral anomalies that
happen in fermionic systems. For concreteness consider the
following action functional in (1 + 1)-dimensional spacetime
having sufficient dimensions to capture the essence of the
quantum anomalies,

S[ψ̄, ψ, Aμ] =
∫

d2x[ψ̄ iγ μ(∂μ − ieAμ)ψ], (2)

along with the corresponding path integral,

I =
∫

Dψ̄DψeiS[ψ̄,ψ,Aμ], (3)

where the integration is only over fermionic degrees of free-
dom ψ and ψ̄ ≡ ψ†γ 0 (which in the current case are Weyl
spinors) hence treating the gauge field Aμ as an external elec-
tromagnetic four-potential. Note also, that the path integral
treats ψ and ψ̄ as independent integral variables.

The action (2) is symmetric under two U (1) global trans-
formations. A simple phase transformation,

ψ −→ eiαψ, ψ̄ −→ ψ̄e−iα, (4)

and a chiral transformation,

ψ −→ eiαγ5ψ, ψ̄ −→ ψ̄eiαγ5 . (5)

We are then curious to see how the measure Dψ̄Dψ behaves
under the above transformations.

To begin our investigation we use the usual method of
Euclideanization, which has the reward of making the Dirac
operator /D ≡ γ μ(∂μ − ieAμ) Hermitian and helps signifi-
cantly in the calculation of path integrals. Hermitian operators
can form complete orthonormal bases. Therefore, if now we
decide to expand the fermionic fields, there is a natural way
of doing so. Namely, we can expand ψ̄ and ψ in orthonor-
mal modes of the Hermitian Dirac operator /Dφn = lnφn,
with lns being eigenvalues of /D and φns the corresponding
eigenfunctions:

ψ̄ =
∑

n

b̄nφ
†
n (x), ψ =

∑
n

anφn(x). (6)

Both an and b̄n are Grassmann numbers so that they form
Grassmann field spinors when multiplied by two component
fields φn and φ†

n .
We could have expanded the fermionic fields in the basis of

any Hermitian operator. But this natural choice has the crucial
property of formally diagonalizing the action. By this choice
it becomes clear that the fermionic part of the path integral is
given by the products of all eigenvalues of the Dirac operator
which renders it exactly integrable:

I =
∫

Dψ̄DψeS[ψ̄,ψ,Aμ]

=
∫ ∏

n

[db̄ndanelnb̄nan ] =
∏

n

ln = det ( /D). (7)

In the above and future path integral equalities we use the
equal sign for all path integrals that are proportional to each
other by a constant coefficient. We should also note that
integration over Grassmann numbers is defined by the left
derivative.

Other than orthonormality and completeness,∫
d2xφ†

m(x)φn(x) = δmn, (8)∑
n

φ†
n (x)φn(y) = δ(x − y), (9)

eigenfunctions of the Dirac operator have another property
which is of interest here. Since /D anticommutes with γ5,
multiplying an eigenfunction with γ5 produces another eigen-
function of the Dirac operator with an eigenvalue negative of
the original one:

/D(γ5φn) = −γ5 /Dφn = −ln(γ5φn). (10)

Therefore, if ln �= 0 then φn and γ5φn are orthogonal to each
other. When ln = 0 the corresponding eigenfunction is called
a zero mode. In the subset of zero modes /D and γ5 can be
simultaneously diagonalized, since [ /D, γ5]φn vanishes there.
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By an infinitesimal chiral rotation (5) the expansion coeffi-
cients an and b̄n go under a transformation:∑

n

anφn →
∑

n

eiαγ5 anφn ≈
∑

n

(1 + iαγ5)anφn

⇒ am → am + i
∑

n

an

∫
d2xφ†

m(x)αγ5φn(x),

(11)

where we have used (8) to go from the first to second line
and we have kept α inside the integral since in general it
can depend on position. Therefore, {an} transforms as {an}′ =
M{an} with the matrix of transformation given by Mmn =
[δmn + i

∫
d2xφ†

m(x)αγ5φn(x)]. The exact same goes for b̄n

because a chiral rotation (5) transforms ψ̄ the same way it
transforms ψ , unlike a phase rotation (4):

b̄m →
∑

n

[
δmn + i

∫
d2xφ†

m(x)αγ5φn(x)

]
b̄n. (12)

Phase transformation is obtained from chiral transformation
if we substitute γ5 by 1 everywhere, and i by −i only for
variables that have a bar sign i.e., ψ̄ and b̄n.

Since an and b̄n are Grassmann numbers and their integrals
are given by left derivatives, the Jacobian of their trans-
formation is the inverse of Jacobian for standard c-number
transformations and is given by

∏
n

db̄′
nda′

n =
(

det [M]−1
∏

n

db̄n

)(
det [M]−1

∏
n

dan

)

=
[

exp

(
−i

∑
n

∫
d2xφ†

nαγ5φn

) ∏
n

db̄n

]

×
[

exp

(
−i

∑
n

∫
d2xφ†

nαγ5φn

) ∏
n

dan

]

= exp

(
−2i

∑
n

∫
d2xφ†

nαγ5φn

) ∏
n

db̄ndan

≡ J5(α)
∏

n

db̄ndan, (13)

where J5(α) is the Jacobian and we have used the identity
ln det(M−2) = −2Tr ln(M ) for the second equality. To obtain
the corresponding Jacobian for phase rotation (4), we can use
the prescription above and observe that its Jacobian is unity
and therefore the path integral measure remains unchanged
under phase rotation. This is what we naturally desire, since
consequently the particle number conservation remains un-
broken at the quantum level. As we can see, chiral rotation
has a different story. What was a classical symmetry and gen-
erated the continuity equation for chiral current ∂μ jμ5 = 0 is
now quantum-mechanically broken. The broken conservation
law now reads∫

d2x∂μ(ψ̄γ μγ5ψ ) = −2i
∑

n

∫
d2xφ†

nγ5φn, (14)

where ψ̄γ μγ5ψ is the Noether current jμ5 for the classical
chiral symmetry.

Looking back at (10) and the statement below it, we find
out that only zero modes contribute to the sum in (14), since
for all other modes

∫
d2xφ†

nγ5φn is zero by (8). The same
goes for the exponents of (13) as well when α is to be
constant. Thus, chiral anomaly is attributed to the subset of
zero modes. In fact since zero modes are also eigenvectors
of γ5, it can be diagonalized in the subspace of zero modes
γ5 = diag(+1,−1), and then the value of

∫
d2xφ†

nγ5φn be-
comes either +1 when γ5φn = +φn, or −1 when γ5φn = −φn.
Therefore the sum above is equal to the number of right-
moving zero modes n+ minus the number of left-moving zero
modes n−,∑

n

∫
d2xφ†

nγ5φn = n+ − n− = Index( /D). (15)

Since φns are eigenfunctions of the covariant derivative /D,
they depend on the gauge field φn ≡ φn(Aμ(x)). Therefore,
n± also depend on Aμ(x), which, along with the knowledge
that anomaly belongs to zero modes, points to the fact that
anomaly is topologically related to the gauge field. It is also
worth mentioning that since a zero mode stays a zero mode
after a chiral rotation, we can now write (13) as∏

n∈{0}
db̄′

nda′
n = e−2i(n+[Aμ]−n−[Aμ])

∏
n∈{0}

db̄ndan, (16)

where n goes only over the subspace of zero modes, {0},
while all other modes do not contribute to the Jacobian of
transformation.

The dependence of n± on the gauge field is not surprising
because it is clear from the one-dimensional model, apply-
ing an electric field say in the right direction, can of course
favor the generation of right-moving particles and disfavor
the left-moving ones. In fact a sober guess can tell us that
in (1 + 1)-dimensional spacetime the number of right-moving
particles must increase by a rate proportional to eE which is
the electrical force exerted on each particle, with e the charge
of particles and E the applied electric field. If there was no
anomaly, say at the classical level where there is no sea of
antiparticles to source this generation, (n+ − n−) would have
been conserved; instead it is only (n+ + n−), the total number
of zero modes, that stays conserved at the quantum level.

We now proceed to calculate what we have guessed above,
specifically, how (15) is given in terms of the gauge field Aμ.

B. Regularized Jacobian

So far, we have found that the Jacobian of chiral transfor-
mations J5(α) is given by what is essentially a trace over γ5:

ln J5(α) = −2i lim
N→∞

N∑
n=1

∫
d2xφ†

n (x)α(x)γ5φn(x), (17)

where we have introduced N → ∞ to emphasize that this
sum, roughly speaking, is over an infinite series of ±1. It is
not trivial that such a sum converges. The final value depends
on how we decide to group the +1s and −1s to obtain a con-
vergent series. We need a proper method to sum these numbers
which conveys the physics behind. We have already taken one
step, namely, choosing the basis of the Dirac operator. But
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the current labels attributed to the eigenfunctions φn in (17)
do not carry any physical meaning. The correct method of
summation should be gauge invariant so that it can produce
a gauge-invariant result; otherwise a term resulting from the
breaking of gauge symmetry might be confused with the
source of anomaly. Therefore, we further utilize the eigenval-
ues ln of the Dirac operator, which are invariant under gauge
transformations, to relabel the eigenfunctions and regularize
(17) as follows:

i

2
ln J5(α) = lim

M→∞

∫
d2xα(x)

∞∑
n=1

φ†
n (x)γ5 f

(
l2
n

M2

)
φn(x)

= lim
M→∞

∫
d2xα(x)

∞∑
n=1

φ†
n (x)γ5 f

(
/D2

M2

)
φn(x),

(18)

where f (x) = 1 for x < 1 but vanishes for x > 1 fast
enough. Now eigenfunctions are labeled by how large their

corresponding eigenvalue is. In (17) we needed to end the
summation at some arbitrary n which is reflected in the limit
N → ∞, but now we are using M → ∞ and the summation
ends on physical grounds. At this stage it is worth empha-
sizing on the distinction between the eigenbasis of the Dirac
operator, which are used in the regularization, and that of the
corresponding Hamiltonian. In particular the zero modes of
the Dirac operator are not zero-energy modes. The zero modes
of /D are those which solve the equations of motion of the free
theory, in other words the on-shell modes. Therefore, higher
eigenvalues belong to those modes which are farther from the
shell. This means that the regularization above penalizes the
most off-shell degrees of freedom.

The presence of /D in the last line of Eq. (18) makes it clear
how the gauge field Aμ appears in the anomalous relation.
However, what we so far have is given in terms of eigenvalues
of /D and it is not yet manifest how (18) is a function of time
and space. To extract the dependence of the regularization f
on the coordinates we move to the basis of plane waves:

i

2
ln J5(α) = Trαγ5 ≡ tr lim

M→∞

∫
d2xα

∫
d2k

(2π )2 e−ikμxμ

γ5 f

(
/D2

M2

)
eikμxμ

(19a)

= tr lim
M→∞

∫
d2xα

∫
d2k

(2π )2 e−ikμxμ

γ5 f

(
DμDμ − ie

4 [γ μ, γ ν]Fμν

M2

)
eikμxμ

(19b)

= tr lim
M→∞

∫
d2xα

∫
d2k

(2π )2 γ5 f

(
(−kμkμ + 2ikμDμ + DμDμ) − ie

4 [γ μ, γ ν]Fμν

M2

)
(19c)

= tr lim
M→∞

M2
∫

d2xα
∫

d2k

(2π )2 γ5 f

(
−kμkμ + 2ikμDμ

M
+ DμDμ

M2
−

ie
4 [γ μ, γ ν]Fμν

M2

)
(19d)

= tr lim
M→∞

−M2
∫

d2xα
∫

d2k

(2π )2 f ′(−kμkμ)
ie
4 [γ μ, γ ν]γ5Fμν

M2
= i

∫
d2xα

ie

4π
εμνFμν. (19e)

In (19a) we have chosen the basis of plane waves and
have traced over the remaining indices by tr. For the next
line, (19b), we have expanded /D2 = γ μDμγ νDν by separating
γ μγ ν into its symmetric and antisymmetric parts and the fact
that [Dμ, Dν] = −ieFμν . We have then pulled eikμxμ

through
covariant derivatives Dμ from (19b) to (19c), which leaves
ikμ behind wherever there is a covariant derivative Dμ →
ikμ + Dμ. Changing the variables of integration from kμ to
Mkμ leads us to (19d). This will let us expand f (x) in orders
of 1/M around −kμkμ which takes us to the next line. In
(19e) we have only kept the leading orders of 1/M and also
have used the fact that all terms coming with only γ5 vanish
since trγ5 = 0. Furthermore, in a two-dimensional spacetime,
tr[γ μ, γ ν]γ5 = 4iεμν which gives us the only surviving term,
and we have∫

d2k

(2π )2 f ′(−kμkμ) = −
∫

du

4π
f ′(u) = − 1

4π
. (20)

The above equality is true regardless of the details of the
function f and is satisfied only by the requirements described
before. Therefore, for a general regularizing function we find
the Jacobian of chiral transformations for the Minkowski

metric to be

J5(α) = exp

{
−i

∫
d2xα(x)

e

2π
εμνFμν

}
. (21)

All in all, the differences caused by chiral rotation in the path
integral can be represented by the equality below,∫

Dψ̄DψeiS =
∫

Dψ̄DψeiS+i
∫

d2xα(∂μ jμ5 − e
2π

εμνFμν ), (22)

where from the left-hand side to the right-hand side a chiral
rotation in fermionic variables have taken place while the
equality sign reflects the fact that the chiral rotation is after all
only a change of path integral variables and must not change
the whole path integral. From the above equality the following
anomalous relation is concluded:〈

∂μ jμ5
〉 =

〈 e

2π
εμνFμν

〉
, (23)

where jμ5 ≡ ψ̄γ μγ5ψ is the Noether current corresponding to
chiral rotations and is called “chiral current.” Had it not been
for the nontrivial Jacobian J5(α), the right-hand side of the
above equation would have been zero, which is the case for
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the classical theory were there are no path integral measures
to begin with. Moreover, the angle signs 〈 〉 are there to remind
us that these equations are path integral relations.

The chiral anomaly in (1 + 1) dimensions is probably the
simplest form of quantum anomaly, but it is connected to its
(3 + 1) dimensional counterpart if we note that in four dimen-
sions we have to integrate over a four-dimensional momentum
space and therefore M4 appears in (19d) in place of M2 behind
the integral. This means that we now have to expand the
regulator f (x) up to the order of 1/M4 (instead of 1/M2 in
two-dimensional spacetime), since higher orders in expansion
vanish in the limit M → ∞. On the other hand, the algebra of
gamma matrices in (3 + 1) dimensions gives the following:

trγ5 = tr[γ μ, γ ν]γ5 = 0, (24a)

tr[γ μ, γ ν][γ ρ, γ σ ]γ5 = −16εμνρσ . (24b)

Thus, the only surviving term from the expansion will come
from the square of [γ μ, γ ν]Fμν which, roughly speaking,
gives us the square, εμνρσ FμνFρσ , of what we had for (1 + 1)
dimensions: 〈

∂μ jμ5
〉 =

〈
e2

16π2
εμνρσ FμνFρσ

〉
. (25)

(See Appendix D for details of a more general calculation.)
By following the same reasoning in other dimensions one
can show that the chiral anomaly vanishes in odd spacetime
dimensions. On an interesting note, a recent study [27] reveals
an intriguing possibility that for certain systems, in particular
those which develop localization, it is possible to reduce the
dimensionality, by removing the time dimension, from odd
to even number of spacetime dimensions, hence reviving the
chiral anomaly.

It is also worthwhile to rewrite (23) and (25) in terms of
electric and magnetic fields which respectively yields〈

∂μ jμ5
〉 =

〈 e

π
E

〉
(2D spacetime), (26)

and 〈
∂μ jμ5

〉 =
〈

e2

2π2
E · B

〉
(4D spacetime), (27)

where in the latter (four-dimensional case) we see that it is
the coincidence of electric and magnetic fields that breaks the
conservation of the chiral current.

III. INTERACTION IN (1 + 1) DIMENSIONS

We now turn our attention to the following specific ques-
tion: How will the anomalous relation (23) be modified, if the
fermions are interacting with each other? To this end, consider
the interacting action functional below,

Sλ =
∫

d2x

[
ψ̄ iγ μ(∂μ − ieAμ)ψ − λ2

2
jμ jμ

]
, (28)

where jμ ≡ ψ̄γ μψ is the Noether current of phase rotation, or
simply the electrical current when multiplied by the electrical
charge e, and λ2/2 is the strength of an attractive interaction.
Note that the interaction term does not break any classical
symmetry Sλ had when λ was zero. Knowing this one might
readily argue that since the anomaly comes from the measure

of the path integral, and adding a term to the action functional
has nothing to do with the measure, then the interaction term
− λ2

2 ψ̄γ μψψ̄γμψ must have no effect on the anomalous re-
lation whatsoever. This is however not the case as we now
explain.

A. Diagonalized partition function

If the argument in the last sentences above is correct, then
interactions must have no effect on the anomalous relation
and going any further in this direction would be a lost cause.
But from the above argument, the assumption that the action
functional has nothing to do with the measure is wrong. In
this section we discuss this fact and show that it comes from
a need for a self-consistent regularization of the path integral,
and postpone a detailed demonstration to Appendix C. The
reader who is not concerned with such details or would like to
return to them later, can safely jump to the next section III B.

Unlike regular path-integration, fermionic path integrals
are defined by left differentiation of Grassmann numbers and
they need regularization. For example, path integration over
fermionic degrees of freedom of a free Dirac fermion theory
yields the determinant of the Dirac operator det(i /D + m) =∏

ln only if the product is well defined, which is the case when∑∞
n |ln − 1| converges [28]. But eigenvalues ln of the Dirac

operator are not even bounded. Thus the well-defined path
integral must carry a type of regularization with itself. This is
where action functional intrudes into measure’s business. The
path integral (or the partition function) has two elements; the
measure and the action. The action is just an integral over a
certain Lagrangian and does not involve any regularization.
The regularization is applied on the measure, i.e., the field
variables of the path integral. But how the measure is to be
regularized (or the mechanism of regularization) is left to be
determined by the action. This is because the measure is the
subject of regularization, and apart from the measure we only
have the action, therefore the mechanism of regularization
must be dictated by the action. The other suggestion would
be if the mechanism of regularization is dictated externally,
e.g., from certain physical considerations. But if we require
the path integral to be a mathematically well-defined self-
sufficient object, then it should be indifferent towards external
information such as the backstory of the physical system it is
trying to describe. Given this requirement, the measure must
be regularized according to the content of the action. Let us
again look at the free Dirac fermion. We can write its partition
function as

det (i /D + m) =
∫ ∏

n

db̄ndan(1 + lnb̄nan)

=
∫ (∏

n

db̄ndan

)
exp

{∑
n

lnb̄nan

}
, (29)

with b̄n and an being the Grassmann amplitudes defined before
in equation (6). Looking at above we see that the action is
given by

∑
n lnb̄nan. This setup, in which the action is formally

diagonalized, makes it easy for us to set a natural cutoff on the
determinant: We can simply disregard all lns which are bigger
than some limit M and eventually take the limit M → ∞.
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This is exactly what we have done for calculating the chiral
anomaly in the previous section.

The above way of regularizing the path integral clearly
relies on the action, since the cutoff is actually on the eigenval-
ues of the Euclidean action. In other words, the basis chosen
for the spinor expansion of the fermionic degrees of freedom,
are those which formally diagonalize the action functional.
After this diagonalization the regularization is naturally given
as above. Note also that this regularization procedure is indif-
ferent to external information such as what physical system is
being described by the path integral, or whether a particular
field has a certain symmetry or not. The regularization, being
determined only by the action, will share the symmetries of
the action; even if the measure does not respect them all.

Now we can go back to question raised below equa-
tion (28). To calculate the anomaly we first have to expand the
fermionic degrees of freedom in spinor modes. But what basis
should they be expanded in? The answer would be the basis
that formally diagonalizes the action and therefore leads to a
well-defined path integral. Clearly, by introducing interaction
terms to the action, the basis in which it will be diagonalized
will change accordingly. Through this, the presence of inter-
actions will modify the anomaly.

This subject is rigorously expounded in the Appendix C
although the material covered there will not be essential for
what follows.

B. Effect of interaction

Now we can proceed to see how the interactions modify the
anomalous relation in (1 + 1) dimensions. In the case of (28)
we can easily find a regularization that fits the descriptions put
forward in the previous section and in Appendix C, although
this regularization, which follows shortly, may be natural
enough for the reader to ignore the previous section altogether.

We can decouple the interaction term using a Hubbard-
Stratonovich auxiliary field aμ (not to be confused with the
Grassmann variable an), arriving at the following equality:∫

Dψ̄DψeSλ =
∫

Dψ̄DψDaμeSa , (30)

with Sλ given by (28) and Sa as follows:

Sa =
∫

d2x

[
ψ̄ iγ μ(∂μ − ieAμ − iλaμ)ψ + 1

2
aμaμ

]
. (31)

To see the equality of the two path integrals, we first shift aμ

in (31) by −λψ̄γμψ to obtain

Sa =
∫

d2x

[
ψ̄ i /Dψ − λ2

2
jμ jμ + 1

2
aμaμ

]
, (32)

but a simple shift does not change the path integral measure
Daμ. We can then integrate aμ out and regain equation (28).
Recall that path integral equalities of the form (30) ought to
be regarded as equalities up to a constant coefficient.

What has been sandwiched between ψ̄ and ψ is now a gen-
eralized Dirac operator /Dg ≡ γ μ(∂μ − ieAμ − iλaμ) where
Aμ and aμ have the same mathematical status. It is therefore
rational to think that /Dg must substitute /D in Fujikawa’s
method of regularization introduced in (18). Regardless of

naturalness, moreover, regularizing with respect to /Dg satis-
fies the requirements put forward in the previous section and
Appendix C, namely, expanding the spinor degrees of freedom
in the basis of /Dg formally diagonalizes the fermionic part of
the action.1

Having established the above we can proceed to calculate
the anomalous relation in the presence of interactions. We
need to calculate

∑
n φ†γ5 f ( /D2

g/M2)φn where we can take the
same steps as (19) but with eAμ replaced by eAμ + λaμ, which
yields

〈
∂μ jμ5

〉
a =

〈
e

π
εμν∂μAν + λ

π
εμν∂μaν

〉
a

, (33)

where the subscript “a” is a reminder that, in addition to
fermionic fields, there is also an integration over the auxiliary
field aμ. We have also used the following:

εμνFμν = εμν∂μAν + ενμ∂νAμ = 2εμν∂μAν . (34)

To get back to the original path integral
∫
D[ψ̄, ψ]eSλ , we

must first shift aμ to aμ − λ jμ and then integrate it out,

〈
∂μ jμ5

〉
a

=
〈

e

π
εμν∂μAν − λ2

π
εμν∂μ jν + λ

π
εμν∂μaν

〉
a

⇒ ∂μ jμ5 = e

π
εμν∂μAν − λ2

π
εμν∂μ jν, (35)

where in the last line an integration over fermionic degrees
of freedom is implied. Note that the action is even in aμ,
therefore, odd terms such as 〈aμ〉 are eliminated after the
integration.

We can look at the result in different ways one of which is
to write in the following form:

∂μ jμ5 = e

π
εμν∂μ

(
Aν + λ2

e2
e jν

)
, (36)

and see the interplay of the interaction and the chiral anomaly
manifested as an addition to the electromagnetic field due to
the electrical current e jμ. Note that the anomalous term above
is present also in the absence of the gauge field; its effect
then is to renormalize the excitations of the system. To see
this recall that in (1 + 1) dimensions we have γ μγ5 = εμνγν ,

1To make a connection to what has been suggested in Appendix C
one can look at (C3), (C13), and (C16). The fact that such a regular-
ization is enforced can be observed simply by choosing the basis of
generalized Hermitian Dirac operator /Dgφn = lnφn in order to expand
fermionic degrees of freedom ψ̄ and ψ as in (6), which makes the
fermionic part of the action Sa formally diagonalized:

I =
∫

Daμ exp

{
1

2

∫
d2xaμaμ

} ∫ ∏
n

db̄nan exp

{∑
n

lnb̄nan

}
.

Then, for instance, equation (C3) tells us that �n = ln, meaning that
the eigenvalues of the generalized Dirac operator /Dg determine the
regularization. It is also worth noting that the on-shell modes are now
the zero-modes of the generalized Dirac operator, /Dgφ{0} = 0. So the
regularization process should assign a penalty to the off-shell modes
with respect to this operator.
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allowing us to write jμ5 = εμν jν , and therefore, restricted to
(1 + 1) dimensions, write the anomalous relation as

∂μ jμ5 = 1

1 + λ2/π

e

2π
εμνFμν, (37)

which gives us the same anomalous term on the right-hand
side as in the absence of interactions but now modified by a
coefficient (1 + λ2/π )−1.

For an effective-field theory of a condensed-matter system
there is no real reason for preserving Lorentz symmetry. Thus
it is reasonable to investigate interactions such as the density-
density interaction, (ψ†ψ )2, that do not respect it. This type of
interaction completely fits to our procedure if we substitute aμ

just by its temporal component δ0
μa0 and integrate only over

a0 instead. We get

∂μ jμ5 = e

2π
εμνFμν − λ2

π
∂1 j1

5 , (38)

which shows that even in the absence of external electromag-
netic fields, the chiral charge conservation law is modified by
the interplay of interactions and chiral anomaly. In the absence
of the external field the anomalous terms still remain and their
effect can be seen as a renormalization of the velocity of the
excitations which carry the chiral charge.

C. Finite chiral rotation

All the transformations we were concerned with so far
were infinitesimal transformations, allowing us to obtain a
(non)-conservation relation. In this section we see how finite
transformations differ with infinitesimal ones in the context
of anomalies. The content of this section is essentially alge-
braic, however, for the physical content presented in the next
section we will be needing the following discussion:

An infinitesimal chiral rotation ψ → eiαγ5ψ adds a term
of γ μ(i∂μα)γ5 to the Dirac operator /D and an anomalous
term −α e

2π
εμνFμν coming from the nontrivial Jacobian, to the

Lagrangian. However, if you consider the effect of the former
on the anomaly, you can observe that the anomalous term
should have been modified, but since α is infinitesimal, the
higher-order corrections can be disregarded. But a finite chiral
rotation as it appears inside the generalized Dirac operator
/Dg, changes the anomalous term and its potentially sizable
contributions must be brought into account.

We begin by noticing that in two-dimensional spacetime
γ μγ5 is equal to εμ

νγ
ν so that we are able to write a general-

ized Dirac operator which carries an axial-vector term as

/Dg = γ μ(∂μ − ieAμ − ibμγ5)

= γ μ
(
∂μ − ieAμ − iεν

μbν

) ≡ γ μ(∂μ − iCμ), (39)

with bμ being the axial-vector field. And therefore its corre-
sponding anomalous relation is

∂μ jμ5 = 1

π
εμν∂μCν = e

π
εμν∂μAν + 1

π
∂μbμ, (40)

where the right-hand side is due to the Jacobian in the pres-
ence of bμ. We see that if bμ is a constant across spacetime it
will not contribute.

Now let us start over with a simple Dirac operator /D ≡
γ μ(∂μ − ieAμ), and arrive at a finite chiral rotation in steps

of dα so that at any certain step an angle of α = ∫
dα has

been accumulated, which finally reaches α f . At each step the
following term is added to the action:

δdαS =
∫

d2x

[
−(∂μdα) jμ5 − dα

e

π
εμν∂μAν + dα

π
∂μ∂μα

]
.

(41)

Hence by integrating dα the total change due to the finite
chiral rotation is

δαS =
∫

d2x

[
−bμ jμ5 + e

π
εμνbμAν + 1

2π
∂μbμ

]
, (42)

with bμ set equal to ∂μα f . One conclusion here is that if we
begin with the action below,

S =
∫

d2xψ̄ iγ μ(∂μ − ieAμ − ibμγ5)ψ. (43)

With bμ constant, we can remove bμ from the Dirac operator
by a chiral rotation with angle α satisfying ∂μα = bμ:

S + δαS =
∫

d2x

[
ψ̄ iγ μ(∂μ − ieAμ)ψ + e

π
εμνbμAν

]
.

(44)

This is especially important because bμ represents the Weyl
separation: For bμ = 0 the energy spectrum of the electron
is a twofold degenerate Dirac cone; while the degeneracy
is broken as bμ �= 0 separates the two Dirac cones. A case
for nonconstant bμ and for (3 + 1)-dimensional systems is
studied in Ref. [29]. The equation above means that we can get
rid of the Weyl separation [from (43) to (44)] by a chiral ro-
tation but the procedure is taxed by the anomaly. The systems
described by the actions (43) and (44) are equivalent because
they are connected to each other by a change of variables,
however, reading the response of the system to a change of
Weyl separation from Eq. (43) seems impracticable at first
sight, while it is obtainable straightforwardly from Eq. (44).

In the following section we are going to use the finite chiral
rotation discussed above in order to derive another interesting
result.

D. Effective action

In two-dimensional (2D) vector spaces, the Helmholtz the-
orem takes quite a simple form and allows us to decompose
any /v into vector and axial-vector parts, /v = /∂ρv + /∂φvγ5,
with vμ being a two-vector and ρv and φv two scalars, gen-
erating the divergence-free and curl-free parts of the vector
field vμ, respectively. Returning to the (1 + 1)-dimensional
Hubbard-Stratonovich action functional (31),

Sa =
∫

d2x

{
ψ̄ iγ μ[∂μ − ieAμ − iλaμ]ψ + 1

2
aμaμ

}
, (45)

we can rewrite Aμ and aμ as the sum of their curl-
free and divergence-free parts, Aμ = (∂x	,−∂t	) and
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aμ = (∂tρ, ∂xρ) + (∂xφ,−∂tφ),

Sa =
∫

d2x

{
ψ̄ iγ μ

[
∂μ − ieε ν

μ ∂ν	 − iλ
(
∂μρ + ε ν

μ ∂νφ
)]

ψ

+ 1

2
∂μρ∂μρ − 1

2
∂μφ∂μφ

}
, (46)

where we have chosen the Lorentz gauge ∂μAμ =
∂μ∂ν (εμν	) = 0 and used the identity εμαε

μ
β = −ηαβ .

The fields 	 and φ generate the divergence-free parts, while
ρ generates the curl-free part. Since we have chosen the
Lorentz gauge for Aμ we do not need another scalar field to
cover for the curl-free part of the gauge field. In two spacetime
dimensions we can write γ μγ5 = εμ

νγ
ν and rearrange the

above equation into

Sa =
∫

d2x

{
ψ̄ iγ μ[∂μ + iγ5(e∂μ	 + λ∂μφ) − iλ∂μρ]ψ

+ 1

2
∂μρ∂μρ − 1

2
∂μφ∂μφ

}
. (47)

Next we draw out the γ5 from inside the brackets by a finite
chiral rotation ψ → e−i(e	+λφ)γ5ψ ′. This in turn introduces a
Jacobian which appears in the action as

Sa =
∫

d2x

{
ψ̄ ′iγ μ∂μψ ′ + 1

2
∂μρ∂μρ

− 1

2π
∂μ(e	 + λφ)∂μ(e	 + λφ) − 1

2
∂μφ∂μφ

}
, (48)

where we have also eliminated −iλ∂μρ by a U (1) phase
rotation without any cost. A simple squaring process gives

Sa =
∫

d2x

{
ψ̄ ′iγ μ∂μψ ′ + 1

2
∂μρ∂μρ

− 1 + λ2/π

2

(
∂μφ + λe/π

1 + λ2/π
∂μ	

)2

− 1

1 + λ2/π

e2

2π
∂μ	∂μ	

}
. (49)

Here we can easily shift φ so that it devours the other 	 term
inside the parentheses, and then we can integrate φ, ρ, and
fermionic degrees of freedom out to end up with

S ≡ S[Aμ] =
∫

d2x
1

1 + λ2/π

e2

2π
AμAμ, (50)

where we remembered that Aμ = εμν∂ν	 whenever ∂μAμ =
0. As we can see the effective field theory for the gauge field
in (1 + 1) dimensions comes with a mass term for photon
which is modified by interactions. Moreover, by functionally
differentiating (31) and (50) with respect to eAμ(x) we find

jμ = 1

1 + λ2/π

e

π
Aμ. (51)

Notice, however, that this equation is true if we begin by
choosing the Lorentz gauge for Aμ, this consequently means
that electrical current jμ is conserved. On the other, hand
chiral current jμ5 = εμ

ν jν is not and its nonconservation is
modified by interaction strength λ2.

Getting back to (49) let us only integrate the auxiliary ρ

and φ fields out and leave the Grassmann fields unintegrated.
We have

S =
∫

d2x

{
ψ̄ ′iγ μ∂μψ ′ − 1

2π
∂μ

e	√
1 + λ2/π

∂μ e	√
1 + λ2/π

}
.

(52)

By another (reverse) rotation ψ ′ → e−iγ5e	/(1+λ2/π )1/2
� we

can now recouple the gauge field to fermion number current.
This gives us

S =
∫

d2x�̄iγ μ

[
∂μ − i

e√
1 + λ2/π

γ5∂μ	

]
�. (53)

Using the relation γ μγ5 = εμ
νγ

ν once again, we can write the
above as

S =
∫

d2x�̄iγ μ

[
∂μ − i

e√
1 + λ2/π

Aμ

]
�. (54)

This means that in (1 + 1) dimensions the effect of the
current-current interaction is summarized in having a free
fermionic theory with a “dressed” charge of e/(1 + λ2/π )1/2.

IV. INTERACTION IN (3 + 1) DIMENSIONS

Having the basics established, we are going to continue,
for the case of four spacetime dimensions, with a more gen-
eral short-range current-current interaction appearing in the
following path integral as

I =
∫

D[ψ̄ψ] exp

{
i
∫

d4x

[
ψ̄ i /Dψ − 1

2
λ2

μν jμ jν
]}

, (55)

where the current jμ and the Dirac operator /D are defined
as before and λ2

μν ≡ λμαλ α
ν is the interaction strength. The

methods we outline in this paper are quite general and can be
applied to arbitrary interaction strengths, however for clarity,
at times, we have restricted our focus to special cases of
λ2

μν = λ2ημν , which preserves Lorentz symmetry and λ2
μν =

λ2
0η0μη0ν + λ2

3η3μη3ν . In the latter, when λ2
3 = 0 the inter-

action term simply becomes the density-density interaction;
on the other hand, when λ2

3 = λ2
0, it breaks the full Lorentz

symmetry down to a reduced symmetry constructed by a rota-
tional invariance in the x-y plane and a boost invariance along
the z direction. The same symmetry reduction happens in the
presence of a constant background magnetic field along the
longitudinal direction, z. Evidently, depending on the choice
of λμν some of the symmetries of the model may be broken,
e.g., Lorentz invariance, but they do not break the classical
chiral symmetry. Unlike in (1 + 1) dimensions, these interac-
tions are renormalization group (RG) irrelevant and typically
are not considered, however we will see that in the presence
of the constant magnetic field, they should not be discounted.

A. Interacting anomalous relation

Again, through Hubbard-Stratonovich decoupling the path
integral I can also be written as

I =
∫

D[ψ̄ψaμ] exp

{
i
∫

d4x

[
ψ̄ i /Dgψ + 1

2
aμaμ

]}
, (56)
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with the generalized Dirac operator /Dg now defined as /Dg ≡
γ μ(∂μ − ieAμ − iλμνaν ). The equivalence of (55) and (56)
can be observed by noticing that a shift in the auxiliary field
by its on-shell value aμ → aμ − λνμ jν in the above equation,
preserves the measure but changes the action to that of (55)
plus a quadratic term in aμ which can be integrated out leaving
only a constant. Therefore these two path integrals and all
correlation functions generated by them are concluded to be
equivalent. In what follows, we are going to reserve Sλ for
the action of (55) and Sa for the action of (56) as in the
two-dimensional case.

An infinitesimal chiral rotation ψ̄ → ψ̄eiαγ5 , ψ → eiαγ5ψ

transforms the action Sa to

Sa + δSa ≡ Sa +
∫

d4xα
(
∂μ jμ5 − A5

)
. (57)

The first term in the parentheses arises from the classical shift
of the action itself whereas the second is the anomalous term
introduced by the noninvariance of the measure, or, in other
words, the nontrivial Jacobian of the transformation. From
the path integral point of view, the transformation is a mere
renaming of the variables of integration. Demanding the same
value for the path integral after such change of variables, is
now translated in requiring δSa to vanish. The preregulariza-
tion anomalous term is given similar to its two-dimensional
counterpart as∫

d4xA5(x) ≡
∫

d4x

[
2 lim

N→∞

N∑
n=1

φ†
n (x)γ5φn(x)

]
. (58)

As we discussed in Secs. III A and III B, the above is well
defined after a regulator f (l2

n /M2) is introduced in the sum,
where lns are the eigenvalues of the generalized Dirac operator
/Dg while φns are the corresponding eigenfunctions. Then the
large-value limit of N gives way to that of M as in (18),

A5(x) = lim
M→∞

∞∑
n=1

φ†
n (x)γ5 f

(
/D2

g

M2

)
φn(x), (59)

where now /Dg is able to capture the position dependence of
anomaly after acting on φn(x)s which can further be replaced
by plane waves via a change of basis. The four-dimensional
counterpart of the calculation done in (19), as was discussed
above equation (25), determines the value of A5 to be

A5 = e2

16π2
εμνρσFμνFρσ , (60)

with Fμν ≡ ∂μ(eAν + λναaα ) − ∂ν (eAμ + λμβaβ ) which ren-
ders the anomalous nonconservation law as below,

〈
∂μ jμ5

〉
a = e2

16π2
〈εμνρσFμνFρσ 〉a

= e2

16π2
〈εμνρσ FμνFρσ 〉a

+ e

2π2
εμνρσ 〈∂μAν∂ρ (λσαaα )〉a

+ 1

4π2
εμνρσ 〈∂μ(λναaα )∂ρ (λσβaβ )〉a, (61)

where we remember that all relations here are path inte-
gral relations and in particular there is an integral over the

auxiliary field aμ in the above which establishes the path
integral equivalence∫

Dψ̄DψeSλ =
∫

Dψ̄DψDaμeSa . (62)

We want to integrate aμ out in equation (61) and get the
original path integral (55) with the current-current interac-
tion term back. To go from the right-hand side (RHS) to
the left-hand side (LHS) in the above relation, we first shift
the Hubbard-Stratonovich field by its on-shell value aμ →
aμ − λνμ jν which turns (61) into

〈
∂μ jμ5

〉
a

= e2

16π2
〈εμνρσ FμνFρσ 〉a

+ e

2π2
εμνρσ

〈
∂μAν∂ρ

(
λσαaα − λ2

σα jα
)〉

a

+ 1

4π2
εμνρσ

〈
∂μ

(
λναaα − λ2

να jα
)
∂ρ

× (
λσβaβ − λ2

σβ jβ
)〉

a. (63)

In the above all terms are odd in aμ except the term
εμνρσ λ α

ν λ β
σ ∂μaα∂ρaβ coming from the last line. But if the

matrix λ ν
μ has only one nonzero element in each of its rows

and columns, which is the case for all special cases that we
are focusing on, then this term is also odd in each component
of aμ. The reason is that the totally antisymmetric tensor
εμνρσ does not allow for repeated indices. Therefore, after
integrating the auxiliary field aμ out, all terms that contain
aμ will vanish, and we will be left with

∂μ jμ5 = e2

16π2
εμνρσ FμνFρσ − e

2π2
εμνρσ λ2

σα∂μAν∂ρ jα

+ 1

4π2
εμνρσ λ2

ναλ2
σβ∂μ jα∂ρ jβ. (64)

We see that there are terms respectively depending only on
the electromagnetic field, only on the presence of interactions,
and a mixed term requiring the presence of both. Note that the
first term on the right-hand side is the anomalous term in the
absence of interactions.

B. Interpretation through screening

It is possible to look at the above result as a screening
process which is the subject of this section. The anomalous
identity in the absence of interactions was previously given
by (27) which is ∂μ jμ5 = e2

2π2 E · B. In comparison, by defining

Ẽi = Ei − 1

e

[
λ2

iβ∂0 − λ2
0β∂i

]
jβ, (65)

B̃i = Bi − 1

2e
εi jk

[
λ2

jβ∂k − λ2
kβ∂ j

]
jβ, (66)

the anomalous identity in the presence of interactions (64) can
also take the following appearance:

∂μ jμ5 = e2

2π2
Ẽ · B̃, (67)

juxtaposed to the (1 + 1)-dimensional counterpart, equa-
tion (36). Viewed this way, one can interpret the effects of
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interaction as a sort of anomalous screening where the newly
introduced interactions between charge densities and currents
result in the screening of constituents of the external electro-
magnetic field responsible for the chiral symmetry breaking.

The interacting identity above can equivalently be
written as

∂μ jμ5 = e2

16π2
εμνρσ F̃μν F̃ρσ , (68)

where F̃μν ≡ Fμν − 1
e [∂μ(λ2

να jα ) − ∂ν (λ2
μα jα )] with the

brackets being the contribution from the interacting currents.
Let us for the moment consider the electromagnetic field
to be dynamical and focus on the case λ2

μν = λ2ημν

where interactions respect Lorentz symmetry. Upon
treating the electromagnetic field in a semiclassical
fashion, i.e., saddle-point approximation of Aμ while it
is coupled to fluctuating fermionic fields ψ and ψ̄ , we
have ∂νFμν = e jμ and consequently ∂μ jμ = 0. Therefore,
Maxwell’s equations for F̃μν are given by the four
components of

∂νF̃μν =
(

1 − λ2

e2
�

)
e jμ. (69)

On the other hand, using the commutative nature of partial
derivatives, we have

F̃μν =
(

1 − λ2

e2
�

)
Fμν, (70)

or equivalently,

Ãμ =
(

1 − λ2

e2
�

)
Aμ, (71)

where Ãμ is defined through F̃μν ≡ ∂μÃν − ∂νÃμ. Therefore,
looking both at equation (68) and the equations above we see
that the anomalous chiral symmetry breaking is generated not
only by the background fields but also by backreactions of the
interacting matter.

C. A perturbative discussion

So far we have exploited only the nonperturbative lan-
guage, it is worthwhile however, to discuss the results in a
perturbative language as well. Consider the vacuum expec-
tation value of the chiral current jμ5 by utilizing the path
integral (56)

〈ψ̄γ μγ5ψ〉a;ψ ≡
∫

Da
∫

Dψ̄Dψψ̄γ μγ5ψeSa , (72)

where the subscript a designates that we have separated the
integral over auxiliary field aμ from the rest of the integrals
denoted by the subscript ψ . We then notice that

〈ψ̄ (x)γ μγ5ψ (x)〉ψ = − lim
y→x

〈
T �γ μ

ασ γ5σβψβ (x)ψ̄α (y)
〉
ψ
,

where α, β, and σ are running over spinor indices of the
gamma matrix and fermionic operators while T � is the time-
ordering operator. The two point function on the write hand

FIG. 1. Chiral anomaly is associated with triangle diagrams.
(left) The triangle diagram responsible for chiral nonconservation
with one vertex of chiral current and two vertices of photons. (right)
The effect of interactions on chiral nonconservation can be schemat-
ically shown by a Gaussian distribution of the photon legs.

side can moreover be written as

〈T �ψ (x)ψ̄〉ψ = 1

i /Dx
g

1

Z

∫
D[ψ̄ψ]i /Dx

gψ (x)ψ̄ (y)eSa

= 1

i /Dx
g

1

Z

∫
D[ψ̄ψ]

δeSa

δψ̄ (x)
ψ̄ (x)

= − 1

i /Dx
g

1

Z

∫
D[ψ̄ψ]

δψ̄ (y)

δψ̄ (x)
eSa

= − 1

i /Dx
g

δ(x − y). (73)

Here /Dx
g is the generalized Dirac operator introduced previ-

ously containing a partial derivative that acts on functions of x,
and 1/ /Dx

g just represents the inverse of that operator. Knowing
this we can rewrite (72) as

〈ψ̄γ μγ5ψ〉a;ψ = lim
y→x

〈tr[γ μγ5(i /Dg)−1δ(x − y)]〉a, (74)

where the trace is over spinor indices. By remembering the
definition of the generalized Dirac operator i /Dg = i/∂ + e/A +
λ/a we can expand /D−1

g in powers of e/A + λ/a and then employ
the integration of the auxiliary field aμ over each order. The
expansion of /D−1

g has the following form:

1

i /Dg
= 1

i/∂
− 1

i/∂
(e/A + λ/a)

1

i/∂

+ 1

i/∂
(e/A + λ/a)

1

i/∂
(e/A + λ/a)

1

i/∂
+ · · · , (75)

the last term of which gives rise to the triangle diagram, Fig. 1.
In hindsight we know that only this term contributes to the
chiral anomaly and all other higher-order terms cancel out
[25]. The difference from the noninteracting case is the new
element /a that appears because of the local current-current in-
teractions alongside /A. Without disturbing the triangle nature
of chiral anomalies, this new term will nevertheless contribute
to the chiral symmetry breaking. Integration on aμ is Gaus-
sian with a peak on aμ = 0. Therefore, the triangle diagram
coming from (75) can be looked at as having a Gaussian
distribution of photon legs peaked at (aμ + Aμ) = Aμ (see
Fig. 1).

The chiral anomaly is given by substituting the last term of
(75) in place of (i /Dg)−1 in (74) and taking the divergence of
the whole equality, or in momentum space, contracting it with
an external momentum.
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Instead of investigating the chiral anomaly by looking di-
rectly at the divergence of the chiral current, we can similarly
investigate it through the response of a chiral system by con-
sidering the number current jμ. For this, we first introduce
a constant axial field /bγ5 to the generalized Dirac operator
and again expand (i /Dg)−1 in powers of e/A + λ/a which to first
order is given by

1

i /Dg
= 1

i/∂ − /bγ5
− 1

i/∂ − /bγ5
(e/A + λ/a)

1

i/∂ − /bγ5
+ · · · .

(76)

Similar to (74) we have a relation for 〈 jμ〉 which after using
the above expansion and successive Fourier transformations,
will be as below:

〈 jμ〉a;ψ =
〈∫

k,q
tr

[
γ μ −e−iqνxν

/k + /q − /bγ5
(e/A + λ/a)

1
/k − /bγ5

]〉
a

,

(77)

where
∫

k,q is defined as
∫

d4k
(2π )4

d4q
(2π )4 and the first term of the

expansion (76) has vanished. We can see, for example by
multiplying the numerator and denominator of the last fraction
by /k + /bγ5, that additional linear in Aμ terms will appear due
to the axial field bμ. These are of the following form:

〈 jμ〉a;ψ =
〈 ∫

k,q
f (k, q)tr[eγ μγ αγ νγ βγ5qαAν (q)bβ

+ λγ μγ αγ νγ βγ5qαaν (q)bβ]

〉
a

+ · · · , (78)

with f (k, q) being some function of the two four-momenta
kμ and qμ. Since for the Euclideanized picture we have
tr[γ μγ αγ νγ βγ5] = 4εμανβ the vacuum expectation value
of the current density jμ(x) acquires a contribution from
εμανβbα∂νAβ and another from εμανβbα∂ν〈 jβ〉. We discuss the
exact path integral treatment of the above in Sec. VI when
we calculate the response as a way to measure the effect of
interactions on chiral anomaly.

V. DIMENSIONAL REDUCTION

The chiral-symmetry-breaking relation in the presence of
interactions, i.e., equation (64), can be simplified when the
system admits certain symmetries. For instance, when both
electric and magnetic fields are kept parallel to the z axis,
E = Ezẑ and B = Bzẑ, we have rotational and translational
symmetry across the x-y plane. This ensures us that on av-
erage the currents and derivatives along x and y directions
vanish. Therefore the last term in equation (64) vanishes and
it reduces to

∂μ jμ5 = e2

16π2
εμνρσ FμνFρσ − eBz

2π2
λ2

σαε12ρσ ∂ρ jα. (79)

The magnetic field along ẑ generates Landau levels in a
noninteracting theory. It would have been surprising if raising
interaction strengths from zero to a small value would destroy
the Landau-level structure completely. Thus it is quite reason-
able to assume that for small interaction strengths or large

magnetic fields there still exist Landau levels and therefore
also a lowest Landau level (LLL). The contribution of all
Landau levels to chiral anomaly are canceled out due to the
spin degeneracy of each level, except for the lowest Landau
level which does not suffer from such degeneracy. As we
have discussed before [for example, around equation (14) and
its following paragraph] the chiral anomaly comes from the
zero-modes and the current situation is no exception.

Let us examine jμ = ψ̄γ μψ in this situation and in chiral
representation: We can write,

jμ = ψ̄γ μψ = (u† v†)

(
σ̄ μ 0
0 σμ

)(
u
v

)

= u†σ̄ μu + v†σμv, (80)

where u and v are two-component Weyl spinors that constitute
Dirac spinors ψ , σμ ≡ (1, σ k ), and σ̄ μ ≡ (1,−σ k ). When the
spinors are situated at the LLL they can have definite spins
along ẑ leaving them with only one nonzero component in the
basis of σ 3, and jμ given as above, will have nonvanishing
components only for μ = 0 and 3. The same goes for the
chiral current jμ5 . Considering all these we realize that the sys-
tem has gone through a dimensional reduction from (3 + 1)
dimensions to (1 + 1) dimensions. We can further see this by
noticing that, within zero modes of our system, which is all we
are concerned about here, the relation ε21μνγν = γ μγ5 holds
if we keep μ ∈ {0, 3} and ν ∈ {0, 3}. Compare this with the
relation εμνγν = γ μγ5 which only holds in two-dimensional
spacetimes and was used to calculate equation (37). After
some rearranging we arrive at

∂μ jμ5 = 1

1 + n0λ
2
3/π

e2

2π2
EzBz − n0

(
λ2

0 − λ2
3

)
/π

1 + n0λ
2
3/π

∂3 j3
5 ,

(81)

where n0 ≡ eBz/2π . Here we have also specialized to the
case where the interaction tensor is diagonal. In deriving this
equation we have made no assumptions on the nature of
Landau levels or how they arise, only that they exist which
seems a physically reasonable proposition especially in the
limit of large background field. In the opposite limit of zero
background field, (81) reduces to the noninteracting result.

Furthermore, when λ2
0 = λ2

3 = λ2, e.g., for Lorentz-
symmetry-respecting interactions, equation (81) simplifies
even more to

∂μ jμ5 = 1

1 + n0λ2/π

e2

2π2
EzBz = n0

1 + n0λ2/π

e

π
Ez. (82)

We see that here the chiral symmetry breaking in the absence
of interactions has been modified by a coefficient much like
(37) in (1 + 1) dimensions. The only difference here is the
quantity n0 which is nothing but the degeneracy of the lowest
Landau level per unit area.

The similarity of (82) to the (1 + 1)-dimensional case
(37) can be further expounded through describing a (1 +
1)-dimensional system with N flavors of fermions in an
all-to-all interacting relation. Consider the following path
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integral:

IN =
∫

Daμ

N∏
i=1

Dψ̄iDψi

× exp

{∫
d2x

[
N∑

i=1

ψ̄ii /Dgψi + 1

2
aμaμ

]}
, (83)

with /D = γ μ(∂μ − ieAμ − iλaμ). We can separately define N
current densities jμi ≡ ψ̄iγ

μψi for each flavor. The on-shell
value of aμ is so given by aμ = −λ

∑N
i=1 jμi which, when

aμ is integrated out, generates current-current interactions
between all the current densities with coupling −λ2/2 similar
to what have done before.

Under the simultaneous chiral transformation of all flavors,

ψi −→ eiαγ5ψi, ψ̄i −→ ψ̄ie
iαγ5 , (84)

the action functional of (83) goes under the following change:

δSN =
∫

d2xα∂μ

N∑
i=1

ψ̄iγ
μγ5ψi ≡

∫
d2xα∂μJμ

5 , (85)

hence Jμ

5 , defined as above, is classically conserved. However
the measure, under each one of the chiral rotations in (84), will
introduce a copy of the (1 + 1)-dimensional chiral anomaly to
break the classical conservation

∂μJμ

5 = N

(
e

π
Ez + λ

π
εμν∂μaν

)
= N

e

π
Ez − N

λ2

π
∂μJμ

5 ,

where eEz/π is the anomalous term for one flavor in the
absence of interactions and the last equality stems from in-
tegrating the auxiliary field aμ out. For the Jμ

5 in the last
equality to appear we again have used the relation εμνγν =
γ μγ5 between two-dimensional gamma matrices. A simple
rearranging of the above equation yields

∂μJμ

5 = N

(1 + Nλ2/π )

e

π
Ez. (86)

Upon identifying N with the degeneracy of LLL per area n0,
equations (86) and (82) become identical.

Moreover, we can take the same steps we took in Sec. III D
for these N flavor fermionic system, to transform the action
functional to

SN =
∫

d2x
N∑

i=1

�̄iiγ
μ

[
∂μ − i

e√
1 + Nλ2/π

Aμ

]
�i, (87)

which means that in (1 + 1) dimensions we can treat an
N-flavor interacting fermionic system as an N-flavor free
fermionic system where the coupling to external elec-
tromagnetic field has been modified by (1 + Nλ2/π )−1/2.
Consistently, if we start with a (3 + 1)-dimensional free
fermionic system which has gone through a dimensional re-
duction due to the presence of parallel magnetic and electric
fields, but has an electric charge given by

ẽ ≡ e√
1 + eBz

2π
λ2

π

, (88)

we get the same result as (82).

VI. MEASURABLE CONSEQUENCES

The models that we have been considering so far can be
realized in many physical systems. In lattice systems of these
sort the band structure forms Dirac cones where, around the
point that the two low-energy bands have deformed to touch
each other, the description of the system is given by fermionic
path integrals such as

∫
D[ψ̄ψ] exp{i ∫ dnxψ̄ i /Dψ}. One can

point to graphene, topological insulators and liquid 3He as
a few examples [30–37]. When the energy dispersion has
genuine doubly degenerate Dirac cones, they can be made
separated into two chirally distinct cones by introducing a chi-
ral or time-reversal-breaking element. Among materials that
possess such a feature are Weyl semimetals [12,38–41]—a
type of gapless topological matter with distinctive features
including a large negative magnetoresistance [42–45] and an
anomalous Hall response [46,47]. The chiral element in Weyl
semimetals, which separates the otherwise degenerate cones,
appears in the low-energy description as the additional term∫

d4xbμ jμ5 in the action functional with bμ being constant.
When projected to left- and right-handed spinors this term
breaks into

∫
d4xbμ( jμR − jμL ) which clearly destroys the pre-

existing symmetry L ↔ R between the exchange of left- and
right-moving fermions.

A. Prior to interactions

Before jumping to the interacting case, let us first derive
the anomalous transport of a chiral system. The low-energy
description of the Weyl semimetal is provided by the follow-
ing path integral:

Zb[Aμ] =
∫

D[ψ̄ψ] exp

{∫
d4x

[
ψ̄ i /Dψ + bμ jμ5

]}
, (89)

where as before /D = (∂μ − ieAμ) with Aμ being an external
field and spinor degrees of freedom are integrated over. Also
the subscript in the partition function Zb indicates that it is
carrying a chiral element (or Weyl separation) which breaks
the L ↔ R symmetry.

Since bμ is constant we can always perform a chiral trans-
formation to remove −ibμγ5 from inside the parentheses. This
transformation is given by ψ → eibμxμγ5ψ , ψ̄ → ψ̄eibμxμγ5 .
But of course the measure is not invariant under such trans-
formation and introduces an additional term to the action,

Zb[Aμ] =
∫

D[ψ̄ψ] exp

{ ∫
d4x

[
ψ̄ i /Dψ

− e2

4π2
εμνρσ bμAν∂ρAσ

]}
, (90)

where the same path integral Zb[Aμ] now comes with a
different action in which the bμ jμ5 has turned to a Chern–
Simons-like term. Here we can establish a relation between
partition functions that carry the chiral element and those that
do not:

Zb[Aμ] = Z[Aμ] exp

{
− e2

4π2

∫
d4xεμνρσ bμAν∂ρAσ

}
,

with Z[Aμ] ≡ Zb[Aμ]|bμ=0. (91)
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We wish to know how much the chiral element contributes
to the electrical current. To obtain the current in nonzero bμ

we vary Zb with respect to the external gauge field and write
e〈 jμ〉b = (1/Zb)(δZb/δAμ). Correspondingly we have the cur-
rent e〈 jμ〉 = (1/Z )(δZ/δAμ) when bμ has been excluded. The
response due to the chiral element, which we may call the
anomalous response jμA , is obtained from the difference of
these two. Varying the above relation between Zb and Z with
respect to the external gauge field Aμ gives us just that,

e jμA = e〈 jμ〉b − e〈 jμ〉 = e2

2π2
εμνρσ bν∂ρAσ . (92)

Note that the anomalous current is conserved, i.e., ∂μ jμA =
e

2π2 bνε
μνρσ ∂μ∂ρAσ = 0.

B. Interactions included

Having the current formula (92) at hand and remembering
our experience in deriving equation (68), we can readily guess
that substituting eAσ by eÃσ = eAσ − λ2

σα〈 jα〉b should give us
the anomalous current in the presence of interactions. Never-
theless, we are going to take more careful steps and calculate
the interacting formula rigorously as follows:

The low-energy description of an interacting Weyl material
can then be given by the following path integral:

Ib =
∫

D[ψ̄ψ] exp

{∫
d4x

[
ψ̄ i /Dψ + bμ jμ5 − 1

2
λ2

μν jμ jν
]}

,

(93)

As we have done so many times now, we are going to decou-
ple the current-current interaction by introducing an auxiliary
field aμ to reform the path integral as below,

Ib =
∫

D[ψ̄ψaμ] exp

{∫
d4x

[
ψ̄ i /Dgψ + bμ jμ5 − 1

2
aμaμ

]}
,

(94)

where as before the generalized Dirac operator is given by
/Dg ≡ (∂μ − ieAμ − iλμνaν ) and the previous form of the path
integral is obtained by integrating over aμ.

We are going to exploit the fact that both aμ and bμ can
decouple from fermions, the former by a shift with its on-shell
value and the latter by a chiral rotation. Let us first decouple
bμ from fermions via the chiral rotation ψ → eibμxμγ5�, ψ̄ →
�̄eibμxμγ5 . All the terms in the action are invariant under this
rotation, but the measure transforms with a nontrivial Jacobian
and the path integral becomes reorganized as

Ib =
∫

D[�̄�aμ] exp
∫

d4x

[
�̄i /Dg� − 1

2
aμaμ

− 1

4π2
εμνρσ bμ(eAν + λναaα )∂ρ (eAσ + λσβaβ )

]
. (95)

We can separate the integration over aμ from the rest of
the path-integration, Ib = ∫

DaμZb[Aμ, aμ], and write the

interacting version of the relation (91) as follows:∫
DaμZb[Aμ, aμ] =

∫
DaμZ[Aμ, aμ]

× exp

{
− e2

4π2

∫
d4xεμνρσ bμAν∂ρAσ

}
,

with Z[Aμ, aμ] ≡ Zb[Aμ, aμ]|bμ=0, (96)

where eAμ ≡ eAμ + λμαaα and Zb[Aμ, aμ] is explicitly
given by

Zb[Aμ, aμ] =
∫

D[ψ̄ψ] exp

{ ∫
d4x

[
ψ̄ i /Dgψ

+ bμ jμ5 − 1

2
aμaμ

]}
. (97)

Therefore, similar to (92), upon varying the interacting path
integral, Eq. (96), with respect to Aμ, we have the following
relation for currents:∫

Daμ〈 jμ〉bZb[Aμ, aμ]

=
∫

Daμ

(
〈 jμ〉 + e

2π2
εμνρσ bν∂ρAσ

)
Zb[Aμ, aμ]. (98)

We now rotate the fermionic degrees of freedom � back to
their original state ψ by the reverse chiral rotation. Doing this
leaves Zb and jμ and consequently everything in the above
relation unchanged but is nevertheless crucial, first because
the relevant correlation functions are those expressed in terms
of the original fermions and second for making integration
over the auxiliary field aμ possible.

Now it is time to decouple aμ from fermions by the
shift aμ → aα − λβα jβ which results in getting the current-
current interaction in (93) back. Note that the reverse chiral
rotation to original fermions has removed the Chern–Simons-
like term from the action which now after the shift in the
auxiliary field is quadratic in aμ. This means that the term
εμνρσ bν∂ρ (λσαaσ ), which is linear in aμ, will be eliminated
from εμνρσ bν∂ρAσ after integration over the auxiliary field.
At this stage both current expectation values and Zb are untied
from aμ meaning that aμ terms can be factored out of them.
Thus we are left with

e jμA = e

2π2
εμνρσ bν∂ρ

(
eAσ − λ2

σα〈 jα〉b
)
. (99)

This result is therefore true for all λμν .

C. Anomalous transport

Remember that the total current 〈 jμ〉b is the sum total of the
anomalous current jμA and the nonanomalous current. When
the nonanomalous part of the total current is vanishing, we
can summarize the result (99) as jμ = e2

4π2 ε
μνρσ bν F̃ρσ with

F̃μν defined under equation (68). Let us simplify the current
equation by specializing to the case of bμ = bzδ

μ
3 and the

Lorentz-invariant interaction λμν = λημν , which gives us a
2bz separation of Weyl nodes along the kz direction in mo-
mentum space and a natural current-current interaction which
is but the density-density interaction made Lorentz invariant.
When only b3 is nonzero, j3 ≡ jz is zero and we have for
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other spatial directions e jx = σ
xy
0 Ẽ y with σ

xy
0 = e2bz/2π2 and

similarly for jy. As we can see from the definition (65), at the
equilibrium and homogeneous limit Ẽ goes to E. Therefore at
such limit, we end up with the same anomalous Hall response
formula as in the noninteracting case. More explicitly,

jx = ebz

2π2
Ey − λ̄[∂t jy − ∂yρ], (100)

with λ̄ ≡ λ2bz/2π2. The first term gives the quantum anoma-
lous Hall current in either noninteracting materials or the
equilibrium and homogeneous limit; in both cases the second
term vanishes. Therefore, even though interactions do not
affect the equilibrium Hall current, they may nevertheless
contribute to the nonequilibrium or inhomogeneous response.

To obtain the Hall conductivity in the homogeneous but
nonequilibrium limit we combine equation (100) with the
corresponding expression for jy and after switching to Fourier
space we get

σ xy(ω) = [1 + (λ̄ω)2]−1σ
xy
0 , (101)

where again σ
xy
0 = e2bz/2π2 is the Hall conductivity in the

absence of interactions. There is also a contribution to the
longitudinal conductivity arising solely due to interplay of
interactions with the Hall conductivity,

σ xx(ω) = λ̄ω

1 + (λ̄ω)2 σ
xy
0 = λ̄ωσ xy(ω). (102)

For small ω, i.e., small deviations from equilibrium, the lead-
ing order in σ xx(ω) is simply λ̄ωσ

xy
0 , whereas at large enough

ω, given that the current formulation holds, the anomalous
longitudinal conductivity σ xx(ω) vanishes along with σ xy(ω).
It is noteworthy that, had the nonanomalous part of the current
been nonzero, its contribution could appear as an additional
nonanomalous longitudinal conductivity σ xx

0 on the right-hand
side of (102).2

But the anomalous Hall effect is not the only anomalous
transport phenomena that might be influenced by the effects
of interactions. What about other responses at other limits?
Do, for example, interactions affect the equilibrium density
response to a change of the magnetic field? To see if that is
the case, it is both convenient and insightful to look back at
the dimensionally reduced system, Sec. V, where as we have
calculated in (82) the effect of interactions on chiral symmetry
breaking is simply a factor that depends on the degeneracy
n0 = eBz/2π of LLL while a strong magnetic field has already
generated a background charge density. We start from the path
integral (93) in the dimensionally reduced setup where the
full Lorentz symmetry is broken into a rotational symmetry
in x-y plane and a boost symmetry along t-z, with λ2

μν =
λ2(η0μη0ν + η3μη3ν ), E = Ezẑ, and B = Bzẑ. We also restrict
bμ to bzδ

3
μ as before. Removing bz jz

5 from the Lagrangian by

2We can see this simply by substituting jμA with 〈 jμ〉b − 〈 jμ〉 in
equation (99) and then writing the spatial part of the nonanoma-
lous current as conductivity times electric field, in particular 〈 jx〉 =
σ xx

0 Ex . Then it becomes clear that whatever the anomalous or Hall
conductivity is, the total conductivity is obtained by adding σ xx

0 to its
longitudinal part.

the chiral rotation employed in previous section, adds to the
action the right-hand side of the following relation:∫

d4xbz jz
5 = e2/4π2

1 + n0λ2/π

∫
d4xεν3ρσ bzAν∂ρAσ . (103)

The above relation can be confirmed by integrating over the
modified chiral charge conservation law (82) multiplied by
the parameter of the chiral rotation bμxμ. Now that we have
the right-hand side of (103) substituting

∫
d4xbz jz inside the

action, varying the path integral with respect to A0(x) will give
us the anomalous density:

e j0
A = eρA = n0

1 + n0λ2/π

e

π
bz. (104)

Remember that n0 depends on Bz. Also note that, in reaching
the above equation, we have made no assumptions regarding
the nonanomalous part of the total current.

If we change the background magnetic field by a small
amount Bz → Bz + δBz and then let the system go to the new
equilibrium, the background density will be altered by a small
amount. For the case where λ2 is positive, it is given to first
order by

eδρA = δn0

(1 + n0λ2/π )2

e

π
bz, (105)

with δn0 = eδBz/2π . Here, if we keep the magnetic field large
enough so that LLL is formed, there are two domains of
magnetic field strength that the density transport phenomena
has distinct behaviors in. For large Bz limit there is no density
response to a change of magnetic field, whereas at low enough
Bz the density responds linearly.

Notice that, due to dimensional reduction, the chiral cur-
rent in the longitudinal direction 〈 jz

5〉 is equivalent to density
〈ρ〉 through the relation εμνγν = γ μγ5 which holds in two-
dimensional spacetimes. Therefore, equation (105) can be
viewed as the generation of a chiral current in response to
a change in the magnetic field which is known as the chiral
separation effect (CSE) [48–50].

At this point we briefly mention that the current formula
(99) can be also exploit for the interacting chiral magnetic ef-
fect when separation of Weyl point has a temporal component
bt �= 0. Moreover, investigations through bosonization and
random-phase approximation shed more light on the subject.
These are discussed in Ref. [26].

VII. ANOMALOUS MODES

In this section we briefly turn our attention to the inter-
acting anomalous current formula (99) to better uncover the
dynamics that resides inside it. Turning the external electro-
magnetic field off makes it clear that the interplay between
interactions and anomaly alone is creating a dynamical be-
havior among anomaly generated phenomena. Let us then set
Aμ = 0, and for simplicity choose bμ = bzδ

3
μ in addition to

the Lorentz-invariant interaction λ2
μν = λ2ημν , to obtain out

of equation (99) the following formula:

jμ = λ̄ε3μαβ∂α jβ, (106)

where we have dropped the subscript in jμA since we are only
considering the situation where only the anomalous current is
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present, and again we are using λ̄ ≡ λ2bz/2π2 notation as in
the previous section.

Since in bμ only the μ = 3 component is nonzero the
Levi-Civita tensor makes sure that jz is zero. The other three
equations are

jx = λ̄(∂yρ − ∂t jy), (107)

jy = λ̄(∂t jx − ∂xρ), (108)

ρ = λ̄(∂x jy − ∂y jx ) = λ̄∇ × j. (109)

The first two equations are those that give rise to dynamical
behavior, while the third one is a constraint equation involving
no time derivative. Here the curl operator is in nature a two-
dimensional differential operator in the x-y plane. But since
jz = 0 is kept zero and there are no equations, hence no dy-
namics, along the z direction we can pretend that differential
operators are three dimensional whenever it is desirable.

To see how charge disappears from a region let us take the
time derivative of (109) and write ∂tρ = −λ̄∂t∇ × j. On the
other hand, by adding up the partial derivatives of (107) and
(108), respectively, along x and y, we have ∇ · j = λ̄∂t∇ × j.
Comparing these two relations tells us that the anomalous
charge is locally conserved: ∂tρ = −∇ · j. This of course
should come as no surprise, since we are reiterating the fact
that ∂μ jμ vanishes due to commutativity of partial derivatives
and anticommutativity of the indices of the Levi-Civita tensor
in (99) or (106).

Furthermore, incorporating dynamical equations (107) and
(108) in the constraint equation (109) gives ρ = λ̄2(∂t∇ · j +
∇2ρ). Using the conservation of charge this becomes an equa-
tion for the density: ρ = λ̄2(∇2ρ − ∂2

t ρ). The similar relation
holds for jx and jy. Thus we end up with three Klein-Gordon
equations for each nonzero component of jμ,(

∂2
t − ∇2 + λ̄−2

)
jμ = 0. (110)

Components of jμ only depend on each other through the
continuity equation, otherwise they have separate dynamics.
Solutions to the above equation are relativistic propagating
distributions jμ = f μ(ωt − k · x) where ω and k satisfy the
relation ω2 − k2 = λ̄−2. Here λ̄ is the reduced Compton wave-
length of these waves. By allowing the Fermi velocity vF and
h̄ to reappear, we can read off from λ̄ = h̄/mvF the mass at-
tributed to these relativistic waves. In terms of the parameters
of our model then,

m = h̄/λ̄vF = h2/2vF λ2bz. (111)

So at the limit of very strong interactions or well-separated
Weyl points, the waves become massless and propagate with
the Fermi velocity.

Electromagnetic fields, then, are sources to equation (110)
and we are going to confirm this by using equation (99) on
itself. Let us for the sake of accessibility rewrite it below

jμ = εμρσ3

(
ebz

2π2
∂ρAσ − λ̄∂ρ jσ

)
. (112)

We are going to restrict all indices to {0, 1, 2} since there is
no need to bother about the third component. Using above

equation twice gives

jμ = εμρσ3 ebz

2π2
∂ρAσ − λ̄(ημαηρβ − ημβηρα )

×
(

ebz

2π2
∂αAβ − λ̄∂α jβ

)
. (113)

By employing the conservation of current and after some
rearranging we have

(1 + λ̄2�) jμ = ebz

4π2
(εμρσ3Fρσ + 2λ̄∂ρFρμ), (114)

where we recall � ≡ ∂2
t − ∇2 is the d’Alembertian. Again,

the above equation describes three massive waves sourced by
the electromagnetic field.

As an aside, note that the role of the speed of light is played
by the Fermi velocity vF �= c in the d’Alembertian. Was it not
the case, shining electromagnetic waves on the material would
have a rather similar effect as in the noninteracting case. Let
us for a moment set vF = c and then apply the inverse of
(1 + λ̄2�) from the left on both sides of the above equation.
In effect, doing this removes the d’Alembertian, since �Fμν

vanishes in this case.
The origin of the gauge field Aμ was external, meaning

that no dynamical terms were introduced for the gauge field
inside the action and it was treated as a source without being
integrated over. Now it is rather interesting that, regardless
of the way the electromagnetic field started, Maxwell’s equa-
tions have forced their way through, utilizing the interplay
of chiral anomaly and interactions. Notice the last term in
(114) vanishes either when interactions are absent or no chiral
element bμ exists, while the second-to-last term is a purely
axionic one. We can therefore conclude that there exist mas-
sive modes coupled to electromagnetic fields obeying axionic
electrodynamics [51–54] all due to the interaction-anomaly
interplay.

VIII. INTRODUCING GRAVITY

Using what we have so far constructed, it is easy to see
that a mixed chiral-gravitational anomalous relation in (3 + 1)
dimensions [55] will also be modified in a similar way. In
the presence of curvature but absence of interactions, the
four-dimensional anomalous relation will host an additional
geometrical Pontryagin density,

∇μ jμ5 = e2

16π2
εμνρσ FμνFρσ + 1

384π2
εμνρσ R αβ

μν Rρσαβ,

(115)

with Rμ
ναβ being the Riemann curvature tensor. We need to be

more careful about curved space notions such as the covariant
derivative ∇μ and the fact that εμνρσ is a Levi-Civita tensor
defined as εμνρσ /

√|g| with εμνρσ being the totally antisym-
metric Levi-Civita symbol and g the determinant of the curved
spacetime metric gμν .3 If there was no chiral anomaly, then

3The covariant derivative ∇μ ≡ ∂μ + �·
μ· is defined with respect

to the object it is acting on. For spinors, in addition to the one
spacetime index, �μ also carries two-spinor indices while for vectors
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the right-hand side of the above equation would vanish and
we would have

∇μ jμ5 = (∂μ + �μ) jμ5 = 1√
g
∂μ

(√
gjμ5

) = 0. (119)

This should not lead to the wrong impression that, in curved
spacetime, even in the absence of quantum anomaly, the chiral
current is not conserved because ∂μ jμ5 = 0 is not necessar-
ily satisfied anymore. What Noether’s theorem gives as the
conservation relation is in terms of the covariant derivative
∇μ jμ5 = 0 in curved spacetime, which, however, due to the
chiral anomaly, will be violated after quantization. All these,
of course, do not change our previous results in flat spacetime.
This point can be verified by considering the fact that at
any given point on spacetime we can always transform the
coordinates to a frame where metric looks locally flat.

The reason the gravitational term appears in the noncon-
servation of the chiral current is clear by the arguments made
in Sec. III A: When there is curvature the covariant deriva-
tive must accommodate its presence, leading to a generalized
Dirac operator which also contains a spin connection, /Dg ≡
γ μ(∂μ − ieAμ − i�μ), with �μ representing the spin connec-
tion and γ μ(x) = eμ

k (x)γ k being the curved version of the
flat gamma matrices γ k . Also eμ

k are the vielbeins satisfying
gμν = eμ

meν
nη

mn. The basis of the generalized Dirac operator
formally diagonalizes the action and can be used to regu-
larize the fermionic path integral as well as the Jacobian of
fermion transformations (59). In this way the curvature effects
appear in the anomalous term and we arrive at equation (115).
(To better clarify the notation used above it should be added
that we use Latin indices for objects that belong to the flat tan-
gent space. Also, �μ is a compact notation which encapsulates
four matrices defined as �μ ≡ �mn

μ [γm, γn]/4 with the com-
mutator of gamma matrices carrying all the spinor indices.)

We can treat the presence of interactions as before by a
Hubbard-Stratonovich decoupling. Let us consider the same
four-fermionic interaction term λ2

μν jμ jν as in Sec. IV. When
curvature effects are included this leads to the following
anomalous relation:

∇μ jμ5 = εμνρσ

4π2

(
λ2

ναλ2
σβ∇μ jα∇ρ jβ − 2eλ2

σα∇μAν∇ρ jα
)

+ e2

16π2
εμνρσ FμνFρσ + 1

384π2
εμνρσ R αβ

μν Rρσαβ .

(120)

or higher-rank tensors it has three spacetime indices. For example,
for ∇μ acting on a vector V α we have,

∇μV α = ∂μV α + �α
μνV

ν, (116)

with
�α

μν ≡ 1
2 gαβ (−∂βgμν + ∂μgβν + ∂νgβν ). (117)

The Riemann tensor is then defined as

Rμ

ναβAμ = −[∇α, ∇β ]Aν . (118)

The Levi-Civita symbol, εμναβ is totally antisymmetric with ε0123 = 1
and all other components given by permutations and the antisymme-
try constraint. This symbol is a tensor density and it can be made into
a tensor if it is divided by the square root of the metric determinant.

As is apparent, these types of interactions do not produce cross
terms with curvature.

Perhaps the effects of interactions on the chiral-
gravitational part of the anomalous term are most easily seen
after a dimensional reduction as in Sec. V where the electric
and magnetic fields are both pointing along the ẑ direction.
Doing so and choosing λ2

μν = λ2ημν greatly simplifies the
above relation to(

1 + n0
λ2

π

)
∇μ jμ5 = e2

16π2
εμνρσ FμνFρσ

+ 1

384π2
εμνρσ R αβ

μν Rρσαβ . (121)

When we are interested in the nonconservation of the chiral
current ∇μ jμ5 = A5 we see that it has been modified by a
factor of (1 + n0λ

2/π )−1 where we recall that n0 is defined
as eBz/2π in Sec. V.

A. Gravity and temperature

Now that we have obtained the interacting anomalous re-
lation in the presence of curvature (120) and (121) we can
discuss the corresponding response and possible measurable
consequences which are the subject of the next three sections.
First we are going to consider two examples that provide an
intuition about the geometrical part of the anomalous term.

For the winding density RR̃ ≡ εμνρσ R αβ
μν Rρσαβ to be

nonzero, there should exist some sort of “twist” in the ge-
ometry. A spherical symmetric geometry, for instance, has a
vanishing RR̃. Consider the following line element:

ds2 = −dt2 + dr2 + dz2 + r2dφ2

− 2r��(z + l, l − z)dtdφ, (122)

with �(z + l, l − z) being a generalized Heaviside step func-
tion: Zero whenever any of its arguments are negative and
equal to identity otherwise. A nonvanishing � generates a
difference between an angular step forward dφ > 0 and back-
ward dφ < 0. So the line element describes a twist within
the region −l � z � l . For this metric we have RR̃ = 2[δ(l +
z) − δ(l − z)]�3/r2(1 + �2)2 which is nonzero only for non-
vanishing �. For a general z-dependent �(z) we would have
RR̃ = 8�2∂z�/r2(1 + �2)2 instead.

As the second example consider the following metric:

ds2 = −dt2 + dr2 + [dz − �(t )dφ]2 + r2dφ2. (123)

Let us define dz̃ ≡ dz − �dφ, where now �(t ) is an arbi-
trary function of time, and take z̃ as the new substitute for
the z axis which sets up a coordinate system where metric
becomes diagonalized. Consequently, a step in φ while other
coordinates (t, r, z̃) are kept fixed would mean a step in the z
direction. This describes a spiral along ẑ. For this geometry
we have RR̃ = −8(∂t�/r)3, which is nonzero whenever there
is a change in �.

These give us a little more than zero intuition of what RR̃
designates. But how does the relation of this term to the chiral
current show itself in physical systems?

Quasiparticles propagating in a flowing fluid can be de-
scribed as excitations of a field that lives on a curved
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background characterized by a nontrivial metric [56]. One
can intuitively guess that a rotating flow may translate, in
analog gravity language, to one with nonvanishing RR̃. On
the other hand, in a rotating system of fermions an axial
current emerges. This phenomenon is known by the name of
chiral vortical effect (CVE) [57,58]. An interesting feature
of this effect is its independent relation to temperature. For
massless Dirac fermions, detached from chemical potentials
(represented by μ), this axial current relates to temperature T
by the following:

j5 = �

(
μ

4π2
+ |�|2

48π2
+ T 2

12

)
, (124)

with � being the angular velocity of the rotating system.
There are other similar effects to CVE that are worth men-
tioning such as the axial magnetic effect with measurable
consequences where the same temperature dependence ap-
pears [59]. In all these cases the temperature dependence has
been connected to the gravitational anomalies [60] albeit they
can be derived by other methods as well [61].

As the right-hand side of (124), apart from the geometric
parameter �, contains also the temperature T , the winding
density RR̃ must somehow encode the notion of tempera-
ture as well. To see how these seemingly unrelated notions,
namely, gravity and temperature, can possibly be connected,
its perhaps best to remember that gravity is the force that
causes all types of energy to flow; since it couples to every-
thing. But this feature is just like the temperature gradient.
All energy carriers contribute to heat transfer. So there should
be a relation, even though fictitious, between these two con-
cepts, as has been employed before by Luttinger [62] in his
treatment of thermal transport using an auxiliary gravitational
potential.

But how can we attribute a temperature to a specific space-
time geometry? One way to have a notion of temperature
associated with geometry is to look at black hole space-
times. They radiate thermally. Let us for simplicity imagine
a (1 + 1)-dimensional black-hole system. An event horizon
divides spacetime into interior and exterior regions. In the
exterior particles are doomed to move towards the future and
also are allowed to have positive or negative momenta. In the
interior the roles of space and time are “swapped,” where
now particles are doomed to go towards the singularity and
also are allowed to have positive or negative energy. Having
this permission (for negative-energy particles in the interior)
allows for a real pair creation near the horizon, where the
negative-energy particle is to be created inside the black hole
while the positive exterior one can escape to infinity. In this
way energy can be extracted from the black hole in the form of
radiation. By calculating the probability of such pair creation
[63,64] we can see that this radiation is thermal with a tem-
perature proportional to the surface gravity of the horizon—a
completely geometrical quantity.

Therefore, for CVE, in order to get an anomalous con-
tribution proportional to � and T , what we need is perhaps
a geometry that has both a twist and a horizon. In fact we
hope for a nonvanishing Pontryagin density from which a �T 2

term, as in equation (124), can be extracted.

B. Adding a horizon

The following metric [61] has all the properties we are
looking for, namely, a twist, a horizon, a nonzero Pontryagin
density, and asymptotic flatness as an additional welcoming
feature. In return it is a bit more complicated than our previous
examples:

ds2 = − f (z)
(dt − �r2dφ)2

(1 − �2r2)

+ 1

f (z)
dz2 + dr2 + r2(dφ − �dt )2

(1 − �2r2)
. (125)

The horizon is on z = 0, where f (z) is set to have a nondegen-
erate root. The Pontryagin density of the metric (125) is given
by

1

4
εμνρσ R αβ

μν Rρσαβ

= −2� f ′(z)[(1 − r2�2)2 f ′′(z) − 8�2[1 − f (z)]]

(1 − r2�2)3
.

(126)

with the prime designating differentiation with respect to z.
Recall that εμνρσ = εμνρσ /

√|g| is the Levi-Civita tensor and
|g| = r with our choice of metric.

One can effectively reduce the near horizon physics to that
of a (1 + 1)-dimensional chiral quantum field theory [65]. The
anomalous nonconservation relation for a current of either
right- or left-moving particles is the same as equation (124)
but now with half of the right-hand side. Looking back at
the anomalous relation with the above Pontryagin density,
keeping only the leading term in � we have,

1√|g|∂z
(√|g| jz

5

) = − �

192π2
∂z[ f ′(z)2], (127)

or

jz
5

∣∣
z→∞ = �

192π2
f ′(z)2

∣∣∣∣
z=0

= �

48π2
κ2, (128)

where κ = f ′(0)/2 is the surface gravity of the horizon. Here
we have used two boundary conditions: First, because of the
asymptotic flatness, f ′(z) vanishes at infinity; second, a non-
vanishing current at the horizon leads to infinite flux which we
have abandoned on physical grounds [66,67].

The temperature of the Hawking radiation out of the hori-
zon is related to its surface gravity by TH = κ/2π , in natural
units. Through identifying this temperature with the tempera-
ture of our fermionic system we have

jz
5 = 1

12�T 2
H , (129)

which is the temperature part of the CVE (124) as we were
looking for.

C. Turning interactions on

Looking back at (121) we observe that had we introduced
interactions at the beginning, we would have had a different
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coefficient behind the Pontryagin density,

∇μ jμ5 = 1

384π2(1 + n0λ2/π )
εμνρσ R αβ

μν Rρσαβ

+ the electromagnetic term, (130)

which would have been dragged all the way to the end re-
sult, without altering anything else. In that case we would
instead get

jz
5 = 1

12(1 + n0λ2/π )
�T 2

H = 1

12
�T̃ 2

H . (131)

This can be interpreted in two ways: Either that the inter-
actions alter the flow of charge along z, or the temperature of
this radiation is not simply given by κ/2π in the presence of
interactions. In the latter case the modified temperature would
be T̃H ≡ TH/(1 + n0λ

2/π )1/2.
Mixed axial-gravitational anomalies similar to the non-

conservation relation (115) have been invoked in the context
of experimental condensed-matter physics as in Ref. [68]. If
these anomalies truly appear in thermal phenomena as they
have in Ref. [68], then according to what we have discussed so
far, one expects them and their consequent thermal phenom-
ena to be modified by the effects of interactions, for example,
through equation (120). Seeing the modification in experiment
would also be a confirmation on the previous results. On
the other hand, if the modifications avoid observation then
the association made between the gravitational anomaly and
the thermal phenomena would go under question.

As the final remark here, let us go back to the black-hole
radiation. Energy and charge fluxes out of the black-hole hori-
zon have been evaluated before using gravitational anomalies
[66,67]. What usually is employed as an underlying theory for
calculating the Hawking radiation is a noninteracting quantum
field theory. It is therefore a notable question to ask how
an interacting theory would differ in producing black-hole
radiation. Combining our method of treating interactions and
the method used in Refs. [66,67] for calculating horizon fluxes
in noninteracting theories, we can observe that depending on
the type of interactions the resulting fluxes indeed can go
under some modifications; even though perhaps interaction
terms such as ψ̄γ μψψ̄γμψ are RG irrelevant.

IX. BEYOND ELECTRICAL INTERACTIONS

The main concern of this paper has so far been the local
current-current interactions of the general type of λ2

μν jμ jν .
But not all interactions are between currents, or in other
words, not all interactions are expressible in terms of electrical
interactions. Take, for example, interactions between chiral
currents λ2

μν jμ5 jν5 . Even though in two spacetime dimensions
this interaction is equivalent to the current-current interaction,
as is discussed in the Appendix B, the equivalence does not
hold in four dimensions. The spin-spin interactions between
Dirac fermions can be seen as the spatial part of j5

μ jμ5 . What
follows is the investigation of chiral anomaly in the presence
of such an interaction.

The general local interaction between chiral currents,
λ2

μν jμ5 jν5 , can be investigated through the same procedure es-
tablished in previous sections, but for the sake of simplicity we

are going to specialize to the Lorentz-invariant case expressed
by the following path integral,

I =
∫

D[ψ̄ψ] exp i

{∫
d4x

[
ψ̄ i /Dψ − 1

2
λ2 jμ5 j5

μ

]}
. (132)

As before, it is possible to decouple the interaction term above
by the help of an auxiliary field sμ,

I =
∫

D[ψ̄ψsμ] exp i

{∫
d4x

[
ψ̄ i /Dgψ + 1

2
sμsμ

]}
, (133)

where now the generalized Dirac operator is given as /Dg ≡
γ μ(∂μ − ieAμ − iλsμγ5). It is straightforward to check that
a shift in the auxiliary field sμ → sμ − λ jμ5 decouples the
auxiliary field from the fermions and leaves only a quadratic
term in the action which can easily be integrated out to give
(132) back. But before we do that, we first benefit from the fact
that the path integral is formally diagonalized in its current
state (133), in which we can unambiguously calculate the
chiral anomaly (seeSec. III A if needed).

We encountered a constant axial-field appearing inside the
generalized Dirac operator in previous sections. Being con-
stant the axial field would not contribute to the chiral anomaly.
But here we are integrating over all configurations of sμ, in
which case the constant sμ becomes irrelevant. Therefore we
need to recalculate the chiral anomaly in the presence of both
the gauge field Aμ(x) and the axial field sμ(x), which means
we have to go over similar steps as in (19), when we traced
over γ5, but this time with the generalized Dirac operator that
itself carries a γ5 inside and also in four spacetime dimen-
sions. This is a rather long and tedious task, so we postpone
the details until Appendix D and skip to the result below that
first appeared in Ref. [29] along with the corresponding Weyl
anomaly,

∂μ jμ5 = iλ

[
M2

2π2
+ λ2sμsμ

π2
− ∂μ∂μ

12π2

]
∂νsν

+ εμνρσ

16π2

[
λ2

3
GμνGρσ + e2FμνFρσ

]
, (134)

with Gμν ≡ ∂μsν − ∂νsμ and M defined in (18). The terms
constructed out of sμ in the above equation are all odd in
each component of sμ. Therefore, if we shift sμ by its on-shell
value −λ jμ5 and consequently make the action quadratic in
sμ, all the odd terms above will vanish after the integration.
Therefore we have for the chiral anomaly,

∂μ jμ5 = −iλ2

[
M̃2

2π2
+ λ4 j5

μ jμ5
π2

− ∂μ∂μ

12π2

]
∂ν jν5

+ εμνρσ

16π2

[
4λ4

3
∂μ j5

ν ∂ρ j5
σ + e2FμνFρσ

]
, (135)

with M̃ now containing also the constant contribution com-
ing from 〈sμsμ〉 in addition to M. Depending on the physics
behind the anomalous relation above, we adjust the chiral
symmetry-breaking formula. For example, if jμ5 is really de-
scribing the spin on a Dirac fermions, then j5

μ jμ5 becomes a
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constant S which renders (135) as

∂μ jμ5 =
[

1 + iλ2

(
M̃2

2π2
+ λ4S

π2
− �

12π2

)]−1

× εμνρσ

16π2

[
4λ4

3
∂μ j5

ν ∂ρ j5
σ + e2FμνFρσ

]
. (136)

Our investigations here comes to an end with the result above
as we move to the following concluding section.

X. CONCLUSION

Interactions, as we saw, have nontrivial effects on the chiral
anomaly and its many consequences. The nonconservation of
the chiral current is modified by the presence of interactions
and consequently also all the phenomena associated with it:
The Hall conductivity in the inhomogeneous and nonequi-
librium limit; the electric charge of (1 + 1)-dimensional
pseudoparticles; the existence of longitudinal nonequilibrium
Hall conductivity; the density response to magnetic field; the
chiral magnetic effect; the chiral vortical effect and thermal or
geometrical responses are the few examples we discussed here
explicitly. We also found that the interplay of anomaly with
interactions and Weyl separation leads to the existence of curi-
ous massive modes coupled to an axion-electromagnetic field.
Lastly we showed that the appearance of these modifications
are not subject to only electrical interactions but can easily
occur under the influence of other types such as spin-spin
interactions. To make certain that the regularization used for
the calculation of the anomaly is indeed justified we have
developed a general path integral regularization procedure that
reduces to well-known regularizations, e.g., that of Fujikawa
or Pauli-Villars in such cases that these regularizations be-
come relevant (the details of this construction is presented in
Appendix C).

The exactness of chiral anomaly extends to interacting
systems as well, providing rare nonperturbative results. One
can hope that the results and the method set forth in this
paper will extend to various other problems as well. Possible
examples include the Weyl-Kondo semimetal [29], interacting
topological insulators [69], studies on Hawking radiation via
anomalies [65] in interacting field theories, nonequilibrium
studies of Hall phenomena, and can even extend to odd space-
time dimensions [27]. For our investigations here we used the
path integral technique for the low-energy effective theory. It
is nonetheless desirable to understand how these effects arise
from a microscopic lattice model and to observe how they
coincide in the low-energy limit as the extra symmetries of
the effective theory emerge.
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APPENDIX A: A CALCULATION
WITHOUT AUXILIARY FIELDS

Calculating the effects of interactions on anomalous rela-
tion through an auxiliary field is insightful on its own, but as
additional clarification we present a slightly different calcula-
tion here, which does not rely on auxiliary fields. We begin by
dividing the spinor fields into left- and right-moving parts,

ψR = 1 + γ5

2
ψ, ψ̄R = ψ̄

1 − γ5

2
,

ψL = 1 − γ5

2
ψ, ψ̄L = ψ̄

1 + γ5

2
. (A1)

This way both the electrical current and the chiral current will
also be divided into L and R parts. Therefore, the current-
current interaction (which is nothing but a density-density
interaction made Lorentz invariant) is given by

−λ2

2
ψ̄γ μψψ̄γμψ = −λ2

2

(
jμR jR

μ + jμL jL
μ + 2 jμR jL

μ

)
, (A2)

where jμR,L ≡ ψ̄R,Lγ μψR,L and we used the fact that paired
Grassmann numbers are commutative. The quantum system
is therefore described by the following path integral:

I =
∫

Dψ̄RDψRDψ̄LDψLeiS[ψ̄R,ψR,ψ̄L,ψL,Aμ]. (A3)

The action and the path integral are both symmetric under
R ↔ L transformation and the action S for the (1 + 1)-
dimensional case is given by

S =
∫

d2x

[
ψ̄Riγ μDμψR + ψ̄Liγ μDμψL

− λ2

2

(
jμR jR

μ + jμL jL
μ + 2 jμR jL

μ

)]
, (A4)

with Dμ ≡ ∂μ − ieAμ.
By an infinitesimal chiral rotation in either right- or

left-moving pairs we can obtain corresponding anomalous
relations. Since we have divided our original fields into two
distinct R and L parts, the anomalous term, which was orig-
inally equal to the difference of right- and left-moving zero
modes n+ − n−, gets divided by a factor of two; so that in the
absence of interactions the anomalous relation becomes

∂μ jμ5 R,L = e

2π
εμν∂μAν (A5)

instead of

∂μ jμ5 = ∂μ jμ5 R + ∂μ jμ5 L = e

π
εμν∂μAν . (A6)

Since ψR pairs are independent from ψL pairs, each time we
chirally rotate one pair we can treat the other as constant
fields and its corresponding current a constant four-vector. For
example, let us rotate ψR to eiαγ5ψR while we have prepared
the action in the following form:

S =
∫

d2x
{
ψ̄Riγ μ

(
Dμ + iλ2 jL

μ

)
ψR + L[ψL, ψ̄L]

}
. (A7)

We see that jL
μ is now acting as an external field for right-

moving fermions. (And it does so through its field strength
F jL

μν ≡ ∂μ jL
ν − ∂ν jL

μ.)
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Now let us assume that in the presence of interactions
the total anomalous term, i.e., the right-hand side of equa-
tion (A6), will be modified by a constant factor κ (λ2), where
λ2/2 is the interaction coupling:

∂μ jμ5 = κ (λ2)
e

π
εμν∂μAν . (A8)

For the right- and left-moving anomalous relations the in-
teraction term is divided into these two parts as well. Note
that before, the whole field, containing both the right- and
left-moving modes, was interacting with itself. But now only
half of that self-interaction appears as a self-interaction for
each left- and right-moving field, while the other half appears
as the interaction between one field and the other. Therefore,
the corresponding coefficient for their anomalous term will be
κ (λ2/2) instead of κ (λ2). All in all, the anomalous identity
would then be

∂μ jμ5 R = κ

(
λ2

2

)[
e

2π
εμν∂μAν − λ2

2π
εμν∂μ jL

ν

]
. (A9)

Since the transformation R ↔ L is a symmetry of the path
integral, we can write down the same relation for the left-
moving part of the chiral current. One can then sum up these
relations to obtain the corresponding anomalous identity for
the total chiral current:

∂μ jμ5 = κ

(
λ2

2

)[
e

π
εμν∂μAν − λ2

2π
∂μ jμ5

]
, (A10)

where we have used the relation εμνγν = γ μγ5 to change jμ

to jμ5 . Algebraic rearrangements then give

∂μ jμ5 = κ (λ2/2)

1 + λ2

2π
κ (λ2/2)

e

π
εμν∂μAν . (A11)

Looking at equation (A8) prompts a consistency equation:

κ (λ2) = κ (λ2/2)

1 + λ2

2π
κ (λ2/2)

. (A12)

In terms of κ (λ2)−1 the form of the above equation becomes
simpler,

κ (λ2)−1 = κ (λ2/2)−1 + λ2

2π
. (A13)

Knowing that κ (0) is equal to one, this equation has a unique
solution: κ (λ2)−1 = 1 + λ2/π . By this we eventually arrive at
the final stage of equation (A8),

∂μ jμ5 = 1

1 + λ2/π

e

π
εμν∂μAν . (A14)

APPENDIX B: (1 + 1) DIMENSIONS,
REMAINING REMARKS

Here we answer two simple questions that are prone to be
asked regarding the decoupling procedure employed in our
calculation, and another possible four fermionic interactions.

There are different ways we can decouple the current-
current term via a Hubbard-Stratonovich field aμ. One might
then tend to ask whether these different ways will lead to
different answers or not; if they do the result would have
been unphysical, but this is not the case. We can verify this

through the simple example below which is generalizable to
more complicated cases that appear in later sections when we
discuss the four-dimensional case. Consider the action

S =
∫

d2x

[
ψ̄ iγ μ(∂μ − ieAμ − iLaμ)ψ + �

2
aμaμ

]
. (B1)

The on-shell value of aμ is −(L/�)ψ̄γ μψ . After a shift in the
auxiliary field by its on-shell value and integrating the shifted
auxiliary field out, the action turns out as below,

S =
∫

d2x

[
ψ̄ iγ μ(∂μ − ieAμ)ψ − L2

2�
ψ̄γ μψψ̄γμψ

]
. (B2)

We set L2/� ≡ λ2 to make the action look like (28). On the
other hand, the anomalous identity reads

∂μ jμ5 = e

π
εμν∂μAν + L

π
εμν∂μaν, (B3)

which after the shift and integration of the auxiliary field
becomes

∂μ jμ5 = e

π
εμν∂μAν − L2

�π
εμν∂μaν, (B4)

which gives back

∂μ jμ5 = 1

1 + λ2/π

e

π
εμν∂μAν, (B5)

regardless of how the decoupling of the interaction term is
conducted.

Another question is regarding other possible interaction
terms. One candidate is jμ5 j5

μ; but in two spacetime dimen-
sions this interaction is no different than jμ jμ. One can also
consider interaction terms that do not respect the chiral sym-
metry such as (ψ̄ψ )2. The fact that it manifestly breaks the
chiral symmetry does not readily mean that it will not alter
the nontrivial Jacobian of the transformation.

The path integral under consideration would be

I =
∫

Dψ̄Dψ exp
∫

d2x[ψ̄ iγ μDμψ + �2(ψ̄ψ )2], (B6)

which by using an auxiliary field φ can also be written in the
following form:∫

Dψ̄DψDφ exp
∫

d2x[ψ̄ iγ μDμψ + 2�φψ̄ψ − φ2]

=
∫

Dψ̄DψDφ exp
∫

d2x[ψ̄ i( /D − 2i�φ)ψ − φ2].

(B7)

Either by looking at the first line in the above and seeing that
all we have done is introduce a mass term, or by looking at the
second line and following strict calculations of anomaly, we
can see that the Jacobian of chiral transformation ψ → eiαγ5ψ

is not modified by this term. Nevertheless, being a mass term,
it does not remain invariant under a chiral transformation, and
contributes to the nonconservation as below:〈

∂μ jμ5
〉
φ

= A5 + 〈4i�φψ̄γ5ψ〉φ, (B8)

where A5 is the usual anomalous term coming from the Jaco-
bian and there is a remaining integration over the φ field. The
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end result after the integration is

∂μ jμ5 = A5 + 4i�2ψ̄ψψ̄γ5ψ, (B9)

which agrees with a Ward identity derived directly from equa-
tion (B6).

APPENDIX C: PATH INTEGRAL SELF-REGULARIZATION

Unlike regular path-integration, fermionic path integrals
are defined by left differentiation of Grassmann numbers and
they need regularization. For example, path integration over
fermionic degrees of freedom of a free massive Dirac fermion
theory yields the determinant of the Dirac operator det(i /D +
m) = ∏

ln only if the product is well-defined which is the case
when

∑∞
n |ln − 1| converges [28]. But eigenvalues, ln, of the

Dirac operator are not even bounded. Thus the well-defined
path integral must carry a type of regularization with itself.
This is where action functional intrudes into the measure’s
business. The path integral (or the partition function) has two
elements; the measure and the action; the regularization is not
present in the latter. But how the measure is regularized must
only be determined by the action, since the partition function
is to be a self-sufficient object and should be indifferent about
the backstory of why it is written. Consequently, the regular-
ization, being determined only by the action, will share the
symmetries of the action; even if the measure does not respect
them all.

For the sake of clarification let us investigate an instance
of a regularization which solely relies on the path integral
itself. Similar to (6) we first expand the fermionic fields in
the basis of a generic Hermitian operator. Then the action will
be a function of Grassmann numbers b̄n and an,∫

Dψ̄DψeS[ψ̄,ψ] →
∫ ∏

n

db̄ndanF[{b̄n}, {an}], (C1)

which is not yet regularized. F is generally written as

F =
∞∑

k=0

∑
i1,...,i2k

ci1···ik ik+1···i2k b̄i1 · · · b̄ik aik+1 · · · ai2k , (C2)

with c being complex completely antisymmetric tensors. We
can then define a complex number �m as follows:

�m ≡
∫ ∏

db̄ndanF[{b̄n}, {an}]∫ ∏
db̄ndanb̄mamF[{b̄n}, {an}]

, (C3)

given directly by the path integral and not some specific build-
ing block of it. The reason for this definition becomes clearer
when when we look at a specific class of F given as

FD =
∏

n

(1 + lnb̄nan) = exp

{∑
n

lnb̄nan

}
. (C4)

In this situation we say FD is formally diagonalized in terms
of Grassmann numbers {b̄n} and {an}. Then �m defined as (C3)
is equal to lm from the above. Moreover, a formally diagonal-
ized FD allows the path integral to be completely factorized
as

∫ ∏
db̄ndan exp{lnb̄nan}. Having the path integral written

in this way makes it easy to set a cutoff in ln for the modes of
integration, leading to a natural regularization. For general F

which is not formally diagonalized �n plays the role of ln and
can be used for the regularization process instead.

We can then form the product

I =
∏

n

fM (�n) (C5)

as a regularized value for the path integral, with fM (x) being
a function that rapidly declines to unity for x2 > M2 and
fM (x) = x for x2 < M2.

In other words, we can simply truncate the path-integration
by limiting it to only those modes whose corresponding �2

n is
less than a certain value M2, which can also be done smoothly
by weighting each mode of integration

∫
db̄ndan by a coef-

ficient fn which is equal to one for �2
n < M2, and smoothly

but rapidly approaches to �−1
n for �2

n > M2. We thus obtain a
well-defined fermionic path integral.

One might then wonder if this approach includes any
other already known regularizations; the answer is yes. This
of course includes the regularization used in Fujikawa’s ap-
proach, as we see later, but is more general than that. To see
this, consider the case where we have chosen fM (x) to be
(1 + iM/x)−1:

fM (�m)−1 = �m + iM

�m

= 1 + iM

�m

=
∫ ∏

db̄ndanFn∫ ∏
db̄ndanFn

+
∫ ∏

db̄ndan(iMb̄mam)Fn∫ ∏
db̄ndanFn

=
∫ ∏

db̄ndan exp(iMb̄mam)Fn∫ ∏
db̄ndanFn

, (C6)

where now the subscript n in Fn designates the dependence of
F on {b̄n} and {an}, shortening the previous notation. There-
fore, we can define the product I as

∏
m

�m

�m + iM
=

∫ [∏
m

(∏
n db̄m

n dam
n

)
Fm

n

]
∫ [∏

m

(∏
n db̄m

n dam
n

)
eiMb̄m̃

mam̃
mFm

n

]
=

∫ [∏
m

(∏
n db̄m

n dam
n

)
Fm

n

]
∫ [∏

m

(∏
n db̄m

n dam
n

)
Fm

n

]
exp

{
iM

∑
m b̄m̃

mam̃
m

} .

(C7)

Here each ({b̄n}m, {an}m) is a distinct copy of ({b̄n}, {an}) for
distinct values of m, each of which span a similar space of
Grassmann numbers with the same dimension. The number
of copies (domain of m) is equal to the dimensionality of each
copy (domain of n). Also, m̃(m) is any permutation of m.

The above yields a regularized path integral without any
external information which should be regarded irrelevant to
the path integral as a mathematical object. The term inside the
exponential in the last line, is a sum over all possible values
of m, hence m is a dummy index and can be substituted with
any other letter. On the other hand, the form of Fm

n is the same
for all m. Therefore, considering the Grassmann algebra, one
can separate the subspace spanned by ({b̄m̃

m}, {am̃
m}) from the
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rest of Grassmann space, taking a quotient of
∏

m Fm
n without

changing the ultimate value of the product, and rewrite it as

I = Q
∫ (∏

n db̄ñ
ndañ

n

)
F ñ

n

Q
∫ (∏

n db̄ñ
ndañ

n

)
F ñ

n exp
{
iM

∑
n b̄ñ

nañ
n

} , (C8)

where the quotient Q is what remains from both numerator
and denominator when other terms are extracted out, and
F ñ

n ≡ F[{b̄ñ
n}, {añ

n}]. After canceling Q the numerator will be
the original path integral we began with while the denomina-
tor is the same path integral with a mass term i

∫
d2xMψ̄ψ

introduced in its action. Therefore, the product I can also be
written as one path integral,

I =
∫

Dψ̄ψDϕ̄ϕ eS[ψ̄,ψ]+S[ϕ̄,ϕ]+i
∫

d2xMϕ̄ϕ, (C9)

which is the famous Pauli-Villars regularization. Notice that
S[ϕ̄, ϕ] has a form similar to S[ψ̄, ψ] but with spinor fields
substituted by bosonic fields ϕ̄(x) and ϕ(x). Also recall that
Grassmann integral is defined by left derivative and therefore
appears inversely to what a bosonic integral would.

Thus the regularized fermionic path integral introduced
here is a general case that includes, but is not limited to, the
Fujikawa and Pauli-Villars regularizations.

As an interesting remark, let us now look at a global chiral
rotation of both fermionic (5) and bosonic fields,

ϕ̄ → ϕ̄eiαγ5 , ϕ → eiαγ5ϕ, (C10)

for an angle α = π/2. Jacobian of transformation for
fermionic fields is inversely equal to that of bosonic fields,
therefore, the whole measure Dψ̄ψDϕ̄ϕ remains preserved.
But the same is not true for the action. The effect of this
transformation on the action is that the mass term obtains a
minus sign. Thus,

−δ ln I =
∑

n

ln
�n

�n + iM
−

∑
n

ln
�n

�n − iM
= 2i Im I

=
∑

n

ln
�n − iM

�n + iM
≈ −iπ

⎛
⎝∑

�n>0

1 −
∑
�n<0

1

⎞
⎠, (C11)

for the large-M limit. But if there were no bosonic fields, the
Jacobian of fermionic measure (17) would have contributed
in the exact same way according to (15). Hence, −(2/π ) Im I
is the corresponding path integral version of the index (15).
Notice that it is �n, not eigenvalues of an externally given
operator, that appears in the index theorem, and thus in the
anomalous term as well.

We saw that our regularization indeed comes down to well-
known forms at special cases, however, �n, when isolated, is
only well defined for certain bases, which our generic basis
is assumed to be one of them. From a different perspective,
therefore, the question of finding a basis that makes defini-
tion (C3) realizable, leads to the set of path integral elected
bases. We could have started by this question instead, namely,
what basis is preferred by the path integral. As an answer
we can ask for a basis {b̄n, an} that turns the unregularized
fermionic path integral into products of separate Grassmann

integrations,∫
Dψ̄DψeS[ψ̄,ψ] →

∏
n

(∫
db̄ndanFn[b̄n, an]

)
, (C12)

with F = FD ≡ ∏
n Fn so that (C12) is a mere rearrangement.

Since each term after integration will be a complex number,
there exists a natural regularization:∫

Dψ̄DψeS[ψ̄,ψ] ≡
∏

n

fM

(∫
db̄ndanFn[b̄n, an]

)
, (C13)

with fM defined as before. Again, this leads to a well-defined
path integral.

Finding such a basis is subject to solving the following
“eigenvalue” equation:

lim
K→∞

(∫
db̄ndan

[
F�K

] − �nF�K−1

)
= 0, (C14)

where F�K is defined as (C2) when variable k spans from 0 to
K . �K is the space spanned by k pairs of Grassmann variables,
and �K−1 is the subspace of �K with b̄n and an excluded. At
certain times, the above equation reduces to

(cn + b̄nan)
∫

db̄ndan[F] = �nF . (C15)

It is then easy to see that we can equivalently write down the
following path integral:∫

Dψ̄DψeS →
∫ ∏

n

db̄ndan exp

{∑
n

�nb̄nan

}
, (C16)

where we can say that the action is formally diagonalized in
the chosen basis.

As a conclusion we can say that action determines what
bases are preferable for the path integral to be regularized with
respect to. This means that the measure, which is regularized
in the same manner, is affected by the action, or the weight,
of the fermionic path integral. Therefore, adding interaction
terms to the action does not necessarily leave the measure,
and the anomaly that comes from it, untouched. At last, we
saw that a way to correctly see how the measure is affected is
to move to a basis that formally diagonalizes the action.

APPENDIX D: CHIRAL ANOMALY IN PRESENCE
OF BOTH VECTOR AND AXIAL-VECTOR FIELDS

In this Appendix we calculate the chiral anomaly for
fermions that in addition to the usual gauge field are also
coupled to an axial-vector field. The calculation is similar
to the two-dimensional case presented in Sec. II but is much
longer and tedious. We have tried to present the procedure in
a way that is concise but still easy to follow.

The generalized Dirac operator in the presence of both the
vector field Aμ and the axial-vector field bμγ5 is given by

/Dg ≡ γ μ(∂μ − ieAμ − ibμγ5). (D1)

The usual Dirac operator and consequently the usual chi-
ral anomaly in (3 + 1) dimensions are obtainable by setting
bμ → 0. From Sec. II and in particular Eq. (19a), we remem-
ber that the chiral anomaly is in fact the trace of γ5 which
needs to be regularized. As we discussed briefly in the same
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section and the next, while providing a detailed discussion
in the Appendix C, the regulator must be a function of the
generalized Dirac operator, /Dg.

Therefore, what we need to calculate is the following:

A = −2i
∑

n

φ†
n (x)γ5 f

(
/D2

g

M2

)
φn(x), (D2)

with

/D2
g = DμDμ − bμbμ + γ5∂μbμ + [γ μ, γ ν]

×
[

1

4
F A

μν + γ5

(
1

4
F b

μν − bμDν

)]
. (D3)

We have substituted bμ → ibμ and −ieAμ → Aμ, and re-
served the notation Dμ ≡ ∂μ − ieAμ for the covariant deriva-
tive in the absence of the axial-vector field bμ and also
defined F A

μν ≡ ∂μAν − ∂νAμ and F b
μν ≡ ∂μbν − ∂νbμ to ensure

Hermiticity and avoid clutter. We bring their true forms back
at the end. To draw the spacetime dependence of the anomaly
out, we change basis to that of plain waves,

i

2
A =

∫
d4k

(2π )4 e−ikμxμ

γ5 f

(
/D2

g

M2

)
e+ikμxμ

= tr
∫

d4k

(2π )4 γ5 f

{
− k2 + 2ikμDμ + DμDμ − bμbμ

+ γ5∂μbμ + [γ μ, γ ν]

×
[

1

4
F A

μν + γ5

(
1

4
F b

μν − bμAν − bμ∂ν − ibμkν

)]}
,

(D4)

where in order to reach from the first line to the second we
have moved eikμxμ

through the regulator to its left, and also
by k2 we mean kμkμ herein. By a rescaling of the momentum
variable kμ → Mkμ we have isolated k2 from the regulariza-
tion mass M2. In fact the last line above should look like

below:

tr M4
∫

d4k

(2π )4 γ5 f

(
− k2 + 2ikμDμ

M
+ DμDμ

M2
· · · ,

however, to avoid clutter we have dropped M altogether while
we keep in mind that terms that include one kμ are divided by
M, e.g., 2ikμDμ/M, and those which do not have kμ at all are
divided by M2, e.g., DμDμ/M2. We now attempt to expand
f (x) around −k2 in a Fourier expansion keeping terms only
up to 1/M4 since terms after this order vanish in the limit
M → ∞. Note that there is an implied M4 behind the mo-
mentum integral because of the rescaling of the momentum
variable. So a 1/M5 term out of the expansion will contribute
to the anomaly as M4/M5 = 1/M.

In what follows we calculate the aforementioned Fourier
expansion order by order

f (· · · ) = f (−k2) + f ′(−k2)[· · · ] + 1

2!
f ′′(−k2)[· · · ]2

+ 1

3!
f (3)(−k2)[· · · ]3 + · · · , (D5)

with

[· · · ] = 2ikμDμ

M
+ DμDμ − bμbμ + γ5∂μbμ

M2

+ [γ μ, γ ν]

[
1

4

F A
μν

M2
+ γ5

(
1

4

F b
μν

M2

− bμAν

M2
− bμ∂ν

M2
− i

bμkν

M

)]
, (D6)

where M has momentarily reappeared for clarity. Also in what
follows we are going to readily drop the terms that are odd in
kμ since they integrate to zero.

1. Zeroth order

For the zeroth order we only have

tr
∫

d4k

(2π )4 γ5 f
(−k2

) = 0, (D7)

which vanishes since tr γ5 = 0.

2. First order

The contribution from this order will not be M-independent, so let M reappear again. At this order we get

tr M2
∫

d4k

(2π )4 f (1)(−k2)γ5

{
DμDμ − bμbμ + γ5∂μbμ + [γ μ, γ ν]

[
1

4
F A

μν + γ5

(
1

4
F b

μν − bμAν − bμ∂ν

)]}

= tr M2
∫

d4k

(2π )4 f (1)(−k2)γ5

{
DμDμ − bμbμ + γ5∂μbμ + [γ μ, γ ν]

[
1

4
F A

μν + γ5

(
1

4
F b

μν − bμAν − bμ∂ν

)]}

= tr M2
∫

d4k

(2π )4 f (1)(−k2)∂μbμ

= 4M2∂μbμ

∫
d4k

(2π )4 f (1)(−k2) = − M2

4π2
∂μbμ, (D8)

where we remember that terms linear in kμ are disregarded, γ 2
5 = 1, tr 1 = 4 in four dimensions, and tr γ5[γ μ, γ ν] = 0. Also

recall that f (x) is a function that gives identity for x < 1 and rapidly but smoothly drops to zero afterwards.
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3. Second order

For the second order [· · · ]2 expands to give

tr
∫

d4k

(2π )4

1

2!
f (2)(−k2)

[
DμDμ∂μbμ + ∂μbμDμDμ − 2b2∂μbμ + γ μνγ ρσ γ5

(
1

16
F A

μνF A
ρσ + 1

16
F b

μνF b
ρσ + bμAνbρbσ

− 1

2
F b

μνbρAσ − 1

4
bμ∂νF b

ρσ + bμbρ∂νAσ + bμAσ ∂νbρ

)
+ γ μνγ ρσ

(
1

8
F A

μνF b
ρσ − 1

2
F A

μνbρAσ − 1

4
bμ∂νF A

ρσ

)]
, (D9)

where γ μν is shorthand for [γ μ, γ ν]. A careful component-wise consideration shows that

tr[γ μ, γ ν][γ α, γ β ] = −16(gμαgνβ − gμβgνα ), (D10a)

tr [γ μ, γ ν][γ α, γ β]γ5 = −16εμναβ, (D10b)

tr 1 = 4, (D10c)

turning the expression (D9), after tracing over the spinor components and some simplifications into∫
d4k

(2π )4

1

2!
f (2)(−k2)

[
4∂ν∂

ν∂μbμ + 8Aν∂ν∂μbμ + 8∂μAμ∂μbμ + 8A2∂μbμ − 8b2∂μbμ − εμνρσ
(
F A

μνF A
ρσ + F b

μνF b
ρσ

)
− 2(gμρgνσ − gμσ gνρ )

(
F A

μνF b
ρσ − 4F A

μνbρAσ − 2bμ∂νF A
ρσ

)]
, (D11)

where we have noticed that the contraction of the totally antisymmetric tensor εμναβ with a symmetric tensor such
as εμναβbμAνbρbσ vanishes, and also 2εμναβ∂μbνζαβ = εμναβF b

μνζαβ . Another step of simplification takes the expression
above to

1

32π2

[
4∂ν∂

ν∂μbμ + 8Aν∂ν∂μbμ + 8∂μAμ∂μbμ + 8A2∂μbμ − 8b2∂μbμ − εμνρσ
(
F A

μνF A
ρσ + F b

μνF b
ρσ

)
− 4F A

μνFμν

b + 16bμAνF A
μν + 8bμ∂νFμν

A

]
, (D12)

where we have implemented the integral over d4k,∫
d4k

(2π )4 f (2)(−k2) = 1

16π2
. (D13)

Expression (D12) is as it goes for the second order, we calculate the third order next.

4. Third order

The third order contains the cube of [· · · ],

tr
∫

d4k

(2π )4

1

3!
f (3)(−k2)

{
−4kρkσ [DρDσ ∂μbμ + ∂μbμDρDσ + Dρ (∂μbμDσ )]

− γ μνγ ρσ kνkσ [3bμbρ∂μbμ + γ5(−3b2bμbρ + bμbρDμ′Dμ′ + bμDμ′Dμ′
bρ + Dμ′Dμ′

(bμbρ ))]

+ 2γ μνγ αβkρkν

[
1

2
Dρ

(
bμF A

αβ

) + γ5Dρ

(
1

2
bμF b

αβ − 2bμbαAβ − bα∂βbμ

)
+ γ5bμDρ

(
1

4
F b

αβ − bαAβ

)

+ 1

4
bμDρF A

αβ + 1

2
bμF A

αβAρ + γ5

(
1

2
bμF b

αβ − 2bμbαAβ

)
Aρ − γ5(bμbα∂βAρ + bαbμ∂βAρ + bαAρ∂βbμ)

+ 1

4
F A

αβDρbμ + γ5

(
1

4
F b

αβ − bαAβ

)
Dρbμ − γ5(bα∂β∂ρbμ + bαbμ∂βAρ + bαAρ∂βbμ)

]}
. (D14)

Taking the trace over the spinor indices while remembering the identities (D10), removing symmetric-antisymmetric contractions
as before, and noticing that because of symmetry we can make the substitution∫

d4kkμkν −→
∫

d4k
k2

4
gμν, (D15)
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which takes us to the following:∫
d4k

(2π )4

4

3!
f (3)(−k2)

(−k2
){

DρDσ ∂μbμ + ∂μbμDρDσ + Dρ (∂μbμDσ ) − 9b2∂μbμ + 2Dβ
(
bαF A

αβ

) + bαDβF A
αβ

+ 2bαF A
αβAβ + F AαβDβbα + εμναβ

[
bμDν

(
1

2
F b

αβ − 2bαAβ

)
+ Dν

(
bμF b

αβ − 2bα∂βbμ

)

+ bμF b
αβAν − 2bαAν∂βbμ +

(
1

2
F b

αβ − 2bαAβ

)
Dνbμ − 2bαAν∂βbμ

]}
. (D16)

The first line is what remains from the first and second lines in the previous expression; notice that terms with two bμ vanish
when contracted with the totally antisymmetric tensor εμναβ . The second line are the rest of the term that where multiplied by
two gamma commutators, γ μνγ αβ , and the third and fourth lines come from those multiplied by an extra γ5: γ μνγ αβγ5. Taking
the momentum integral,

4

3!

∫
d4k

(2π )4 f (3)(−k2)(−k2) = −4

3

∫
d4k

(2π )4 f (2)(−k2) = − 1

12π2
, (D17)

and another step of simplification yields for the third order in Fourier expansion:

− 1

32π2

8

3

[
∂ν∂

ν∂μbμ + 3Aν∂ν∂μbμ + 3∂μAμ∂μbμ + 3A2∂μbμ − 9b2∂μbμ + 6bαAβF A
αβ

− 3

2
F A

αβFαβ

b + 3bα∂βF A
αβ − 1

4
εμναβF b

μνF b
αβ

]
. (D18)

Now we proceed to the fourth and last relevant order in the expansion.

5. Fourth order

The fourth order consists of two types of terms,

tr
∫

d4k

(2π )4

1

4!
f (4)(−k2)[4kρkσ kvkv′γ μνγ μ′ν ′

γ5(DρDσ bμbμ′ + DρbμDσ bμ′ + Dρbμbμ′Dσ

+ bμDρDσ bμ′ + bμDρbμ′Dσ + bμbμ′DρDσ ) + γ ··γ ··γ ··γ ··γ5(· · · )]. (D19)

The last term with four gamma commutators and an extra γ5 has a null trace. Tracing over γ μνγ μ′ν ′
γ5 gives a totally

antisymmetric tensor, but because of the symmetric nature of the terms in the parentheses the whole thing amounts to zero.
Thus the fourth order vanishes completely.

All we need to do now is to sum the second and third orders (D12) and (D18). We bring them below for accessibility,

− M2

4π2
∂μbμ + 1

32π2

[
4∂ν∂

ν∂μbμ + 8Aν∂ν∂μbμ + 8∂μAμ∂μbμ + 8A2∂μbμ − 8b2∂μbμ − εμνρσ
(
F A

μνF A
ρσ + F b

μνF b
ρσ

)

− 4F A
μνFμν

b + 16bμAνF A
μν + 8bμ∂νFμν

A − 8

3
∂ν∂

ν∂μbμ − 8Aν∂ν∂μbμ − 8∂μAμ∂μbμ

− 8A2∂μbμ + 24b2∂μbμ − 16bαAβF A
αβ + 4F A

αβFαβ

b − 8bα∂βF A
αβ + 2

3
εμναβF b

μνF b
αβ

]
(D20)

= − M2

4π2
∂μbμ + 1

32π2

[
4

3
∂ν∂

ν∂μbμ + 16b2∂μbμ − εμνρσ F A
μνF A

ρσ − 1

3
εμνρσ F b

μνF b
ρσ

]
. (D21)

Reverting back to original bμ and Aμ along with a substitution of bμ → λsμ takes us to Eq. (134).
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